Abstract

Complex-refractive-index spectra of Squarylium (SQ) dye-aggregate films deposited upon metal films have been investigated by measurements of properties of the films including absorption spectra (AS) and attenuated total reflection. Complex refractive indices are estimated by Kramers-Kronig analysis for the AS and by a theoretical curve-fitting analysis for attenuated total reflection. The dye-aggregate films exhibited an absorption that was blueshifted from that of a monomer, as a result of the H-aggregate formation of SQ molecules, and had a changing refractive index with anomalous dispersion about the H-absorption band. From both measurements of the SQ films it was found that there is a region of low absorption in the short-wavelength side of the absorption band and that the refractive index there is lower than that of glass.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Kido, H. Shionoya, K. Nagai, “Single-layer white-emitting organic electroluminescent devices based on dye-dispersed poly(N-vinylcarbazole),” Appl. Phys. Lett. 67, 2281–2283 (1995).
    [CrossRef]
  2. G. Gu, D. Z. Garbuzov, P. E. Burrows, S. Venkatesh, S. R. Forrest, M. E. Thompson, “High-external-quantum-efficiency organic light-emitting devices,” Opt. Lett. 22, 396–398 (1997).
    [CrossRef] [PubMed]
  3. T. Taima, M. Chikomatsu, Y. Yoshida, K. Saito, K. Yase, “Nanocrystalline metal electrodes for high-efficiency organic solar cells,” Appl. Phys. Lett. 85, 1832–1834 (2004).
    [CrossRef]
  4. W. Hickel, G. Appel, D. Lupo, W. Prass, U. Scheunemann, “Langmuir–Blodgett multilayers from polymers for low loss planar waveguides,” Thin Solid Films 210/211, 182–184 (1992).
    [CrossRef]
  5. Schott optical glass catalog data sheets (Schott AG, Mainz, Germany, 2004), http://www.schott.com .
  6. N. M. Balzaretti, J. A. H. Da Jornada, “Pressure dependence of the refractive and electronic polarizability of LiF, MgF2, and CaF2,” J. Phys. Chem. Solids 57, 179–182 (1996).
    [CrossRef]
  7. J. Brandrup, E. H. Immergut, E. A. Grulke, eds., Polymer Handbook (Wiley, New York, 1999).
  8. T. Wakamatsu, S. Odauchi, “Thermal-changeable complex-refractive-index spectra of merocyanine aggregate films,” Appl. Opt. 42, 6929–6933 (2003).
    [CrossRef] [PubMed]
  9. D. A. Higgins, P. J. Reid, P. F. Barbara, “Structure and exciton dynamics in J-aggregates studied by polarization-dependent near-field scanning optical microscopy,” J. Phys. Chem. 100, 1174–1180 (1996).
    [CrossRef]
  10. Y. Hirano, J. Kawata, F. Miura, M. Sugi, T. Ishii, “Control of aggregate formation in merocyanine Langmuir–Blodgett films,” Thin Solid Films 327/329, 345–347 (1998).
    [CrossRef]
  11. K. Saito, K. Ikegami, S. Kuroda, Y. Tabe, M. Sugi, “Substituent-dependent self-assembly: two-dimensional aggregate formation in cyanine dye-adsorbed Langmuir–Blodgett films,” J. Appl. Phys. 71, 1401–1406 (1992).
    [CrossRef]
  12. A. Miyata, Y. Unuma, Y. Higashigaki, “H-aggregate of a long-chain crystal violet dye in Langmuir–Blodgett films,” Bull. Chem. Soc. Jpn. 64, 2786–2791 (1991).
    [CrossRef]
  13. K. Saito, “H-aggregate formation in Squarylium Langmuir–Blodgett films,” J. Phys. Chem. B 105, 4235–4238 (2001).
    [CrossRef]
  14. P. Pokrowsky, “Optical methods for thickness measurements on thin metal films,” Appl. Opt. 30, 3228–3232 (1991).
    [CrossRef] [PubMed]
  15. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1975).

2004 (1)

T. Taima, M. Chikomatsu, Y. Yoshida, K. Saito, K. Yase, “Nanocrystalline metal electrodes for high-efficiency organic solar cells,” Appl. Phys. Lett. 85, 1832–1834 (2004).
[CrossRef]

2003 (1)

2001 (1)

K. Saito, “H-aggregate formation in Squarylium Langmuir–Blodgett films,” J. Phys. Chem. B 105, 4235–4238 (2001).
[CrossRef]

1998 (1)

Y. Hirano, J. Kawata, F. Miura, M. Sugi, T. Ishii, “Control of aggregate formation in merocyanine Langmuir–Blodgett films,” Thin Solid Films 327/329, 345–347 (1998).
[CrossRef]

1997 (1)

1996 (2)

D. A. Higgins, P. J. Reid, P. F. Barbara, “Structure and exciton dynamics in J-aggregates studied by polarization-dependent near-field scanning optical microscopy,” J. Phys. Chem. 100, 1174–1180 (1996).
[CrossRef]

N. M. Balzaretti, J. A. H. Da Jornada, “Pressure dependence of the refractive and electronic polarizability of LiF, MgF2, and CaF2,” J. Phys. Chem. Solids 57, 179–182 (1996).
[CrossRef]

1995 (1)

J. Kido, H. Shionoya, K. Nagai, “Single-layer white-emitting organic electroluminescent devices based on dye-dispersed poly(N-vinylcarbazole),” Appl. Phys. Lett. 67, 2281–2283 (1995).
[CrossRef]

1992 (2)

W. Hickel, G. Appel, D. Lupo, W. Prass, U. Scheunemann, “Langmuir–Blodgett multilayers from polymers for low loss planar waveguides,” Thin Solid Films 210/211, 182–184 (1992).
[CrossRef]

K. Saito, K. Ikegami, S. Kuroda, Y. Tabe, M. Sugi, “Substituent-dependent self-assembly: two-dimensional aggregate formation in cyanine dye-adsorbed Langmuir–Blodgett films,” J. Appl. Phys. 71, 1401–1406 (1992).
[CrossRef]

1991 (2)

A. Miyata, Y. Unuma, Y. Higashigaki, “H-aggregate of a long-chain crystal violet dye in Langmuir–Blodgett films,” Bull. Chem. Soc. Jpn. 64, 2786–2791 (1991).
[CrossRef]

P. Pokrowsky, “Optical methods for thickness measurements on thin metal films,” Appl. Opt. 30, 3228–3232 (1991).
[CrossRef] [PubMed]

Appel, G.

W. Hickel, G. Appel, D. Lupo, W. Prass, U. Scheunemann, “Langmuir–Blodgett multilayers from polymers for low loss planar waveguides,” Thin Solid Films 210/211, 182–184 (1992).
[CrossRef]

Balzaretti, N. M.

N. M. Balzaretti, J. A. H. Da Jornada, “Pressure dependence of the refractive and electronic polarizability of LiF, MgF2, and CaF2,” J. Phys. Chem. Solids 57, 179–182 (1996).
[CrossRef]

Barbara, P. F.

D. A. Higgins, P. J. Reid, P. F. Barbara, “Structure and exciton dynamics in J-aggregates studied by polarization-dependent near-field scanning optical microscopy,” J. Phys. Chem. 100, 1174–1180 (1996).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1975).

Burrows, P. E.

Chikomatsu, M.

T. Taima, M. Chikomatsu, Y. Yoshida, K. Saito, K. Yase, “Nanocrystalline metal electrodes for high-efficiency organic solar cells,” Appl. Phys. Lett. 85, 1832–1834 (2004).
[CrossRef]

Da Jornada, J. A. H.

N. M. Balzaretti, J. A. H. Da Jornada, “Pressure dependence of the refractive and electronic polarizability of LiF, MgF2, and CaF2,” J. Phys. Chem. Solids 57, 179–182 (1996).
[CrossRef]

Forrest, S. R.

Garbuzov, D. Z.

Gu, G.

Hickel, W.

W. Hickel, G. Appel, D. Lupo, W. Prass, U. Scheunemann, “Langmuir–Blodgett multilayers from polymers for low loss planar waveguides,” Thin Solid Films 210/211, 182–184 (1992).
[CrossRef]

Higashigaki, Y.

A. Miyata, Y. Unuma, Y. Higashigaki, “H-aggregate of a long-chain crystal violet dye in Langmuir–Blodgett films,” Bull. Chem. Soc. Jpn. 64, 2786–2791 (1991).
[CrossRef]

Higgins, D. A.

D. A. Higgins, P. J. Reid, P. F. Barbara, “Structure and exciton dynamics in J-aggregates studied by polarization-dependent near-field scanning optical microscopy,” J. Phys. Chem. 100, 1174–1180 (1996).
[CrossRef]

Hirano, Y.

Y. Hirano, J. Kawata, F. Miura, M. Sugi, T. Ishii, “Control of aggregate formation in merocyanine Langmuir–Blodgett films,” Thin Solid Films 327/329, 345–347 (1998).
[CrossRef]

Ikegami, K.

K. Saito, K. Ikegami, S. Kuroda, Y. Tabe, M. Sugi, “Substituent-dependent self-assembly: two-dimensional aggregate formation in cyanine dye-adsorbed Langmuir–Blodgett films,” J. Appl. Phys. 71, 1401–1406 (1992).
[CrossRef]

Ishii, T.

Y. Hirano, J. Kawata, F. Miura, M. Sugi, T. Ishii, “Control of aggregate formation in merocyanine Langmuir–Blodgett films,” Thin Solid Films 327/329, 345–347 (1998).
[CrossRef]

Kawata, J.

Y. Hirano, J. Kawata, F. Miura, M. Sugi, T. Ishii, “Control of aggregate formation in merocyanine Langmuir–Blodgett films,” Thin Solid Films 327/329, 345–347 (1998).
[CrossRef]

Kido, J.

J. Kido, H. Shionoya, K. Nagai, “Single-layer white-emitting organic electroluminescent devices based on dye-dispersed poly(N-vinylcarbazole),” Appl. Phys. Lett. 67, 2281–2283 (1995).
[CrossRef]

Kuroda, S.

K. Saito, K. Ikegami, S. Kuroda, Y. Tabe, M. Sugi, “Substituent-dependent self-assembly: two-dimensional aggregate formation in cyanine dye-adsorbed Langmuir–Blodgett films,” J. Appl. Phys. 71, 1401–1406 (1992).
[CrossRef]

Lupo, D.

W. Hickel, G. Appel, D. Lupo, W. Prass, U. Scheunemann, “Langmuir–Blodgett multilayers from polymers for low loss planar waveguides,” Thin Solid Films 210/211, 182–184 (1992).
[CrossRef]

Miura, F.

Y. Hirano, J. Kawata, F. Miura, M. Sugi, T. Ishii, “Control of aggregate formation in merocyanine Langmuir–Blodgett films,” Thin Solid Films 327/329, 345–347 (1998).
[CrossRef]

Miyata, A.

A. Miyata, Y. Unuma, Y. Higashigaki, “H-aggregate of a long-chain crystal violet dye in Langmuir–Blodgett films,” Bull. Chem. Soc. Jpn. 64, 2786–2791 (1991).
[CrossRef]

Nagai, K.

J. Kido, H. Shionoya, K. Nagai, “Single-layer white-emitting organic electroluminescent devices based on dye-dispersed poly(N-vinylcarbazole),” Appl. Phys. Lett. 67, 2281–2283 (1995).
[CrossRef]

Odauchi, S.

Pokrowsky, P.

Prass, W.

W. Hickel, G. Appel, D. Lupo, W. Prass, U. Scheunemann, “Langmuir–Blodgett multilayers from polymers for low loss planar waveguides,” Thin Solid Films 210/211, 182–184 (1992).
[CrossRef]

Reid, P. J.

D. A. Higgins, P. J. Reid, P. F. Barbara, “Structure and exciton dynamics in J-aggregates studied by polarization-dependent near-field scanning optical microscopy,” J. Phys. Chem. 100, 1174–1180 (1996).
[CrossRef]

Saito, K.

T. Taima, M. Chikomatsu, Y. Yoshida, K. Saito, K. Yase, “Nanocrystalline metal electrodes for high-efficiency organic solar cells,” Appl. Phys. Lett. 85, 1832–1834 (2004).
[CrossRef]

K. Saito, “H-aggregate formation in Squarylium Langmuir–Blodgett films,” J. Phys. Chem. B 105, 4235–4238 (2001).
[CrossRef]

K. Saito, K. Ikegami, S. Kuroda, Y. Tabe, M. Sugi, “Substituent-dependent self-assembly: two-dimensional aggregate formation in cyanine dye-adsorbed Langmuir–Blodgett films,” J. Appl. Phys. 71, 1401–1406 (1992).
[CrossRef]

Scheunemann, U.

W. Hickel, G. Appel, D. Lupo, W. Prass, U. Scheunemann, “Langmuir–Blodgett multilayers from polymers for low loss planar waveguides,” Thin Solid Films 210/211, 182–184 (1992).
[CrossRef]

Shionoya, H.

J. Kido, H. Shionoya, K. Nagai, “Single-layer white-emitting organic electroluminescent devices based on dye-dispersed poly(N-vinylcarbazole),” Appl. Phys. Lett. 67, 2281–2283 (1995).
[CrossRef]

Sugi, M.

Y. Hirano, J. Kawata, F. Miura, M. Sugi, T. Ishii, “Control of aggregate formation in merocyanine Langmuir–Blodgett films,” Thin Solid Films 327/329, 345–347 (1998).
[CrossRef]

K. Saito, K. Ikegami, S. Kuroda, Y. Tabe, M. Sugi, “Substituent-dependent self-assembly: two-dimensional aggregate formation in cyanine dye-adsorbed Langmuir–Blodgett films,” J. Appl. Phys. 71, 1401–1406 (1992).
[CrossRef]

Tabe, Y.

K. Saito, K. Ikegami, S. Kuroda, Y. Tabe, M. Sugi, “Substituent-dependent self-assembly: two-dimensional aggregate formation in cyanine dye-adsorbed Langmuir–Blodgett films,” J. Appl. Phys. 71, 1401–1406 (1992).
[CrossRef]

Taima, T.

T. Taima, M. Chikomatsu, Y. Yoshida, K. Saito, K. Yase, “Nanocrystalline metal electrodes for high-efficiency organic solar cells,” Appl. Phys. Lett. 85, 1832–1834 (2004).
[CrossRef]

Thompson, M. E.

Unuma, Y.

A. Miyata, Y. Unuma, Y. Higashigaki, “H-aggregate of a long-chain crystal violet dye in Langmuir–Blodgett films,” Bull. Chem. Soc. Jpn. 64, 2786–2791 (1991).
[CrossRef]

Venkatesh, S.

Wakamatsu, T.

Wolf, E.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1975).

Yase, K.

T. Taima, M. Chikomatsu, Y. Yoshida, K. Saito, K. Yase, “Nanocrystalline metal electrodes for high-efficiency organic solar cells,” Appl. Phys. Lett. 85, 1832–1834 (2004).
[CrossRef]

Yoshida, Y.

T. Taima, M. Chikomatsu, Y. Yoshida, K. Saito, K. Yase, “Nanocrystalline metal electrodes for high-efficiency organic solar cells,” Appl. Phys. Lett. 85, 1832–1834 (2004).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (2)

J. Kido, H. Shionoya, K. Nagai, “Single-layer white-emitting organic electroluminescent devices based on dye-dispersed poly(N-vinylcarbazole),” Appl. Phys. Lett. 67, 2281–2283 (1995).
[CrossRef]

T. Taima, M. Chikomatsu, Y. Yoshida, K. Saito, K. Yase, “Nanocrystalline metal electrodes for high-efficiency organic solar cells,” Appl. Phys. Lett. 85, 1832–1834 (2004).
[CrossRef]

Bull. Chem. Soc. Jpn. (1)

A. Miyata, Y. Unuma, Y. Higashigaki, “H-aggregate of a long-chain crystal violet dye in Langmuir–Blodgett films,” Bull. Chem. Soc. Jpn. 64, 2786–2791 (1991).
[CrossRef]

J. Appl. Phys. (1)

K. Saito, K. Ikegami, S. Kuroda, Y. Tabe, M. Sugi, “Substituent-dependent self-assembly: two-dimensional aggregate formation in cyanine dye-adsorbed Langmuir–Blodgett films,” J. Appl. Phys. 71, 1401–1406 (1992).
[CrossRef]

J. Phys. Chem. (1)

D. A. Higgins, P. J. Reid, P. F. Barbara, “Structure and exciton dynamics in J-aggregates studied by polarization-dependent near-field scanning optical microscopy,” J. Phys. Chem. 100, 1174–1180 (1996).
[CrossRef]

J. Phys. Chem. B (1)

K. Saito, “H-aggregate formation in Squarylium Langmuir–Blodgett films,” J. Phys. Chem. B 105, 4235–4238 (2001).
[CrossRef]

J. Phys. Chem. Solids (1)

N. M. Balzaretti, J. A. H. Da Jornada, “Pressure dependence of the refractive and electronic polarizability of LiF, MgF2, and CaF2,” J. Phys. Chem. Solids 57, 179–182 (1996).
[CrossRef]

Opt. Lett. (1)

Thin Solid Films (2)

W. Hickel, G. Appel, D. Lupo, W. Prass, U. Scheunemann, “Langmuir–Blodgett multilayers from polymers for low loss planar waveguides,” Thin Solid Films 210/211, 182–184 (1992).
[CrossRef]

Y. Hirano, J. Kawata, F. Miura, M. Sugi, T. Ishii, “Control of aggregate formation in merocyanine Langmuir–Blodgett films,” Thin Solid Films 327/329, 345–347 (1998).
[CrossRef]

Other (3)

J. Brandrup, E. H. Immergut, E. A. Grulke, eds., Polymer Handbook (Wiley, New York, 1999).

Schott optical glass catalog data sheets (Schott AG, Mainz, Germany, 2004), http://www.schott.com .

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1975).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Molecular structure of the SQ dye used in this study.

Fig. 2
Fig. 2

Schematic of the experimental setup for the RS measurements.

Fig. 3
Fig. 3

Schematic of the configuration sample for the ATR measurements. The four-layered structure comprises 1, BK-7 glass; 2, Ag thin film; 3, SQ LB film, and 4, air.

Fig. 4
Fig. 4

AS of the SQ aggregate films on the Ag thin films obtained from the RS measurements.

Fig. 5
Fig. 5

Typical measured ATR and theoretical fitting curves as functions of θ at various laser wavelengths λ.

Fig. 6
Fig. 6

Complex refractive index of the SQ aggregate films, ñ = n + ik, as a function of λ. Solid and square-interspersed curves, values of ñ obtained by K-K analysis for the AS data in Fig. 4 and theoretical curve fittings for the ATR data (typical data in Fig. 5), respectively.

Tables (1)

Tables Icon

Table 1 Fitting Parameters of Complex Refractive Indices for ATR Data

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

k ( λ ) = - λ log R ( λ ) 4 π L ,
sin ( θ - π 4 ) = 1 n p sin ( ϕ - π 4 ) ,
R p = | r 12 + r 23 exp [ i 2 k z ( 2 ) d 2 ] + r 12 r 23 r 34 exp [ i 2 k z ( 3 ) d 3 ] + r 34 exp { i 2 [ k z ( 2 ) d 2 + k z ( 3 ) d 3 ] } 1 + r 12 r 23 exp [ i 2 k z ( 2 ) d 2 ] + r 23 r 34 exp [ i 2 k z ( 3 ) d 3 ] + r 12 r 34 exp { i 2 [ k z ( 2 ) d 2 + k z ( 3 ) d 3 ] } | 2 ,
r i ( i + 1 ) = n ˜ 2 ( i + 1 ) k z ( i ) - n ˜ 2 ( i ) k z ( i + 1 ) n ˜ 2 ( i + 1 ) k z ( i ) + n ˜ 2 ( i ) k z ( i + 1 ) ,
k z ( i ) = 2 π λ [ n ˜ 2 ( i ) - n 2 ( 1 ) sin 2 θ ] 1 / 2 ,             i = 1 ,     2 ,     3 ,

Metrics