Abstract

An improved method is proposed to perform contouring of an object based on phase-measuring profilometry with a grid grating. Two phases unwrapped in perpendicular directions are obtained with the help of an adaptive bandpass filter and are used to unwrap the phases and to appoint the edge points of a shaded area and the object area. The height distribution of the object is obtained with the geometric relationship between coordinates and phases. The main axis of the projector and the main axis of the camera are not crossed and are also not in the same plane in order to arrange a measuring system easily and conveniently. The experimental results show that this technique is available for practical applications.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Takasaki, “Generation of surface contours by moiré patterns,” Appl. Opt. 9, 942–947 (1970).
    [CrossRef]
  2. M. Takeda, K. Mutoh, “Fourier transform profilometry for the automatic measurement 3-D object shapes,” Appl. Opt. 22, 3977–3982 (1983).
    [CrossRef]
  3. Jian Li, Xian-Yu Su, Lu-Rong Guo, “Improved Fourier transform profilometry of automatic of 3-D object shapes,” Opt. Eng. 29, 1430–1444 (1990).
  4. Jin-Feng Lin, Xian-Yu Su, “2-D Fourier transform profilometry for automatic measurement of 3-D object shapes,” Opt. Eng. 34, 3297–3302 (1995).
    [CrossRef]
  5. Lian Xue, Xianyu Su, “Phase-unwrapping algorithm based on frequency analysis for measurement of a complex object by the phase measuring profilometry method,” Appl. Opt. 40, 1207–1216 (2001).
    [CrossRef]
  6. J. C. Wyant, C. L. Koliopoilos, “An optical profilometry for surface characterization of magnetic media,” ASLE Trans. 27, 101–113 (1983).
    [CrossRef]
  7. Tao Xian, Xianyu Su, “Area modulation grating for sinusoidal structure illumination on phase-measuring profilometry,” Appl. Opt. 40, 1201–1208 (2001).
    [CrossRef]
  8. Xian-Yu Su, M. J. Lator, D. R. Burton, M. M. Shaw, “Four-map absolute distance contouring,” Opt. Eng. 36, 2517–2520 (1997).
    [CrossRef]
  9. Yudong Hao, Yang Zhao, Dacheng Li, “Multifrequency grating projection profilometry based on the nonlinear excess fraction method,” Appl. Opt. 38, 4106–4111 (1999).
    [CrossRef]
  10. Banghe Zhu, Shutian Liu, Lixue Chen, “Fractional profilometry correlator for three-dimensional object recognition,” Appl. Opt. 40, 6474–6479 (2001).
    [CrossRef]
  11. V. Srinivasan, H. C. Loi, M. Halious, “Automatic phase-measuring profilometry of 3-D diffuse object,” Appl. Opt. 23, 3105–3108 (1984).
    [CrossRef]
  12. Xiang Zhou, Xian-Yu Su, “Effect of the modulation transfer function of a digital image acquisition device on PMP,” Appl. Opt. 33, 8210–8215 (1994).
    [CrossRef] [PubMed]
  13. Fan Hua, Zhao Hong, Tan Yu-shan, “Automatic profilometry by dual-frequency of optical fiber projection grating,” Opt. Acta. 18, 86–89 (1998) (in Chinese).

2001

1999

1998

Fan Hua, Zhao Hong, Tan Yu-shan, “Automatic profilometry by dual-frequency of optical fiber projection grating,” Opt. Acta. 18, 86–89 (1998) (in Chinese).

1997

Xian-Yu Su, M. J. Lator, D. R. Burton, M. M. Shaw, “Four-map absolute distance contouring,” Opt. Eng. 36, 2517–2520 (1997).
[CrossRef]

1995

Jin-Feng Lin, Xian-Yu Su, “2-D Fourier transform profilometry for automatic measurement of 3-D object shapes,” Opt. Eng. 34, 3297–3302 (1995).
[CrossRef]

1994

1990

Jian Li, Xian-Yu Su, Lu-Rong Guo, “Improved Fourier transform profilometry of automatic of 3-D object shapes,” Opt. Eng. 29, 1430–1444 (1990).

1984

1983

M. Takeda, K. Mutoh, “Fourier transform profilometry for the automatic measurement 3-D object shapes,” Appl. Opt. 22, 3977–3982 (1983).
[CrossRef]

J. C. Wyant, C. L. Koliopoilos, “An optical profilometry for surface characterization of magnetic media,” ASLE Trans. 27, 101–113 (1983).
[CrossRef]

1970

Burton, D. R.

Xian-Yu Su, M. J. Lator, D. R. Burton, M. M. Shaw, “Four-map absolute distance contouring,” Opt. Eng. 36, 2517–2520 (1997).
[CrossRef]

Chen, Lixue

Guo, Lu-Rong

Jian Li, Xian-Yu Su, Lu-Rong Guo, “Improved Fourier transform profilometry of automatic of 3-D object shapes,” Opt. Eng. 29, 1430–1444 (1990).

Halious, M.

Hao, Yudong

Hong, Zhao

Fan Hua, Zhao Hong, Tan Yu-shan, “Automatic profilometry by dual-frequency of optical fiber projection grating,” Opt. Acta. 18, 86–89 (1998) (in Chinese).

Hua, Fan

Fan Hua, Zhao Hong, Tan Yu-shan, “Automatic profilometry by dual-frequency of optical fiber projection grating,” Opt. Acta. 18, 86–89 (1998) (in Chinese).

Koliopoilos, C. L.

J. C. Wyant, C. L. Koliopoilos, “An optical profilometry for surface characterization of magnetic media,” ASLE Trans. 27, 101–113 (1983).
[CrossRef]

Lator, M. J.

Xian-Yu Su, M. J. Lator, D. R. Burton, M. M. Shaw, “Four-map absolute distance contouring,” Opt. Eng. 36, 2517–2520 (1997).
[CrossRef]

Li, Dacheng

Li, Jian

Jian Li, Xian-Yu Su, Lu-Rong Guo, “Improved Fourier transform profilometry of automatic of 3-D object shapes,” Opt. Eng. 29, 1430–1444 (1990).

Lin, Jin-Feng

Jin-Feng Lin, Xian-Yu Su, “2-D Fourier transform profilometry for automatic measurement of 3-D object shapes,” Opt. Eng. 34, 3297–3302 (1995).
[CrossRef]

Liu, Shutian

Loi, H. C.

Mutoh, K.

Shaw, M. M.

Xian-Yu Su, M. J. Lator, D. R. Burton, M. M. Shaw, “Four-map absolute distance contouring,” Opt. Eng. 36, 2517–2520 (1997).
[CrossRef]

Srinivasan, V.

Su, Xianyu

Su, Xian-Yu

Xian-Yu Su, M. J. Lator, D. R. Burton, M. M. Shaw, “Four-map absolute distance contouring,” Opt. Eng. 36, 2517–2520 (1997).
[CrossRef]

Jin-Feng Lin, Xian-Yu Su, “2-D Fourier transform profilometry for automatic measurement of 3-D object shapes,” Opt. Eng. 34, 3297–3302 (1995).
[CrossRef]

Xiang Zhou, Xian-Yu Su, “Effect of the modulation transfer function of a digital image acquisition device on PMP,” Appl. Opt. 33, 8210–8215 (1994).
[CrossRef] [PubMed]

Jian Li, Xian-Yu Su, Lu-Rong Guo, “Improved Fourier transform profilometry of automatic of 3-D object shapes,” Opt. Eng. 29, 1430–1444 (1990).

Takasaki, H.

Takeda, M.

Wyant, J. C.

J. C. Wyant, C. L. Koliopoilos, “An optical profilometry for surface characterization of magnetic media,” ASLE Trans. 27, 101–113 (1983).
[CrossRef]

Xian, Tao

Xue, Lian

Yu-shan, Tan

Fan Hua, Zhao Hong, Tan Yu-shan, “Automatic profilometry by dual-frequency of optical fiber projection grating,” Opt. Acta. 18, 86–89 (1998) (in Chinese).

Zhao, Yang

Zhou, Xiang

Zhu, Banghe

Appl. Opt.

ASLE Trans.

J. C. Wyant, C. L. Koliopoilos, “An optical profilometry for surface characterization of magnetic media,” ASLE Trans. 27, 101–113 (1983).
[CrossRef]

Opt. Acta.

Fan Hua, Zhao Hong, Tan Yu-shan, “Automatic profilometry by dual-frequency of optical fiber projection grating,” Opt. Acta. 18, 86–89 (1998) (in Chinese).

Opt. Eng.

Xian-Yu Su, M. J. Lator, D. R. Burton, M. M. Shaw, “Four-map absolute distance contouring,” Opt. Eng. 36, 2517–2520 (1997).
[CrossRef]

Jian Li, Xian-Yu Su, Lu-Rong Guo, “Improved Fourier transform profilometry of automatic of 3-D object shapes,” Opt. Eng. 29, 1430–1444 (1990).

Jin-Feng Lin, Xian-Yu Su, “2-D Fourier transform profilometry for automatic measurement of 3-D object shapes,” Opt. Eng. 34, 3297–3302 (1995).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

3-D measurement system without crossed optical axes.

Fig. 2
Fig. 2

Gridding image of the reference plane.

Fig. 3
Fig. 3

Deformed gridding image of the object.

Fig. 4
Fig. 4

Filtered image of the reference plane in the x direction.

Fig. 5
Fig. 5

Filtered image of the object in the x direction.

Fig. 6
Fig. 6

Shape area of the object.

Fig. 7
Fig. 7

Filtered image of the reference plane in the y direction.

Fig. 8
Fig. 8

Filtered image of the object in the y direction.

Fig. 9
Fig. 9

Height distribution of ball by 2-D PMP.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

g D ( x ,     y ) = r ( x ,     y ) - A ( n x ,     n y ) exp { i [ 2 π n x f 0 x x + 2 π n y f 0 y y + n x ϕ x ( x ,     y ) + n y ϕ y ( x ,     y ) ] } .
g C ( x ,     y ) = r 0 ( x ,     y ) - A ( n x , n y ) exp { i [ 2 π n x f 0 x x + 2 π n y f 0 y y + n x ϕ 0 x ( x ,     y ) + n y ϕ 0 y ( x ,     y ) ] } .
Δ ϕ x ( C ,     D ) = ϕ x ( x ,     y ) - ϕ 0 x ( x ,     y ) = 2 π f 0 x × ( x A - x c ) ,
Δ ϕ y ( C ,     D ) = ϕ y ( x ,     y ) - ϕ 0 y ( x ,     y ) = 2 π f 0 y × ( y A - y c ) ,
z D = ( x 0 - x L ) ( z L - z C ) ( z 0 - z A ) - z 0 ( x 0 - x A ) ( z L - z C ) + z L ( x L - x C ) ( z 0 - z A ) ( x L - x C ) ( z 0 - z A ) - ( x 0 - x A ) ( z L - z c ) ,
y D = y L + ( z D - z L ) ( y L - y C ) / ( z L - z C ) ,
x D = x 0 + ( z D - z 0 ) ( x 0 - x A ) / ( z 0 - z A ) .
Δ ϕ x ( C ,     D ) = Δ ϕ x 0 ( C ,     D ) + N x ( C ,     D ) * 2 π ,
Δ ϕ y ( C ,     D ) = Δ ϕ y 0 ( C ,     D ) + N y ( C , D ) * 2 π .
( x C - x A ) ( x M - x C ) = ( y C - y A ) ( y M - y C ) ,
f 0 x = f 0 y .
Δ ϕ x 0 ( C ,     D ) + N x ( C ,     D ) × 2 π ( x M - x C ) = Δ ϕ y 0 ( C ,     D ) + N y ( C ,     D ) × 2 π ( y M - y C ) .
H ( f x ,     f y ) = 1 4 { 1 + cos [ 1 2 π ( f x - f 0 x ) / f xc ] } × [ 1 + cos ( 1 2 π f y / f y c ) ] ,
g ^ ( x ,     y ) = A 1 ( x ,     y ) exp [ i ( 2 π f 0 x x ) + ϕ x ( x ,     y ) ] ,
g ^ 0 ( x ,     y ) = A 1 r 0 ( x ,     y ) exp [ i ( 2 π f 0 x x ) + ϕ 0 x ( x ,     y ) ] .
Δ ϕ x 0 ( C ,     D ) = ϕ x ( x ,     y ) - ϕ 0 x ( x ,     y ) = arctan Re ( g ^ ( x ,     y ) ) Im ( g ^ ( x ,     y ) ) - arctan Re ( g ^ 0 ( x ,     y ) ) Im ( g ^ 0 ( x , y ) ) ,

Metrics