Abstract

Real-time interferometric monitoring of the dip coating process is applied to the study of properties of flowing liquids. Nonvolatile Newtonian oils are considered, allowing validity of a simple model after the steady state is reached where film physical thickness depends on time as t−1/2. Measurement of two distinct mineral oil standards, under several withdrawing speeds, resulted in kinematic viscosities of 1.17 ± 0.03 and 9.9 ± 0.2 S (1S = 1 cm2/s). Agreement of these results with nominal values from the manufacturer suggests that interferometric monitoring of dip coating may become a valuable method for accurate, contactless viscometry of liquid films. Advantages and present limitations are discussed.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Horowitz, E. M. Yeatman, E. Dawnay, A. Fardad, “Optics as a key to spin coating sol-gel films,” in 16th Congress of the International Commission for Optics: Optics as a Key to High Technology, G. Akos, T. Lippenyi, G. Lupkovics, A. Podmaniczky, eds., Proc. SPIE1983, 1022–1023 (1993).
  2. F. Horowitz, E. M. Yeatman, E. Dawnay, A. Fardad, M. Green, “Real-time optical monitoring of spin coating,” J. Phys. III (France) 3, 2059–2063 (1993).
    [CrossRef]
  3. D. E. Haas, “Effect of solvent evaporation rate on skin formation during spin coating of complex solutions,” in Sol-Gel Optics V, B. Dunn, E. Pope, H. K. Schmidt, M. Yamane, eds., Proc. SPIE3943, 280–284 (2000).
    [CrossRef]
  4. A. F. Michels, F. Horowitz, “Optics interferometric applications to fluid viscometry,” in 4th Iberoamerican Meeting on Optics and 7th Latin American Meeting on Optics, Lasers, and Their Application, V. L. Brudny, S. A. Ledesma, M. C. Marconi, eds., Proc. SPIE4419, 252–255 (2001).
    [CrossRef]
  5. F. Nishida, J. M. McKiernan, B. Dunn, J. I. Zink, C. J. Brinker, A. J. Hurd, “In situ fluorescence probing of the chemical changes during sol-gel thin film formation,” J. Am. Ceram. Soc. 78, 1640–1648 (1995).
    [CrossRef]
  6. D. Qu, E. Rancé, S. Garoff, “Dip coated films of volatile liquids,” Phys. Fluids 14, 1154–1156 (2002).
    [CrossRef]
  7. F. Horowitz, A. F. Michels, P. Alcantara, M. B. Pereira, A. P. Rizzato, C. V. Santilli, “Real-time interferometric monitoring of dip coating,” in 18th Congress of the International Commission for Optics, A. J. Glass, J. W. Goodman, M. Chang, A. H. Guenter, T. Asakura, eds., Proc. SPIE3749, 729–730 (1999).
    [CrossRef]
  8. A. F. Michels, T. Menegotto, F. Horowitz, “Interferometric monitoring of dip coating,” Appl. Opt. 43, 820–823 (2004).
    [CrossRef] [PubMed]
  9. L. D. Landau, B. G. Levich, “Dragging of a liquid by a moving plate,” Acta Physicochim. URSS 17, 42–54 (1942).
  10. V. G. Levich, “Motion and diffusion in thin liquid films,” in Physicochemical Hydrodynamics, N. R. Amundson, ed. (Prentice-Hall, Englewood Cliffs, N.J., 1962), pp. 669–700.
  11. R. P. Spiers, C. V. Subabaraman, W. L. Wilkinson, “Free coating of a Newtonian liquid onto a vertical surface,” Chem. Eng. Sci. 29, 389–396 (1973).
    [CrossRef]
  12. C. Gutfinger, J. A. Tallmadge, “Films of non-Newtonian fluids adhering to flat plates,” AIChE. J. 11, 403–413 (1965).
    [CrossRef]
  13. L. E. Scriven, “Physics and applications of dip coating and spin coating,” Mater. Res. Soc. Symp. Proc. 121, 717–729 (1988).
    [CrossRef]
  14. D. A. White, J. A. Tallmadge, “Theory of drag out of liquids on flat plates,” Chem. Eng. Sci. 20, 33–37 (1965).
    [CrossRef]

2004

2002

D. Qu, E. Rancé, S. Garoff, “Dip coated films of volatile liquids,” Phys. Fluids 14, 1154–1156 (2002).
[CrossRef]

1995

F. Nishida, J. M. McKiernan, B. Dunn, J. I. Zink, C. J. Brinker, A. J. Hurd, “In situ fluorescence probing of the chemical changes during sol-gel thin film formation,” J. Am. Ceram. Soc. 78, 1640–1648 (1995).
[CrossRef]

1993

F. Horowitz, E. M. Yeatman, E. Dawnay, A. Fardad, M. Green, “Real-time optical monitoring of spin coating,” J. Phys. III (France) 3, 2059–2063 (1993).
[CrossRef]

1988

L. E. Scriven, “Physics and applications of dip coating and spin coating,” Mater. Res. Soc. Symp. Proc. 121, 717–729 (1988).
[CrossRef]

1973

R. P. Spiers, C. V. Subabaraman, W. L. Wilkinson, “Free coating of a Newtonian liquid onto a vertical surface,” Chem. Eng. Sci. 29, 389–396 (1973).
[CrossRef]

1965

C. Gutfinger, J. A. Tallmadge, “Films of non-Newtonian fluids adhering to flat plates,” AIChE. J. 11, 403–413 (1965).
[CrossRef]

D. A. White, J. A. Tallmadge, “Theory of drag out of liquids on flat plates,” Chem. Eng. Sci. 20, 33–37 (1965).
[CrossRef]

1942

L. D. Landau, B. G. Levich, “Dragging of a liquid by a moving plate,” Acta Physicochim. URSS 17, 42–54 (1942).

Alcantara, P.

F. Horowitz, A. F. Michels, P. Alcantara, M. B. Pereira, A. P. Rizzato, C. V. Santilli, “Real-time interferometric monitoring of dip coating,” in 18th Congress of the International Commission for Optics, A. J. Glass, J. W. Goodman, M. Chang, A. H. Guenter, T. Asakura, eds., Proc. SPIE3749, 729–730 (1999).
[CrossRef]

Brinker, C. J.

F. Nishida, J. M. McKiernan, B. Dunn, J. I. Zink, C. J. Brinker, A. J. Hurd, “In situ fluorescence probing of the chemical changes during sol-gel thin film formation,” J. Am. Ceram. Soc. 78, 1640–1648 (1995).
[CrossRef]

Dawnay, E.

F. Horowitz, E. M. Yeatman, E. Dawnay, A. Fardad, M. Green, “Real-time optical monitoring of spin coating,” J. Phys. III (France) 3, 2059–2063 (1993).
[CrossRef]

F. Horowitz, E. M. Yeatman, E. Dawnay, A. Fardad, “Optics as a key to spin coating sol-gel films,” in 16th Congress of the International Commission for Optics: Optics as a Key to High Technology, G. Akos, T. Lippenyi, G. Lupkovics, A. Podmaniczky, eds., Proc. SPIE1983, 1022–1023 (1993).

Dunn, B.

F. Nishida, J. M. McKiernan, B. Dunn, J. I. Zink, C. J. Brinker, A. J. Hurd, “In situ fluorescence probing of the chemical changes during sol-gel thin film formation,” J. Am. Ceram. Soc. 78, 1640–1648 (1995).
[CrossRef]

Fardad, A.

F. Horowitz, E. M. Yeatman, E. Dawnay, A. Fardad, M. Green, “Real-time optical monitoring of spin coating,” J. Phys. III (France) 3, 2059–2063 (1993).
[CrossRef]

F. Horowitz, E. M. Yeatman, E. Dawnay, A. Fardad, “Optics as a key to spin coating sol-gel films,” in 16th Congress of the International Commission for Optics: Optics as a Key to High Technology, G. Akos, T. Lippenyi, G. Lupkovics, A. Podmaniczky, eds., Proc. SPIE1983, 1022–1023 (1993).

Garoff, S.

D. Qu, E. Rancé, S. Garoff, “Dip coated films of volatile liquids,” Phys. Fluids 14, 1154–1156 (2002).
[CrossRef]

Green, M.

F. Horowitz, E. M. Yeatman, E. Dawnay, A. Fardad, M. Green, “Real-time optical monitoring of spin coating,” J. Phys. III (France) 3, 2059–2063 (1993).
[CrossRef]

Gutfinger, C.

C. Gutfinger, J. A. Tallmadge, “Films of non-Newtonian fluids adhering to flat plates,” AIChE. J. 11, 403–413 (1965).
[CrossRef]

Haas, D. E.

D. E. Haas, “Effect of solvent evaporation rate on skin formation during spin coating of complex solutions,” in Sol-Gel Optics V, B. Dunn, E. Pope, H. K. Schmidt, M. Yamane, eds., Proc. SPIE3943, 280–284 (2000).
[CrossRef]

Horowitz, F.

A. F. Michels, T. Menegotto, F. Horowitz, “Interferometric monitoring of dip coating,” Appl. Opt. 43, 820–823 (2004).
[CrossRef] [PubMed]

F. Horowitz, E. M. Yeatman, E. Dawnay, A. Fardad, M. Green, “Real-time optical monitoring of spin coating,” J. Phys. III (France) 3, 2059–2063 (1993).
[CrossRef]

F. Horowitz, E. M. Yeatman, E. Dawnay, A. Fardad, “Optics as a key to spin coating sol-gel films,” in 16th Congress of the International Commission for Optics: Optics as a Key to High Technology, G. Akos, T. Lippenyi, G. Lupkovics, A. Podmaniczky, eds., Proc. SPIE1983, 1022–1023 (1993).

A. F. Michels, F. Horowitz, “Optics interferometric applications to fluid viscometry,” in 4th Iberoamerican Meeting on Optics and 7th Latin American Meeting on Optics, Lasers, and Their Application, V. L. Brudny, S. A. Ledesma, M. C. Marconi, eds., Proc. SPIE4419, 252–255 (2001).
[CrossRef]

F. Horowitz, A. F. Michels, P. Alcantara, M. B. Pereira, A. P. Rizzato, C. V. Santilli, “Real-time interferometric monitoring of dip coating,” in 18th Congress of the International Commission for Optics, A. J. Glass, J. W. Goodman, M. Chang, A. H. Guenter, T. Asakura, eds., Proc. SPIE3749, 729–730 (1999).
[CrossRef]

Hurd, A. J.

F. Nishida, J. M. McKiernan, B. Dunn, J. I. Zink, C. J. Brinker, A. J. Hurd, “In situ fluorescence probing of the chemical changes during sol-gel thin film formation,” J. Am. Ceram. Soc. 78, 1640–1648 (1995).
[CrossRef]

Landau, L. D.

L. D. Landau, B. G. Levich, “Dragging of a liquid by a moving plate,” Acta Physicochim. URSS 17, 42–54 (1942).

Levich, B. G.

L. D. Landau, B. G. Levich, “Dragging of a liquid by a moving plate,” Acta Physicochim. URSS 17, 42–54 (1942).

Levich, V. G.

V. G. Levich, “Motion and diffusion in thin liquid films,” in Physicochemical Hydrodynamics, N. R. Amundson, ed. (Prentice-Hall, Englewood Cliffs, N.J., 1962), pp. 669–700.

McKiernan, J. M.

F. Nishida, J. M. McKiernan, B. Dunn, J. I. Zink, C. J. Brinker, A. J. Hurd, “In situ fluorescence probing of the chemical changes during sol-gel thin film formation,” J. Am. Ceram. Soc. 78, 1640–1648 (1995).
[CrossRef]

Menegotto, T.

Michels, A. F.

A. F. Michels, T. Menegotto, F. Horowitz, “Interferometric monitoring of dip coating,” Appl. Opt. 43, 820–823 (2004).
[CrossRef] [PubMed]

F. Horowitz, A. F. Michels, P. Alcantara, M. B. Pereira, A. P. Rizzato, C. V. Santilli, “Real-time interferometric monitoring of dip coating,” in 18th Congress of the International Commission for Optics, A. J. Glass, J. W. Goodman, M. Chang, A. H. Guenter, T. Asakura, eds., Proc. SPIE3749, 729–730 (1999).
[CrossRef]

A. F. Michels, F. Horowitz, “Optics interferometric applications to fluid viscometry,” in 4th Iberoamerican Meeting on Optics and 7th Latin American Meeting on Optics, Lasers, and Their Application, V. L. Brudny, S. A. Ledesma, M. C. Marconi, eds., Proc. SPIE4419, 252–255 (2001).
[CrossRef]

Nishida, F.

F. Nishida, J. M. McKiernan, B. Dunn, J. I. Zink, C. J. Brinker, A. J. Hurd, “In situ fluorescence probing of the chemical changes during sol-gel thin film formation,” J. Am. Ceram. Soc. 78, 1640–1648 (1995).
[CrossRef]

Pereira, M. B.

F. Horowitz, A. F. Michels, P. Alcantara, M. B. Pereira, A. P. Rizzato, C. V. Santilli, “Real-time interferometric monitoring of dip coating,” in 18th Congress of the International Commission for Optics, A. J. Glass, J. W. Goodman, M. Chang, A. H. Guenter, T. Asakura, eds., Proc. SPIE3749, 729–730 (1999).
[CrossRef]

Qu, D.

D. Qu, E. Rancé, S. Garoff, “Dip coated films of volatile liquids,” Phys. Fluids 14, 1154–1156 (2002).
[CrossRef]

Rancé, E.

D. Qu, E. Rancé, S. Garoff, “Dip coated films of volatile liquids,” Phys. Fluids 14, 1154–1156 (2002).
[CrossRef]

Rizzato, A. P.

F. Horowitz, A. F. Michels, P. Alcantara, M. B. Pereira, A. P. Rizzato, C. V. Santilli, “Real-time interferometric monitoring of dip coating,” in 18th Congress of the International Commission for Optics, A. J. Glass, J. W. Goodman, M. Chang, A. H. Guenter, T. Asakura, eds., Proc. SPIE3749, 729–730 (1999).
[CrossRef]

Santilli, C. V.

F. Horowitz, A. F. Michels, P. Alcantara, M. B. Pereira, A. P. Rizzato, C. V. Santilli, “Real-time interferometric monitoring of dip coating,” in 18th Congress of the International Commission for Optics, A. J. Glass, J. W. Goodman, M. Chang, A. H. Guenter, T. Asakura, eds., Proc. SPIE3749, 729–730 (1999).
[CrossRef]

Scriven, L. E.

L. E. Scriven, “Physics and applications of dip coating and spin coating,” Mater. Res. Soc. Symp. Proc. 121, 717–729 (1988).
[CrossRef]

Spiers, R. P.

R. P. Spiers, C. V. Subabaraman, W. L. Wilkinson, “Free coating of a Newtonian liquid onto a vertical surface,” Chem. Eng. Sci. 29, 389–396 (1973).
[CrossRef]

Subabaraman, C. V.

R. P. Spiers, C. V. Subabaraman, W. L. Wilkinson, “Free coating of a Newtonian liquid onto a vertical surface,” Chem. Eng. Sci. 29, 389–396 (1973).
[CrossRef]

Tallmadge, J. A.

C. Gutfinger, J. A. Tallmadge, “Films of non-Newtonian fluids adhering to flat plates,” AIChE. J. 11, 403–413 (1965).
[CrossRef]

D. A. White, J. A. Tallmadge, “Theory of drag out of liquids on flat plates,” Chem. Eng. Sci. 20, 33–37 (1965).
[CrossRef]

White, D. A.

D. A. White, J. A. Tallmadge, “Theory of drag out of liquids on flat plates,” Chem. Eng. Sci. 20, 33–37 (1965).
[CrossRef]

Wilkinson, W. L.

R. P. Spiers, C. V. Subabaraman, W. L. Wilkinson, “Free coating of a Newtonian liquid onto a vertical surface,” Chem. Eng. Sci. 29, 389–396 (1973).
[CrossRef]

Yeatman, E. M.

F. Horowitz, E. M. Yeatman, E. Dawnay, A. Fardad, M. Green, “Real-time optical monitoring of spin coating,” J. Phys. III (France) 3, 2059–2063 (1993).
[CrossRef]

F. Horowitz, E. M. Yeatman, E. Dawnay, A. Fardad, “Optics as a key to spin coating sol-gel films,” in 16th Congress of the International Commission for Optics: Optics as a Key to High Technology, G. Akos, T. Lippenyi, G. Lupkovics, A. Podmaniczky, eds., Proc. SPIE1983, 1022–1023 (1993).

Zink, J. I.

F. Nishida, J. M. McKiernan, B. Dunn, J. I. Zink, C. J. Brinker, A. J. Hurd, “In situ fluorescence probing of the chemical changes during sol-gel thin film formation,” J. Am. Ceram. Soc. 78, 1640–1648 (1995).
[CrossRef]

Acta Physicochim. URSS

L. D. Landau, B. G. Levich, “Dragging of a liquid by a moving plate,” Acta Physicochim. URSS 17, 42–54 (1942).

AIChE. J.

C. Gutfinger, J. A. Tallmadge, “Films of non-Newtonian fluids adhering to flat plates,” AIChE. J. 11, 403–413 (1965).
[CrossRef]

Appl. Opt.

Chem. Eng. Sci.

R. P. Spiers, C. V. Subabaraman, W. L. Wilkinson, “Free coating of a Newtonian liquid onto a vertical surface,” Chem. Eng. Sci. 29, 389–396 (1973).
[CrossRef]

D. A. White, J. A. Tallmadge, “Theory of drag out of liquids on flat plates,” Chem. Eng. Sci. 20, 33–37 (1965).
[CrossRef]

J. Am. Ceram. Soc.

F. Nishida, J. M. McKiernan, B. Dunn, J. I. Zink, C. J. Brinker, A. J. Hurd, “In situ fluorescence probing of the chemical changes during sol-gel thin film formation,” J. Am. Ceram. Soc. 78, 1640–1648 (1995).
[CrossRef]

J. Phys. III (France)

F. Horowitz, E. M. Yeatman, E. Dawnay, A. Fardad, M. Green, “Real-time optical monitoring of spin coating,” J. Phys. III (France) 3, 2059–2063 (1993).
[CrossRef]

Mater. Res. Soc. Symp. Proc.

L. E. Scriven, “Physics and applications of dip coating and spin coating,” Mater. Res. Soc. Symp. Proc. 121, 717–729 (1988).
[CrossRef]

Phys. Fluids

D. Qu, E. Rancé, S. Garoff, “Dip coated films of volatile liquids,” Phys. Fluids 14, 1154–1156 (2002).
[CrossRef]

Other

F. Horowitz, A. F. Michels, P. Alcantara, M. B. Pereira, A. P. Rizzato, C. V. Santilli, “Real-time interferometric monitoring of dip coating,” in 18th Congress of the International Commission for Optics, A. J. Glass, J. W. Goodman, M. Chang, A. H. Guenter, T. Asakura, eds., Proc. SPIE3749, 729–730 (1999).
[CrossRef]

D. E. Haas, “Effect of solvent evaporation rate on skin formation during spin coating of complex solutions,” in Sol-Gel Optics V, B. Dunn, E. Pope, H. K. Schmidt, M. Yamane, eds., Proc. SPIE3943, 280–284 (2000).
[CrossRef]

A. F. Michels, F. Horowitz, “Optics interferometric applications to fluid viscometry,” in 4th Iberoamerican Meeting on Optics and 7th Latin American Meeting on Optics, Lasers, and Their Application, V. L. Brudny, S. A. Ledesma, M. C. Marconi, eds., Proc. SPIE4419, 252–255 (2001).
[CrossRef]

F. Horowitz, E. M. Yeatman, E. Dawnay, A. Fardad, “Optics as a key to spin coating sol-gel films,” in 16th Congress of the International Commission for Optics: Optics as a Key to High Technology, G. Akos, T. Lippenyi, G. Lupkovics, A. Podmaniczky, eds., Proc. SPIE1983, 1022–1023 (1993).

V. G. Levich, “Motion and diffusion in thin liquid films,” in Physicochemical Hydrodynamics, N. R. Amundson, ed. (Prentice-Hall, Englewood Cliffs, N.J., 1962), pp. 669–700.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) General scheme of the optical monitor. (b) Inset with illustration of the dip coating batch process, where laser probing is shown. A/D, analog-to-digital.

Fig. 2
Fig. 2

Reflectance temporal evolution for mineral oil OP60 during dip coating. Refractive indices (n) at 660 nm: 1.503 ± 0.001 for a glass substrate (Brewster method) and 1.470 ± 0.001 for mineral oil OP60 (Abbe refractometry).

Fig. 3
Fig. 3

Thickness variation in wavelength units (λ = 660 nm) for mineral oil (OP60 and OP400) films during dip coating at different withdrawing speeds (U). Although experimental points were obtained at each λ/4 variation, only data at each λ variation are shown for better visualization.

Fig. 4
Fig. 4

Thickness variation of oil standards OP60 and OP400 versus inverse square root of processing time (t−1/2) in open air. Although the experimental points were obtained at each λ/4 variation, only data at each λ variation are shown for better visualization (λ = 660 nm). Linear fitting corresponds to the model prediction for nonvolatile Newtonian fluids with resulting kinematic viscosity ν = 1.17 ± 0.03 S and 9.9 ± 0.2 S, respectively.

Tables (1)

Tables Icon

Table 1 Physical Properties of the Oils Under Analysis During Dip Coating

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

σ 3 h x 3 + μ 2 ν x y 2 + ρ g = 0 ,
ν x ( y = 0 ) = 0 ν x y | y = h = 0.
ν x ( y ) = 1 μ ( σ 3 h x 3 + ρ g ) ( h y - y 2 2 ) .
q = h ν = 0 h ν x ( y ) d y ,
q = 1 μ ( σ 3 h x 3 + ρ g ) h 3 3 .
( h t ) x = - ( q x ) t ,
( h t ) x = 1 μ [ σ h 3 3 h 4 x 4 + ( σ h 3 x 3 + ρ g ) h 2 h x ] t .
P σ = - σ ( 2 h x 2 ) - σ ( 1 R ) 0 ,
h = B ( x ) A ( t ) ,             A ( t ) = B t - 1 / 2 ;             B ( x ) = ν x g ,

Metrics