Abstract

The development and application of point backlighting at high x-ray energies is an essential step in diagnosing radiation-driven experiments. The point-backlighting technique provides uniform backlighter irradiance over a large field of view. This technique circumvents the large laser energy required for area backlighters at energies of 9 keV and above. We present the results of a Zn 9 keV point-backlighter source using the technique of pinhole aperturing to define the source size and hence the resolution. Details of the design and application of this technique to an undriven gold-walled hohlraum are described.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. R. Whittock, M. H. Emergy, J. A. Stamper, E. A. McLean, S. P. Obenschain, M. C. Peckerar, “Observation of Rayleigh–Taylor-like structures in a laser-accelerated foil,” Phys. Rev. Lett. 52, 819–822 (1984).
    [CrossRef]
  2. B. A. Hammel, D. Griswold, O. L. Landen, T. S. Perry, B. A. Remington, P. L. Miller, T. A. Peyser, J. D. Kilkenny, “X-ray radiographic measurements of radiation-driven shock and interface motion in solid density material,” Phys. Fluids B 5, 2259–2264 (1993).
    [CrossRef]
  3. S. R. Goldman, S. E. Caldwell, M. D. Wilke, D. C. Wilson, C. W. Barnes, W. W. Hsing, N. D. Delamater, G. T. Schappert, J. W. Grove, E. L. Lindman, J. M. Wallace, R. P. Weaver, A. M. Dunne, M. J. Edwards, P. Graham, B. R. Thomas, “Shock structuring due to fabrication joints in targets,” Phys. Plasmas 6, 3327–3344 (1999).
    [CrossRef]
  4. E. Forster, K. Gabel, I. Uschmann, “X-ray microscopy of laser-produced plasmas with the use of bent crystals,” Laser Part. Beams 9, 135–148 (1991).
    [CrossRef]
  5. T. A. Pikuz, A. Ya Fanenov, S. A. Pikuz, V. M. Romanova, T. A. Shelkovenko, “Bragg x-ray optics for imaging spectroscopy of plasma microstructures,” J. X-Ray Sci. Technol. 5, 323–340 (1995).
    [CrossRef]
  6. Y. Aglitskiy, T. Lehecka, S. Obenschain, C. Pawley, C. M. Brown, J. Seely, “X-ray crystal imagers for inertial confinement fusion experiments,” Rev. Sci. Instrum. 70, 530–535 (1999).
    [CrossRef]
  7. T. Missalla, I. Uschmann, E. Forster, G. Jenke, D. von der Linde, “Monochromatic focusing of subpicosecond x-ray pulses in the keV range,” Rev. Sci. Instrum. 70, 1288–1299 (1999).
    [CrossRef]
  8. J. A. Koch, O. L. Landen, T. W. Barbee, P. Celliers, L. B. De Silva, S. G. Glendinning, B. A. Hammel, D. H. Kalantar, C. Brown, J. Seely, G. R. Bennett, W. Hsing, “High-energy x-ray microscopy techniques for laser-fusion plasma research at the National Ignition Facility,” Appl. Opt. 37, 1784–1795 (1998).
    [CrossRef]
  9. D. K. Bradley, O. L. Landen, A. B. Bullock, S. G. Glendinning, R. E. Turner, “Efficient, 1–100-keV x-ray radiography with high spatial and temporal resolution,” Opt. Lett. 27, 134–136 (2002).
    [CrossRef]
  10. O. L. Landen, D. R. Farley, S. G. Glendinning, L. M. Logony, P. M. Bell, J. A. Koch, F. D. Lee, D. K. Bradley, D. H. Kalantar, C. A. Back, R. E. Turner, “X-ray backlighting for the National Ignition Facility,” Rev. Sci. Instrum. 72, 627–634 (2001).
    [CrossRef]
  11. S. M. Pollaine, D. K. Braley, O. L. Landen, R. J. Wallace, O. S. Jones, P. A. Amendt, L. J. Suter, R. E. Turner, “National Ignition Facility scale hohlraum asymmetry studies by thin shell radiography,” Phys. Plasmas 8, 2357–2364 (2001).
    [CrossRef]
  12. A. B. Bullock, O. L. Landen, D. K. Bradley, “10 and 5 μm pinhole-assisted point-projection backlit imaging for the National Ignition Facility,” Rev. Sci. Instrum. 72, 690–693 (2001).
    [CrossRef]
  13. J. D. Molitoris, M. M. Morin, D. W. Phillion, A. L. Osterheld, R. E. Stewart, S. D. Rothman, “8–11-keV x-ray sources for imaging and absorption experiments,” Rev. Sci. Instrum. 63, 5104–5107 (1992).
    [CrossRef]
  14. K. S. Budil, T. S. Perry, S. A. Alvarez, D. Hargrove, J. R. Mazuch, A. Nikitin, P. M. Bell, “Point projection radiography with the flexible x-ray imager,” Rev. Sci. Instrum. 68, 796–798 (1997).
    [CrossRef]
  15. C. L. S. Lewis, J. McGlinchey, “Quasi-monochromatic, projection radiography of dense laser driven spherical targets,” Opt. Commun. 53, 179–186 (1985).
    [CrossRef]
  16. S. J. Davidson, J. M. Foster, C. C. Smith, K. A. Warburton, S. J. Rose, “Investigation of the opacity of hot, dense aluminum in the region of its K edge,” Appl. Phys. Lett. 52, 847–849 (1988).
    [CrossRef]
  17. J. Balmer, C. L. S. Lewis, R. E. Corbett, E. Robertson, S. Saadat, D. O’Neill, J. D. Kilkenny, C. A. Back, R. W. Lee, “X-ray absorption spectroscopy of laser-produced plasmas: a study of the experiments and data analysis,” Phys. Rev. A 40, 330–340 (1989).
    [CrossRef] [PubMed]
  18. D. M. O’Neill, C. L. S. Lewis, D. Neely, S. J. Davidson, S. J. Rose, R. W. Lee, “Characterization of a laser-produced plasma using the technique of point-projection absorption spectroscopy,” Phys. Rev. A 44, 2641–2648 (1991).
    [CrossRef]
  19. C. A. Back, C. Chenais-Popovics, P. Renaudin, J. P. Geindre, P. Audebert, J. C. Gauthier, “Study of Kα absorption structures in a subcritical-density laser-produced plasma,” Phys. Rev. A 46, 3405–3412 (1992).
    [CrossRef] [PubMed]
  20. T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, C. P. Verdon, “Initial performance results of the Omega laser system,” Opt. Commun. 133, 495–506 (1997).
    [CrossRef]
  21. For a more complete study of conversion efficiency, see J. Workman, G. A. Kyrala, “Scaling of x-ray K-shell sources from laser-solid interactions,” in Applications of X Rays Generated from Lasers and Other Bright Sources II, G. A. Kyrala, J. C. Gauthier, eds., Proc. SPIE4504, 168–179 (2001).
    [CrossRef]
  22. L. N. Koppel, J. D. Eckels, “High resolution x-ray crystal spectrographs,” (Lawrence Livermore National Laboratory, Livermore, Calif., 1977).
  23. Direct Exposure Film (DEF) is an x-ray film produced by Kodak Corporation, Rochester, New York.
  24. B. L. Henke, J. Y. Uejio, G. F. Stone, C. H. Dittmore, F. G. Fujiwara, “High-energy x-ray response of photographic films: models and measurement,” J. Opt. Soc. Am. B 3, 1540–1550 (1986).
    [CrossRef]
  25. N. G. Alexandropoulos, G. G. Cohen, “Crystals for stellar spectrometers,” Appl. Spectrosc. 28, 155–164 (1974).
    [CrossRef]
  26. B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission and reflection at E= 50–30, 000 eV, Z= 1-92,” At. Nucl. Data Tables 54, 181–342 (1993).
    [CrossRef]
  27. W. Priedhorsky, D. Lier, R. Day, D. Gerke, “Hard-X-ray measurements of 10.6-μm laser-irradiated targets,” Phys. Rev. Lett. 47, 1661–1664 (1981).
    [CrossRef]
  28. The backlighter assembly did strike the detector off-center; however, this is not sufficient to show that the wedge made a significant contribution.
  29. The location of the grid was chosen to reduce debris launched at the detector by the radial expansion of the hohlraum walls.
  30. A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486–5492 (1995).
    [CrossRef]
  31. D. Montgomery, Los Alamos National Laboratory, Los Alamos, N.M. 87545 (personal communication, 2004).
  32. S. H. Batha, C. W. Barnes, C. R. Christensen, “Backlighter predictive capability,” Rev. Sci. Instrum. 74, 2174–2177 (2003).
    [CrossRef]
  33. This ratio is from a calculation that includes the extended source and finite pinhole thickness.

2003 (1)

S. H. Batha, C. W. Barnes, C. R. Christensen, “Backlighter predictive capability,” Rev. Sci. Instrum. 74, 2174–2177 (2003).
[CrossRef]

2002 (1)

2001 (3)

O. L. Landen, D. R. Farley, S. G. Glendinning, L. M. Logony, P. M. Bell, J. A. Koch, F. D. Lee, D. K. Bradley, D. H. Kalantar, C. A. Back, R. E. Turner, “X-ray backlighting for the National Ignition Facility,” Rev. Sci. Instrum. 72, 627–634 (2001).
[CrossRef]

S. M. Pollaine, D. K. Braley, O. L. Landen, R. J. Wallace, O. S. Jones, P. A. Amendt, L. J. Suter, R. E. Turner, “National Ignition Facility scale hohlraum asymmetry studies by thin shell radiography,” Phys. Plasmas 8, 2357–2364 (2001).
[CrossRef]

A. B. Bullock, O. L. Landen, D. K. Bradley, “10 and 5 μm pinhole-assisted point-projection backlit imaging for the National Ignition Facility,” Rev. Sci. Instrum. 72, 690–693 (2001).
[CrossRef]

1999 (3)

S. R. Goldman, S. E. Caldwell, M. D. Wilke, D. C. Wilson, C. W. Barnes, W. W. Hsing, N. D. Delamater, G. T. Schappert, J. W. Grove, E. L. Lindman, J. M. Wallace, R. P. Weaver, A. M. Dunne, M. J. Edwards, P. Graham, B. R. Thomas, “Shock structuring due to fabrication joints in targets,” Phys. Plasmas 6, 3327–3344 (1999).
[CrossRef]

Y. Aglitskiy, T. Lehecka, S. Obenschain, C. Pawley, C. M. Brown, J. Seely, “X-ray crystal imagers for inertial confinement fusion experiments,” Rev. Sci. Instrum. 70, 530–535 (1999).
[CrossRef]

T. Missalla, I. Uschmann, E. Forster, G. Jenke, D. von der Linde, “Monochromatic focusing of subpicosecond x-ray pulses in the keV range,” Rev. Sci. Instrum. 70, 1288–1299 (1999).
[CrossRef]

1998 (1)

1997 (2)

K. S. Budil, T. S. Perry, S. A. Alvarez, D. Hargrove, J. R. Mazuch, A. Nikitin, P. M. Bell, “Point projection radiography with the flexible x-ray imager,” Rev. Sci. Instrum. 68, 796–798 (1997).
[CrossRef]

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, C. P. Verdon, “Initial performance results of the Omega laser system,” Opt. Commun. 133, 495–506 (1997).
[CrossRef]

1995 (2)

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486–5492 (1995).
[CrossRef]

T. A. Pikuz, A. Ya Fanenov, S. A. Pikuz, V. M. Romanova, T. A. Shelkovenko, “Bragg x-ray optics for imaging spectroscopy of plasma microstructures,” J. X-Ray Sci. Technol. 5, 323–340 (1995).
[CrossRef]

1993 (2)

B. A. Hammel, D. Griswold, O. L. Landen, T. S. Perry, B. A. Remington, P. L. Miller, T. A. Peyser, J. D. Kilkenny, “X-ray radiographic measurements of radiation-driven shock and interface motion in solid density material,” Phys. Fluids B 5, 2259–2264 (1993).
[CrossRef]

B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission and reflection at E= 50–30, 000 eV, Z= 1-92,” At. Nucl. Data Tables 54, 181–342 (1993).
[CrossRef]

1992 (2)

C. A. Back, C. Chenais-Popovics, P. Renaudin, J. P. Geindre, P. Audebert, J. C. Gauthier, “Study of Kα absorption structures in a subcritical-density laser-produced plasma,” Phys. Rev. A 46, 3405–3412 (1992).
[CrossRef] [PubMed]

J. D. Molitoris, M. M. Morin, D. W. Phillion, A. L. Osterheld, R. E. Stewart, S. D. Rothman, “8–11-keV x-ray sources for imaging and absorption experiments,” Rev. Sci. Instrum. 63, 5104–5107 (1992).
[CrossRef]

1991 (2)

E. Forster, K. Gabel, I. Uschmann, “X-ray microscopy of laser-produced plasmas with the use of bent crystals,” Laser Part. Beams 9, 135–148 (1991).
[CrossRef]

D. M. O’Neill, C. L. S. Lewis, D. Neely, S. J. Davidson, S. J. Rose, R. W. Lee, “Characterization of a laser-produced plasma using the technique of point-projection absorption spectroscopy,” Phys. Rev. A 44, 2641–2648 (1991).
[CrossRef]

1989 (1)

J. Balmer, C. L. S. Lewis, R. E. Corbett, E. Robertson, S. Saadat, D. O’Neill, J. D. Kilkenny, C. A. Back, R. W. Lee, “X-ray absorption spectroscopy of laser-produced plasmas: a study of the experiments and data analysis,” Phys. Rev. A 40, 330–340 (1989).
[CrossRef] [PubMed]

1988 (1)

S. J. Davidson, J. M. Foster, C. C. Smith, K. A. Warburton, S. J. Rose, “Investigation of the opacity of hot, dense aluminum in the region of its K edge,” Appl. Phys. Lett. 52, 847–849 (1988).
[CrossRef]

1986 (1)

1985 (1)

C. L. S. Lewis, J. McGlinchey, “Quasi-monochromatic, projection radiography of dense laser driven spherical targets,” Opt. Commun. 53, 179–186 (1985).
[CrossRef]

1984 (1)

R. R. Whittock, M. H. Emergy, J. A. Stamper, E. A. McLean, S. P. Obenschain, M. C. Peckerar, “Observation of Rayleigh–Taylor-like structures in a laser-accelerated foil,” Phys. Rev. Lett. 52, 819–822 (1984).
[CrossRef]

1981 (1)

W. Priedhorsky, D. Lier, R. Day, D. Gerke, “Hard-X-ray measurements of 10.6-μm laser-irradiated targets,” Phys. Rev. Lett. 47, 1661–1664 (1981).
[CrossRef]

1974 (1)

Aglitskiy, Y.

Y. Aglitskiy, T. Lehecka, S. Obenschain, C. Pawley, C. M. Brown, J. Seely, “X-ray crystal imagers for inertial confinement fusion experiments,” Rev. Sci. Instrum. 70, 530–535 (1999).
[CrossRef]

Alexandropoulos, N. G.

Alvarez, S. A.

K. S. Budil, T. S. Perry, S. A. Alvarez, D. Hargrove, J. R. Mazuch, A. Nikitin, P. M. Bell, “Point projection radiography with the flexible x-ray imager,” Rev. Sci. Instrum. 68, 796–798 (1997).
[CrossRef]

Amendt, P. A.

S. M. Pollaine, D. K. Braley, O. L. Landen, R. J. Wallace, O. S. Jones, P. A. Amendt, L. J. Suter, R. E. Turner, “National Ignition Facility scale hohlraum asymmetry studies by thin shell radiography,” Phys. Plasmas 8, 2357–2364 (2001).
[CrossRef]

Audebert, P.

C. A. Back, C. Chenais-Popovics, P. Renaudin, J. P. Geindre, P. Audebert, J. C. Gauthier, “Study of Kα absorption structures in a subcritical-density laser-produced plasma,” Phys. Rev. A 46, 3405–3412 (1992).
[CrossRef] [PubMed]

Back, C. A.

O. L. Landen, D. R. Farley, S. G. Glendinning, L. M. Logony, P. M. Bell, J. A. Koch, F. D. Lee, D. K. Bradley, D. H. Kalantar, C. A. Back, R. E. Turner, “X-ray backlighting for the National Ignition Facility,” Rev. Sci. Instrum. 72, 627–634 (2001).
[CrossRef]

C. A. Back, C. Chenais-Popovics, P. Renaudin, J. P. Geindre, P. Audebert, J. C. Gauthier, “Study of Kα absorption structures in a subcritical-density laser-produced plasma,” Phys. Rev. A 46, 3405–3412 (1992).
[CrossRef] [PubMed]

J. Balmer, C. L. S. Lewis, R. E. Corbett, E. Robertson, S. Saadat, D. O’Neill, J. D. Kilkenny, C. A. Back, R. W. Lee, “X-ray absorption spectroscopy of laser-produced plasmas: a study of the experiments and data analysis,” Phys. Rev. A 40, 330–340 (1989).
[CrossRef] [PubMed]

Balmer, J.

J. Balmer, C. L. S. Lewis, R. E. Corbett, E. Robertson, S. Saadat, D. O’Neill, J. D. Kilkenny, C. A. Back, R. W. Lee, “X-ray absorption spectroscopy of laser-produced plasmas: a study of the experiments and data analysis,” Phys. Rev. A 40, 330–340 (1989).
[CrossRef] [PubMed]

Barbee, T. W.

Barnes, C. W.

S. H. Batha, C. W. Barnes, C. R. Christensen, “Backlighter predictive capability,” Rev. Sci. Instrum. 74, 2174–2177 (2003).
[CrossRef]

S. R. Goldman, S. E. Caldwell, M. D. Wilke, D. C. Wilson, C. W. Barnes, W. W. Hsing, N. D. Delamater, G. T. Schappert, J. W. Grove, E. L. Lindman, J. M. Wallace, R. P. Weaver, A. M. Dunne, M. J. Edwards, P. Graham, B. R. Thomas, “Shock structuring due to fabrication joints in targets,” Phys. Plasmas 6, 3327–3344 (1999).
[CrossRef]

Batha, S. H.

S. H. Batha, C. W. Barnes, C. R. Christensen, “Backlighter predictive capability,” Rev. Sci. Instrum. 74, 2174–2177 (2003).
[CrossRef]

Bell, P. M.

O. L. Landen, D. R. Farley, S. G. Glendinning, L. M. Logony, P. M. Bell, J. A. Koch, F. D. Lee, D. K. Bradley, D. H. Kalantar, C. A. Back, R. E. Turner, “X-ray backlighting for the National Ignition Facility,” Rev. Sci. Instrum. 72, 627–634 (2001).
[CrossRef]

K. S. Budil, T. S. Perry, S. A. Alvarez, D. Hargrove, J. R. Mazuch, A. Nikitin, P. M. Bell, “Point projection radiography with the flexible x-ray imager,” Rev. Sci. Instrum. 68, 796–798 (1997).
[CrossRef]

Bennett, G. R.

Boehly, T. R.

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, C. P. Verdon, “Initial performance results of the Omega laser system,” Opt. Commun. 133, 495–506 (1997).
[CrossRef]

Bradley, D. K.

D. K. Bradley, O. L. Landen, A. B. Bullock, S. G. Glendinning, R. E. Turner, “Efficient, 1–100-keV x-ray radiography with high spatial and temporal resolution,” Opt. Lett. 27, 134–136 (2002).
[CrossRef]

O. L. Landen, D. R. Farley, S. G. Glendinning, L. M. Logony, P. M. Bell, J. A. Koch, F. D. Lee, D. K. Bradley, D. H. Kalantar, C. A. Back, R. E. Turner, “X-ray backlighting for the National Ignition Facility,” Rev. Sci. Instrum. 72, 627–634 (2001).
[CrossRef]

A. B. Bullock, O. L. Landen, D. K. Bradley, “10 and 5 μm pinhole-assisted point-projection backlit imaging for the National Ignition Facility,” Rev. Sci. Instrum. 72, 690–693 (2001).
[CrossRef]

Braley, D. K.

S. M. Pollaine, D. K. Braley, O. L. Landen, R. J. Wallace, O. S. Jones, P. A. Amendt, L. J. Suter, R. E. Turner, “National Ignition Facility scale hohlraum asymmetry studies by thin shell radiography,” Phys. Plasmas 8, 2357–2364 (2001).
[CrossRef]

Brown, C.

Brown, C. M.

Y. Aglitskiy, T. Lehecka, S. Obenschain, C. Pawley, C. M. Brown, J. Seely, “X-ray crystal imagers for inertial confinement fusion experiments,” Rev. Sci. Instrum. 70, 530–535 (1999).
[CrossRef]

Brown, D. L.

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, C. P. Verdon, “Initial performance results of the Omega laser system,” Opt. Commun. 133, 495–506 (1997).
[CrossRef]

Budil, K. S.

K. S. Budil, T. S. Perry, S. A. Alvarez, D. Hargrove, J. R. Mazuch, A. Nikitin, P. M. Bell, “Point projection radiography with the flexible x-ray imager,” Rev. Sci. Instrum. 68, 796–798 (1997).
[CrossRef]

Bullock, A. B.

D. K. Bradley, O. L. Landen, A. B. Bullock, S. G. Glendinning, R. E. Turner, “Efficient, 1–100-keV x-ray radiography with high spatial and temporal resolution,” Opt. Lett. 27, 134–136 (2002).
[CrossRef]

A. B. Bullock, O. L. Landen, D. K. Bradley, “10 and 5 μm pinhole-assisted point-projection backlit imaging for the National Ignition Facility,” Rev. Sci. Instrum. 72, 690–693 (2001).
[CrossRef]

Caldwell, S. E.

S. R. Goldman, S. E. Caldwell, M. D. Wilke, D. C. Wilson, C. W. Barnes, W. W. Hsing, N. D. Delamater, G. T. Schappert, J. W. Grove, E. L. Lindman, J. M. Wallace, R. P. Weaver, A. M. Dunne, M. J. Edwards, P. Graham, B. R. Thomas, “Shock structuring due to fabrication joints in targets,” Phys. Plasmas 6, 3327–3344 (1999).
[CrossRef]

Celliers, P.

Chenais-Popovics, C.

C. A. Back, C. Chenais-Popovics, P. Renaudin, J. P. Geindre, P. Audebert, J. C. Gauthier, “Study of Kα absorption structures in a subcritical-density laser-produced plasma,” Phys. Rev. A 46, 3405–3412 (1992).
[CrossRef] [PubMed]

Christensen, C. R.

S. H. Batha, C. W. Barnes, C. R. Christensen, “Backlighter predictive capability,” Rev. Sci. Instrum. 74, 2174–2177 (2003).
[CrossRef]

Cohen, G. G.

Corbett, R. E.

J. Balmer, C. L. S. Lewis, R. E. Corbett, E. Robertson, S. Saadat, D. O’Neill, J. D. Kilkenny, C. A. Back, R. W. Lee, “X-ray absorption spectroscopy of laser-produced plasmas: a study of the experiments and data analysis,” Phys. Rev. A 40, 330–340 (1989).
[CrossRef] [PubMed]

Craxton, R. S.

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, C. P. Verdon, “Initial performance results of the Omega laser system,” Opt. Commun. 133, 495–506 (1997).
[CrossRef]

Davidson, S. J.

D. M. O’Neill, C. L. S. Lewis, D. Neely, S. J. Davidson, S. J. Rose, R. W. Lee, “Characterization of a laser-produced plasma using the technique of point-projection absorption spectroscopy,” Phys. Rev. A 44, 2641–2648 (1991).
[CrossRef]

S. J. Davidson, J. M. Foster, C. C. Smith, K. A. Warburton, S. J. Rose, “Investigation of the opacity of hot, dense aluminum in the region of its K edge,” Appl. Phys. Lett. 52, 847–849 (1988).
[CrossRef]

Davis, J. C.

B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission and reflection at E= 50–30, 000 eV, Z= 1-92,” At. Nucl. Data Tables 54, 181–342 (1993).
[CrossRef]

Day, R.

W. Priedhorsky, D. Lier, R. Day, D. Gerke, “Hard-X-ray measurements of 10.6-μm laser-irradiated targets,” Phys. Rev. Lett. 47, 1661–1664 (1981).
[CrossRef]

De Silva, L. B.

Delamater, N. D.

S. R. Goldman, S. E. Caldwell, M. D. Wilke, D. C. Wilson, C. W. Barnes, W. W. Hsing, N. D. Delamater, G. T. Schappert, J. W. Grove, E. L. Lindman, J. M. Wallace, R. P. Weaver, A. M. Dunne, M. J. Edwards, P. Graham, B. R. Thomas, “Shock structuring due to fabrication joints in targets,” Phys. Plasmas 6, 3327–3344 (1999).
[CrossRef]

Dittmore, C. H.

Dunne, A. M.

S. R. Goldman, S. E. Caldwell, M. D. Wilke, D. C. Wilson, C. W. Barnes, W. W. Hsing, N. D. Delamater, G. T. Schappert, J. W. Grove, E. L. Lindman, J. M. Wallace, R. P. Weaver, A. M. Dunne, M. J. Edwards, P. Graham, B. R. Thomas, “Shock structuring due to fabrication joints in targets,” Phys. Plasmas 6, 3327–3344 (1999).
[CrossRef]

Eckels, J. D.

L. N. Koppel, J. D. Eckels, “High resolution x-ray crystal spectrographs,” (Lawrence Livermore National Laboratory, Livermore, Calif., 1977).

Edwards, M. J.

S. R. Goldman, S. E. Caldwell, M. D. Wilke, D. C. Wilson, C. W. Barnes, W. W. Hsing, N. D. Delamater, G. T. Schappert, J. W. Grove, E. L. Lindman, J. M. Wallace, R. P. Weaver, A. M. Dunne, M. J. Edwards, P. Graham, B. R. Thomas, “Shock structuring due to fabrication joints in targets,” Phys. Plasmas 6, 3327–3344 (1999).
[CrossRef]

Emergy, M. H.

R. R. Whittock, M. H. Emergy, J. A. Stamper, E. A. McLean, S. P. Obenschain, M. C. Peckerar, “Observation of Rayleigh–Taylor-like structures in a laser-accelerated foil,” Phys. Rev. Lett. 52, 819–822 (1984).
[CrossRef]

Farley, D. R.

O. L. Landen, D. R. Farley, S. G. Glendinning, L. M. Logony, P. M. Bell, J. A. Koch, F. D. Lee, D. K. Bradley, D. H. Kalantar, C. A. Back, R. E. Turner, “X-ray backlighting for the National Ignition Facility,” Rev. Sci. Instrum. 72, 627–634 (2001).
[CrossRef]

Forster, E.

T. Missalla, I. Uschmann, E. Forster, G. Jenke, D. von der Linde, “Monochromatic focusing of subpicosecond x-ray pulses in the keV range,” Rev. Sci. Instrum. 70, 1288–1299 (1999).
[CrossRef]

E. Forster, K. Gabel, I. Uschmann, “X-ray microscopy of laser-produced plasmas with the use of bent crystals,” Laser Part. Beams 9, 135–148 (1991).
[CrossRef]

Foster, J. M.

S. J. Davidson, J. M. Foster, C. C. Smith, K. A. Warburton, S. J. Rose, “Investigation of the opacity of hot, dense aluminum in the region of its K edge,” Appl. Phys. Lett. 52, 847–849 (1988).
[CrossRef]

Fujiwara, F. G.

Gabel, K.

E. Forster, K. Gabel, I. Uschmann, “X-ray microscopy of laser-produced plasmas with the use of bent crystals,” Laser Part. Beams 9, 135–148 (1991).
[CrossRef]

Gauthier, J. C.

C. A. Back, C. Chenais-Popovics, P. Renaudin, J. P. Geindre, P. Audebert, J. C. Gauthier, “Study of Kα absorption structures in a subcritical-density laser-produced plasma,” Phys. Rev. A 46, 3405–3412 (1992).
[CrossRef] [PubMed]

Geindre, J. P.

C. A. Back, C. Chenais-Popovics, P. Renaudin, J. P. Geindre, P. Audebert, J. C. Gauthier, “Study of Kα absorption structures in a subcritical-density laser-produced plasma,” Phys. Rev. A 46, 3405–3412 (1992).
[CrossRef] [PubMed]

Gerke, D.

W. Priedhorsky, D. Lier, R. Day, D. Gerke, “Hard-X-ray measurements of 10.6-μm laser-irradiated targets,” Phys. Rev. Lett. 47, 1661–1664 (1981).
[CrossRef]

Glendinning, S. G.

Goldman, S. R.

S. R. Goldman, S. E. Caldwell, M. D. Wilke, D. C. Wilson, C. W. Barnes, W. W. Hsing, N. D. Delamater, G. T. Schappert, J. W. Grove, E. L. Lindman, J. M. Wallace, R. P. Weaver, A. M. Dunne, M. J. Edwards, P. Graham, B. R. Thomas, “Shock structuring due to fabrication joints in targets,” Phys. Plasmas 6, 3327–3344 (1999).
[CrossRef]

Graham, P.

S. R. Goldman, S. E. Caldwell, M. D. Wilke, D. C. Wilson, C. W. Barnes, W. W. Hsing, N. D. Delamater, G. T. Schappert, J. W. Grove, E. L. Lindman, J. M. Wallace, R. P. Weaver, A. M. Dunne, M. J. Edwards, P. Graham, B. R. Thomas, “Shock structuring due to fabrication joints in targets,” Phys. Plasmas 6, 3327–3344 (1999).
[CrossRef]

Griswold, D.

B. A. Hammel, D. Griswold, O. L. Landen, T. S. Perry, B. A. Remington, P. L. Miller, T. A. Peyser, J. D. Kilkenny, “X-ray radiographic measurements of radiation-driven shock and interface motion in solid density material,” Phys. Fluids B 5, 2259–2264 (1993).
[CrossRef]

Grove, J. W.

S. R. Goldman, S. E. Caldwell, M. D. Wilke, D. C. Wilson, C. W. Barnes, W. W. Hsing, N. D. Delamater, G. T. Schappert, J. W. Grove, E. L. Lindman, J. M. Wallace, R. P. Weaver, A. M. Dunne, M. J. Edwards, P. Graham, B. R. Thomas, “Shock structuring due to fabrication joints in targets,” Phys. Plasmas 6, 3327–3344 (1999).
[CrossRef]

Gullikson, E. M.

B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission and reflection at E= 50–30, 000 eV, Z= 1-92,” At. Nucl. Data Tables 54, 181–342 (1993).
[CrossRef]

Hammel, B. A.

J. A. Koch, O. L. Landen, T. W. Barbee, P. Celliers, L. B. De Silva, S. G. Glendinning, B. A. Hammel, D. H. Kalantar, C. Brown, J. Seely, G. R. Bennett, W. Hsing, “High-energy x-ray microscopy techniques for laser-fusion plasma research at the National Ignition Facility,” Appl. Opt. 37, 1784–1795 (1998).
[CrossRef]

B. A. Hammel, D. Griswold, O. L. Landen, T. S. Perry, B. A. Remington, P. L. Miller, T. A. Peyser, J. D. Kilkenny, “X-ray radiographic measurements of radiation-driven shock and interface motion in solid density material,” Phys. Fluids B 5, 2259–2264 (1993).
[CrossRef]

Hargrove, D.

K. S. Budil, T. S. Perry, S. A. Alvarez, D. Hargrove, J. R. Mazuch, A. Nikitin, P. M. Bell, “Point projection radiography with the flexible x-ray imager,” Rev. Sci. Instrum. 68, 796–798 (1997).
[CrossRef]

Henke, B. L.

B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission and reflection at E= 50–30, 000 eV, Z= 1-92,” At. Nucl. Data Tables 54, 181–342 (1993).
[CrossRef]

B. L. Henke, J. Y. Uejio, G. F. Stone, C. H. Dittmore, F. G. Fujiwara, “High-energy x-ray response of photographic films: models and measurement,” J. Opt. Soc. Am. B 3, 1540–1550 (1986).
[CrossRef]

Hsing, W.

Hsing, W. W.

S. R. Goldman, S. E. Caldwell, M. D. Wilke, D. C. Wilson, C. W. Barnes, W. W. Hsing, N. D. Delamater, G. T. Schappert, J. W. Grove, E. L. Lindman, J. M. Wallace, R. P. Weaver, A. M. Dunne, M. J. Edwards, P. Graham, B. R. Thomas, “Shock structuring due to fabrication joints in targets,” Phys. Plasmas 6, 3327–3344 (1999).
[CrossRef]

Jenke, G.

T. Missalla, I. Uschmann, E. Forster, G. Jenke, D. von der Linde, “Monochromatic focusing of subpicosecond x-ray pulses in the keV range,” Rev. Sci. Instrum. 70, 1288–1299 (1999).
[CrossRef]

Jones, O. S.

S. M. Pollaine, D. K. Braley, O. L. Landen, R. J. Wallace, O. S. Jones, P. A. Amendt, L. J. Suter, R. E. Turner, “National Ignition Facility scale hohlraum asymmetry studies by thin shell radiography,” Phys. Plasmas 8, 2357–2364 (2001).
[CrossRef]

Kalantar, D. H.

O. L. Landen, D. R. Farley, S. G. Glendinning, L. M. Logony, P. M. Bell, J. A. Koch, F. D. Lee, D. K. Bradley, D. H. Kalantar, C. A. Back, R. E. Turner, “X-ray backlighting for the National Ignition Facility,” Rev. Sci. Instrum. 72, 627–634 (2001).
[CrossRef]

J. A. Koch, O. L. Landen, T. W. Barbee, P. Celliers, L. B. De Silva, S. G. Glendinning, B. A. Hammel, D. H. Kalantar, C. Brown, J. Seely, G. R. Bennett, W. Hsing, “High-energy x-ray microscopy techniques for laser-fusion plasma research at the National Ignition Facility,” Appl. Opt. 37, 1784–1795 (1998).
[CrossRef]

Keck, R. L.

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, C. P. Verdon, “Initial performance results of the Omega laser system,” Opt. Commun. 133, 495–506 (1997).
[CrossRef]

Kelly, J. H.

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, C. P. Verdon, “Initial performance results of the Omega laser system,” Opt. Commun. 133, 495–506 (1997).
[CrossRef]

Kessler, T. J.

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, C. P. Verdon, “Initial performance results of the Omega laser system,” Opt. Commun. 133, 495–506 (1997).
[CrossRef]

Kilkenny, J. D.

B. A. Hammel, D. Griswold, O. L. Landen, T. S. Perry, B. A. Remington, P. L. Miller, T. A. Peyser, J. D. Kilkenny, “X-ray radiographic measurements of radiation-driven shock and interface motion in solid density material,” Phys. Fluids B 5, 2259–2264 (1993).
[CrossRef]

J. Balmer, C. L. S. Lewis, R. E. Corbett, E. Robertson, S. Saadat, D. O’Neill, J. D. Kilkenny, C. A. Back, R. W. Lee, “X-ray absorption spectroscopy of laser-produced plasmas: a study of the experiments and data analysis,” Phys. Rev. A 40, 330–340 (1989).
[CrossRef] [PubMed]

Knauer, J. P.

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, C. P. Verdon, “Initial performance results of the Omega laser system,” Opt. Commun. 133, 495–506 (1997).
[CrossRef]

Koch, J. A.

O. L. Landen, D. R. Farley, S. G. Glendinning, L. M. Logony, P. M. Bell, J. A. Koch, F. D. Lee, D. K. Bradley, D. H. Kalantar, C. A. Back, R. E. Turner, “X-ray backlighting for the National Ignition Facility,” Rev. Sci. Instrum. 72, 627–634 (2001).
[CrossRef]

J. A. Koch, O. L. Landen, T. W. Barbee, P. Celliers, L. B. De Silva, S. G. Glendinning, B. A. Hammel, D. H. Kalantar, C. Brown, J. Seely, G. R. Bennett, W. Hsing, “High-energy x-ray microscopy techniques for laser-fusion plasma research at the National Ignition Facility,” Appl. Opt. 37, 1784–1795 (1998).
[CrossRef]

Kohn, V.

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486–5492 (1995).
[CrossRef]

Koppel, L. N.

L. N. Koppel, J. D. Eckels, “High resolution x-ray crystal spectrographs,” (Lawrence Livermore National Laboratory, Livermore, Calif., 1977).

Kumpan, S. A.

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, C. P. Verdon, “Initial performance results of the Omega laser system,” Opt. Commun. 133, 495–506 (1997).
[CrossRef]

Kuznetsov, S.

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486–5492 (1995).
[CrossRef]

Kyrala, G. A.

For a more complete study of conversion efficiency, see J. Workman, G. A. Kyrala, “Scaling of x-ray K-shell sources from laser-solid interactions,” in Applications of X Rays Generated from Lasers and Other Bright Sources II, G. A. Kyrala, J. C. Gauthier, eds., Proc. SPIE4504, 168–179 (2001).
[CrossRef]

Landen, O. L.

D. K. Bradley, O. L. Landen, A. B. Bullock, S. G. Glendinning, R. E. Turner, “Efficient, 1–100-keV x-ray radiography with high spatial and temporal resolution,” Opt. Lett. 27, 134–136 (2002).
[CrossRef]

S. M. Pollaine, D. K. Braley, O. L. Landen, R. J. Wallace, O. S. Jones, P. A. Amendt, L. J. Suter, R. E. Turner, “National Ignition Facility scale hohlraum asymmetry studies by thin shell radiography,” Phys. Plasmas 8, 2357–2364 (2001).
[CrossRef]

O. L. Landen, D. R. Farley, S. G. Glendinning, L. M. Logony, P. M. Bell, J. A. Koch, F. D. Lee, D. K. Bradley, D. H. Kalantar, C. A. Back, R. E. Turner, “X-ray backlighting for the National Ignition Facility,” Rev. Sci. Instrum. 72, 627–634 (2001).
[CrossRef]

A. B. Bullock, O. L. Landen, D. K. Bradley, “10 and 5 μm pinhole-assisted point-projection backlit imaging for the National Ignition Facility,” Rev. Sci. Instrum. 72, 690–693 (2001).
[CrossRef]

J. A. Koch, O. L. Landen, T. W. Barbee, P. Celliers, L. B. De Silva, S. G. Glendinning, B. A. Hammel, D. H. Kalantar, C. Brown, J. Seely, G. R. Bennett, W. Hsing, “High-energy x-ray microscopy techniques for laser-fusion plasma research at the National Ignition Facility,” Appl. Opt. 37, 1784–1795 (1998).
[CrossRef]

B. A. Hammel, D. Griswold, O. L. Landen, T. S. Perry, B. A. Remington, P. L. Miller, T. A. Peyser, J. D. Kilkenny, “X-ray radiographic measurements of radiation-driven shock and interface motion in solid density material,” Phys. Fluids B 5, 2259–2264 (1993).
[CrossRef]

Lee, F. D.

O. L. Landen, D. R. Farley, S. G. Glendinning, L. M. Logony, P. M. Bell, J. A. Koch, F. D. Lee, D. K. Bradley, D. H. Kalantar, C. A. Back, R. E. Turner, “X-ray backlighting for the National Ignition Facility,” Rev. Sci. Instrum. 72, 627–634 (2001).
[CrossRef]

Lee, R. W.

D. M. O’Neill, C. L. S. Lewis, D. Neely, S. J. Davidson, S. J. Rose, R. W. Lee, “Characterization of a laser-produced plasma using the technique of point-projection absorption spectroscopy,” Phys. Rev. A 44, 2641–2648 (1991).
[CrossRef]

J. Balmer, C. L. S. Lewis, R. E. Corbett, E. Robertson, S. Saadat, D. O’Neill, J. D. Kilkenny, C. A. Back, R. W. Lee, “X-ray absorption spectroscopy of laser-produced plasmas: a study of the experiments and data analysis,” Phys. Rev. A 40, 330–340 (1989).
[CrossRef] [PubMed]

Lehecka, T.

Y. Aglitskiy, T. Lehecka, S. Obenschain, C. Pawley, C. M. Brown, J. Seely, “X-ray crystal imagers for inertial confinement fusion experiments,” Rev. Sci. Instrum. 70, 530–535 (1999).
[CrossRef]

Letzring, S. A.

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, C. P. Verdon, “Initial performance results of the Omega laser system,” Opt. Commun. 133, 495–506 (1997).
[CrossRef]

Lewis, C. L. S.

D. M. O’Neill, C. L. S. Lewis, D. Neely, S. J. Davidson, S. J. Rose, R. W. Lee, “Characterization of a laser-produced plasma using the technique of point-projection absorption spectroscopy,” Phys. Rev. A 44, 2641–2648 (1991).
[CrossRef]

J. Balmer, C. L. S. Lewis, R. E. Corbett, E. Robertson, S. Saadat, D. O’Neill, J. D. Kilkenny, C. A. Back, R. W. Lee, “X-ray absorption spectroscopy of laser-produced plasmas: a study of the experiments and data analysis,” Phys. Rev. A 40, 330–340 (1989).
[CrossRef] [PubMed]

C. L. S. Lewis, J. McGlinchey, “Quasi-monochromatic, projection radiography of dense laser driven spherical targets,” Opt. Commun. 53, 179–186 (1985).
[CrossRef]

Lier, D.

W. Priedhorsky, D. Lier, R. Day, D. Gerke, “Hard-X-ray measurements of 10.6-μm laser-irradiated targets,” Phys. Rev. Lett. 47, 1661–1664 (1981).
[CrossRef]

Lindman, E. L.

S. R. Goldman, S. E. Caldwell, M. D. Wilke, D. C. Wilson, C. W. Barnes, W. W. Hsing, N. D. Delamater, G. T. Schappert, J. W. Grove, E. L. Lindman, J. M. Wallace, R. P. Weaver, A. M. Dunne, M. J. Edwards, P. Graham, B. R. Thomas, “Shock structuring due to fabrication joints in targets,” Phys. Plasmas 6, 3327–3344 (1999).
[CrossRef]

Logony, L. M.

O. L. Landen, D. R. Farley, S. G. Glendinning, L. M. Logony, P. M. Bell, J. A. Koch, F. D. Lee, D. K. Bradley, D. H. Kalantar, C. A. Back, R. E. Turner, “X-ray backlighting for the National Ignition Facility,” Rev. Sci. Instrum. 72, 627–634 (2001).
[CrossRef]

Loucks, S. J.

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, C. P. Verdon, “Initial performance results of the Omega laser system,” Opt. Commun. 133, 495–506 (1997).
[CrossRef]

Marshall, F. J.

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, C. P. Verdon, “Initial performance results of the Omega laser system,” Opt. Commun. 133, 495–506 (1997).
[CrossRef]

Mazuch, J. R.

K. S. Budil, T. S. Perry, S. A. Alvarez, D. Hargrove, J. R. Mazuch, A. Nikitin, P. M. Bell, “Point projection radiography with the flexible x-ray imager,” Rev. Sci. Instrum. 68, 796–798 (1997).
[CrossRef]

McCrory, R. L.

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, C. P. Verdon, “Initial performance results of the Omega laser system,” Opt. Commun. 133, 495–506 (1997).
[CrossRef]

McGlinchey, J.

C. L. S. Lewis, J. McGlinchey, “Quasi-monochromatic, projection radiography of dense laser driven spherical targets,” Opt. Commun. 53, 179–186 (1985).
[CrossRef]

McLean, E. A.

R. R. Whittock, M. H. Emergy, J. A. Stamper, E. A. McLean, S. P. Obenschain, M. C. Peckerar, “Observation of Rayleigh–Taylor-like structures in a laser-accelerated foil,” Phys. Rev. Lett. 52, 819–822 (1984).
[CrossRef]

Miller, P. L.

B. A. Hammel, D. Griswold, O. L. Landen, T. S. Perry, B. A. Remington, P. L. Miller, T. A. Peyser, J. D. Kilkenny, “X-ray radiographic measurements of radiation-driven shock and interface motion in solid density material,” Phys. Fluids B 5, 2259–2264 (1993).
[CrossRef]

Missalla, T.

T. Missalla, I. Uschmann, E. Forster, G. Jenke, D. von der Linde, “Monochromatic focusing of subpicosecond x-ray pulses in the keV range,” Rev. Sci. Instrum. 70, 1288–1299 (1999).
[CrossRef]

Molitoris, J. D.

J. D. Molitoris, M. M. Morin, D. W. Phillion, A. L. Osterheld, R. E. Stewart, S. D. Rothman, “8–11-keV x-ray sources for imaging and absorption experiments,” Rev. Sci. Instrum. 63, 5104–5107 (1992).
[CrossRef]

Montgomery, D.

D. Montgomery, Los Alamos National Laboratory, Los Alamos, N.M. 87545 (personal communication, 2004).

Morin, M. M.

J. D. Molitoris, M. M. Morin, D. W. Phillion, A. L. Osterheld, R. E. Stewart, S. D. Rothman, “8–11-keV x-ray sources for imaging and absorption experiments,” Rev. Sci. Instrum. 63, 5104–5107 (1992).
[CrossRef]

Morse, S. F. B.

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, C. P. Verdon, “Initial performance results of the Omega laser system,” Opt. Commun. 133, 495–506 (1997).
[CrossRef]

Neely, D.

D. M. O’Neill, C. L. S. Lewis, D. Neely, S. J. Davidson, S. J. Rose, R. W. Lee, “Characterization of a laser-produced plasma using the technique of point-projection absorption spectroscopy,” Phys. Rev. A 44, 2641–2648 (1991).
[CrossRef]

Nikitin, A.

K. S. Budil, T. S. Perry, S. A. Alvarez, D. Hargrove, J. R. Mazuch, A. Nikitin, P. M. Bell, “Point projection radiography with the flexible x-ray imager,” Rev. Sci. Instrum. 68, 796–798 (1997).
[CrossRef]

O’Neill, D.

J. Balmer, C. L. S. Lewis, R. E. Corbett, E. Robertson, S. Saadat, D. O’Neill, J. D. Kilkenny, C. A. Back, R. W. Lee, “X-ray absorption spectroscopy of laser-produced plasmas: a study of the experiments and data analysis,” Phys. Rev. A 40, 330–340 (1989).
[CrossRef] [PubMed]

O’Neill, D. M.

D. M. O’Neill, C. L. S. Lewis, D. Neely, S. J. Davidson, S. J. Rose, R. W. Lee, “Characterization of a laser-produced plasma using the technique of point-projection absorption spectroscopy,” Phys. Rev. A 44, 2641–2648 (1991).
[CrossRef]

Obenschain, S.

Y. Aglitskiy, T. Lehecka, S. Obenschain, C. Pawley, C. M. Brown, J. Seely, “X-ray crystal imagers for inertial confinement fusion experiments,” Rev. Sci. Instrum. 70, 530–535 (1999).
[CrossRef]

Obenschain, S. P.

R. R. Whittock, M. H. Emergy, J. A. Stamper, E. A. McLean, S. P. Obenschain, M. C. Peckerar, “Observation of Rayleigh–Taylor-like structures in a laser-accelerated foil,” Phys. Rev. Lett. 52, 819–822 (1984).
[CrossRef]

Osterheld, A. L.

J. D. Molitoris, M. M. Morin, D. W. Phillion, A. L. Osterheld, R. E. Stewart, S. D. Rothman, “8–11-keV x-ray sources for imaging and absorption experiments,” Rev. Sci. Instrum. 63, 5104–5107 (1992).
[CrossRef]

Pawley, C.

Y. Aglitskiy, T. Lehecka, S. Obenschain, C. Pawley, C. M. Brown, J. Seely, “X-ray crystal imagers for inertial confinement fusion experiments,” Rev. Sci. Instrum. 70, 530–535 (1999).
[CrossRef]

Peckerar, M. C.

R. R. Whittock, M. H. Emergy, J. A. Stamper, E. A. McLean, S. P. Obenschain, M. C. Peckerar, “Observation of Rayleigh–Taylor-like structures in a laser-accelerated foil,” Phys. Rev. Lett. 52, 819–822 (1984).
[CrossRef]

Perry, T. S.

K. S. Budil, T. S. Perry, S. A. Alvarez, D. Hargrove, J. R. Mazuch, A. Nikitin, P. M. Bell, “Point projection radiography with the flexible x-ray imager,” Rev. Sci. Instrum. 68, 796–798 (1997).
[CrossRef]

B. A. Hammel, D. Griswold, O. L. Landen, T. S. Perry, B. A. Remington, P. L. Miller, T. A. Peyser, J. D. Kilkenny, “X-ray radiographic measurements of radiation-driven shock and interface motion in solid density material,” Phys. Fluids B 5, 2259–2264 (1993).
[CrossRef]

Peyser, T. A.

B. A. Hammel, D. Griswold, O. L. Landen, T. S. Perry, B. A. Remington, P. L. Miller, T. A. Peyser, J. D. Kilkenny, “X-ray radiographic measurements of radiation-driven shock and interface motion in solid density material,” Phys. Fluids B 5, 2259–2264 (1993).
[CrossRef]

Phillion, D. W.

J. D. Molitoris, M. M. Morin, D. W. Phillion, A. L. Osterheld, R. E. Stewart, S. D. Rothman, “8–11-keV x-ray sources for imaging and absorption experiments,” Rev. Sci. Instrum. 63, 5104–5107 (1992).
[CrossRef]

Pikuz, S. A.

T. A. Pikuz, A. Ya Fanenov, S. A. Pikuz, V. M. Romanova, T. A. Shelkovenko, “Bragg x-ray optics for imaging spectroscopy of plasma microstructures,” J. X-Ray Sci. Technol. 5, 323–340 (1995).
[CrossRef]

Pikuz, T. A.

T. A. Pikuz, A. Ya Fanenov, S. A. Pikuz, V. M. Romanova, T. A. Shelkovenko, “Bragg x-ray optics for imaging spectroscopy of plasma microstructures,” J. X-Ray Sci. Technol. 5, 323–340 (1995).
[CrossRef]

Pollaine, S. M.

S. M. Pollaine, D. K. Braley, O. L. Landen, R. J. Wallace, O. S. Jones, P. A. Amendt, L. J. Suter, R. E. Turner, “National Ignition Facility scale hohlraum asymmetry studies by thin shell radiography,” Phys. Plasmas 8, 2357–2364 (2001).
[CrossRef]

Priedhorsky, W.

W. Priedhorsky, D. Lier, R. Day, D. Gerke, “Hard-X-ray measurements of 10.6-μm laser-irradiated targets,” Phys. Rev. Lett. 47, 1661–1664 (1981).
[CrossRef]

Remington, B. A.

B. A. Hammel, D. Griswold, O. L. Landen, T. S. Perry, B. A. Remington, P. L. Miller, T. A. Peyser, J. D. Kilkenny, “X-ray radiographic measurements of radiation-driven shock and interface motion in solid density material,” Phys. Fluids B 5, 2259–2264 (1993).
[CrossRef]

Renaudin, P.

C. A. Back, C. Chenais-Popovics, P. Renaudin, J. P. Geindre, P. Audebert, J. C. Gauthier, “Study of Kα absorption structures in a subcritical-density laser-produced plasma,” Phys. Rev. A 46, 3405–3412 (1992).
[CrossRef] [PubMed]

Robertson, E.

J. Balmer, C. L. S. Lewis, R. E. Corbett, E. Robertson, S. Saadat, D. O’Neill, J. D. Kilkenny, C. A. Back, R. W. Lee, “X-ray absorption spectroscopy of laser-produced plasmas: a study of the experiments and data analysis,” Phys. Rev. A 40, 330–340 (1989).
[CrossRef] [PubMed]

Romanova, V. M.

T. A. Pikuz, A. Ya Fanenov, S. A. Pikuz, V. M. Romanova, T. A. Shelkovenko, “Bragg x-ray optics for imaging spectroscopy of plasma microstructures,” J. X-Ray Sci. Technol. 5, 323–340 (1995).
[CrossRef]

Rose, S. J.

D. M. O’Neill, C. L. S. Lewis, D. Neely, S. J. Davidson, S. J. Rose, R. W. Lee, “Characterization of a laser-produced plasma using the technique of point-projection absorption spectroscopy,” Phys. Rev. A 44, 2641–2648 (1991).
[CrossRef]

S. J. Davidson, J. M. Foster, C. C. Smith, K. A. Warburton, S. J. Rose, “Investigation of the opacity of hot, dense aluminum in the region of its K edge,” Appl. Phys. Lett. 52, 847–849 (1988).
[CrossRef]

Rothman, S. D.

J. D. Molitoris, M. M. Morin, D. W. Phillion, A. L. Osterheld, R. E. Stewart, S. D. Rothman, “8–11-keV x-ray sources for imaging and absorption experiments,” Rev. Sci. Instrum. 63, 5104–5107 (1992).
[CrossRef]

Saadat, S.

J. Balmer, C. L. S. Lewis, R. E. Corbett, E. Robertson, S. Saadat, D. O’Neill, J. D. Kilkenny, C. A. Back, R. W. Lee, “X-ray absorption spectroscopy of laser-produced plasmas: a study of the experiments and data analysis,” Phys. Rev. A 40, 330–340 (1989).
[CrossRef] [PubMed]

Schappert, G. T.

S. R. Goldman, S. E. Caldwell, M. D. Wilke, D. C. Wilson, C. W. Barnes, W. W. Hsing, N. D. Delamater, G. T. Schappert, J. W. Grove, E. L. Lindman, J. M. Wallace, R. P. Weaver, A. M. Dunne, M. J. Edwards, P. Graham, B. R. Thomas, “Shock structuring due to fabrication joints in targets,” Phys. Plasmas 6, 3327–3344 (1999).
[CrossRef]

Schelokov, I.

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486–5492 (1995).
[CrossRef]

Seely, J.

Seka, W.

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, C. P. Verdon, “Initial performance results of the Omega laser system,” Opt. Commun. 133, 495–506 (1997).
[CrossRef]

Shelkovenko, T. A.

T. A. Pikuz, A. Ya Fanenov, S. A. Pikuz, V. M. Romanova, T. A. Shelkovenko, “Bragg x-ray optics for imaging spectroscopy of plasma microstructures,” J. X-Ray Sci. Technol. 5, 323–340 (1995).
[CrossRef]

Smith, C. C.

S. J. Davidson, J. M. Foster, C. C. Smith, K. A. Warburton, S. J. Rose, “Investigation of the opacity of hot, dense aluminum in the region of its K edge,” Appl. Phys. Lett. 52, 847–849 (1988).
[CrossRef]

Snigirev, A.

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486–5492 (1995).
[CrossRef]

Snigireva, I.

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486–5492 (1995).
[CrossRef]

Soures, J. M.

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, C. P. Verdon, “Initial performance results of the Omega laser system,” Opt. Commun. 133, 495–506 (1997).
[CrossRef]

Stamper, J. A.

R. R. Whittock, M. H. Emergy, J. A. Stamper, E. A. McLean, S. P. Obenschain, M. C. Peckerar, “Observation of Rayleigh–Taylor-like structures in a laser-accelerated foil,” Phys. Rev. Lett. 52, 819–822 (1984).
[CrossRef]

Stewart, R. E.

J. D. Molitoris, M. M. Morin, D. W. Phillion, A. L. Osterheld, R. E. Stewart, S. D. Rothman, “8–11-keV x-ray sources for imaging and absorption experiments,” Rev. Sci. Instrum. 63, 5104–5107 (1992).
[CrossRef]

Stone, G. F.

Suter, L. J.

S. M. Pollaine, D. K. Braley, O. L. Landen, R. J. Wallace, O. S. Jones, P. A. Amendt, L. J. Suter, R. E. Turner, “National Ignition Facility scale hohlraum asymmetry studies by thin shell radiography,” Phys. Plasmas 8, 2357–2364 (2001).
[CrossRef]

Thomas, B. R.

S. R. Goldman, S. E. Caldwell, M. D. Wilke, D. C. Wilson, C. W. Barnes, W. W. Hsing, N. D. Delamater, G. T. Schappert, J. W. Grove, E. L. Lindman, J. M. Wallace, R. P. Weaver, A. M. Dunne, M. J. Edwards, P. Graham, B. R. Thomas, “Shock structuring due to fabrication joints in targets,” Phys. Plasmas 6, 3327–3344 (1999).
[CrossRef]

Turner, R. E.

D. K. Bradley, O. L. Landen, A. B. Bullock, S. G. Glendinning, R. E. Turner, “Efficient, 1–100-keV x-ray radiography with high spatial and temporal resolution,” Opt. Lett. 27, 134–136 (2002).
[CrossRef]

S. M. Pollaine, D. K. Braley, O. L. Landen, R. J. Wallace, O. S. Jones, P. A. Amendt, L. J. Suter, R. E. Turner, “National Ignition Facility scale hohlraum asymmetry studies by thin shell radiography,” Phys. Plasmas 8, 2357–2364 (2001).
[CrossRef]

O. L. Landen, D. R. Farley, S. G. Glendinning, L. M. Logony, P. M. Bell, J. A. Koch, F. D. Lee, D. K. Bradley, D. H. Kalantar, C. A. Back, R. E. Turner, “X-ray backlighting for the National Ignition Facility,” Rev. Sci. Instrum. 72, 627–634 (2001).
[CrossRef]

Uejio, J. Y.

Uschmann, I.

T. Missalla, I. Uschmann, E. Forster, G. Jenke, D. von der Linde, “Monochromatic focusing of subpicosecond x-ray pulses in the keV range,” Rev. Sci. Instrum. 70, 1288–1299 (1999).
[CrossRef]

E. Forster, K. Gabel, I. Uschmann, “X-ray microscopy of laser-produced plasmas with the use of bent crystals,” Laser Part. Beams 9, 135–148 (1991).
[CrossRef]

Verdon, C. P.

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, C. P. Verdon, “Initial performance results of the Omega laser system,” Opt. Commun. 133, 495–506 (1997).
[CrossRef]

von der Linde, D.

T. Missalla, I. Uschmann, E. Forster, G. Jenke, D. von der Linde, “Monochromatic focusing of subpicosecond x-ray pulses in the keV range,” Rev. Sci. Instrum. 70, 1288–1299 (1999).
[CrossRef]

Wallace, J. M.

S. R. Goldman, S. E. Caldwell, M. D. Wilke, D. C. Wilson, C. W. Barnes, W. W. Hsing, N. D. Delamater, G. T. Schappert, J. W. Grove, E. L. Lindman, J. M. Wallace, R. P. Weaver, A. M. Dunne, M. J. Edwards, P. Graham, B. R. Thomas, “Shock structuring due to fabrication joints in targets,” Phys. Plasmas 6, 3327–3344 (1999).
[CrossRef]

Wallace, R. J.

S. M. Pollaine, D. K. Braley, O. L. Landen, R. J. Wallace, O. S. Jones, P. A. Amendt, L. J. Suter, R. E. Turner, “National Ignition Facility scale hohlraum asymmetry studies by thin shell radiography,” Phys. Plasmas 8, 2357–2364 (2001).
[CrossRef]

Warburton, K. A.

S. J. Davidson, J. M. Foster, C. C. Smith, K. A. Warburton, S. J. Rose, “Investigation of the opacity of hot, dense aluminum in the region of its K edge,” Appl. Phys. Lett. 52, 847–849 (1988).
[CrossRef]

Weaver, R. P.

S. R. Goldman, S. E. Caldwell, M. D. Wilke, D. C. Wilson, C. W. Barnes, W. W. Hsing, N. D. Delamater, G. T. Schappert, J. W. Grove, E. L. Lindman, J. M. Wallace, R. P. Weaver, A. M. Dunne, M. J. Edwards, P. Graham, B. R. Thomas, “Shock structuring due to fabrication joints in targets,” Phys. Plasmas 6, 3327–3344 (1999).
[CrossRef]

Whittock, R. R.

R. R. Whittock, M. H. Emergy, J. A. Stamper, E. A. McLean, S. P. Obenschain, M. C. Peckerar, “Observation of Rayleigh–Taylor-like structures in a laser-accelerated foil,” Phys. Rev. Lett. 52, 819–822 (1984).
[CrossRef]

Wilke, M. D.

S. R. Goldman, S. E. Caldwell, M. D. Wilke, D. C. Wilson, C. W. Barnes, W. W. Hsing, N. D. Delamater, G. T. Schappert, J. W. Grove, E. L. Lindman, J. M. Wallace, R. P. Weaver, A. M. Dunne, M. J. Edwards, P. Graham, B. R. Thomas, “Shock structuring due to fabrication joints in targets,” Phys. Plasmas 6, 3327–3344 (1999).
[CrossRef]

Wilson, D. C.

S. R. Goldman, S. E. Caldwell, M. D. Wilke, D. C. Wilson, C. W. Barnes, W. W. Hsing, N. D. Delamater, G. T. Schappert, J. W. Grove, E. L. Lindman, J. M. Wallace, R. P. Weaver, A. M. Dunne, M. J. Edwards, P. Graham, B. R. Thomas, “Shock structuring due to fabrication joints in targets,” Phys. Plasmas 6, 3327–3344 (1999).
[CrossRef]

Workman, J.

For a more complete study of conversion efficiency, see J. Workman, G. A. Kyrala, “Scaling of x-ray K-shell sources from laser-solid interactions,” in Applications of X Rays Generated from Lasers and Other Bright Sources II, G. A. Kyrala, J. C. Gauthier, eds., Proc. SPIE4504, 168–179 (2001).
[CrossRef]

Ya Fanenov, A.

T. A. Pikuz, A. Ya Fanenov, S. A. Pikuz, V. M. Romanova, T. A. Shelkovenko, “Bragg x-ray optics for imaging spectroscopy of plasma microstructures,” J. X-Ray Sci. Technol. 5, 323–340 (1995).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

S. J. Davidson, J. M. Foster, C. C. Smith, K. A. Warburton, S. J. Rose, “Investigation of the opacity of hot, dense aluminum in the region of its K edge,” Appl. Phys. Lett. 52, 847–849 (1988).
[CrossRef]

Appl. Spectrosc. (1)

At. Nucl. Data Tables (1)

B. L. Henke, E. M. Gullikson, J. C. Davis, “X-ray interactions: photoabsorption, scattering, transmission and reflection at E= 50–30, 000 eV, Z= 1-92,” At. Nucl. Data Tables 54, 181–342 (1993).
[CrossRef]

J. Opt. Soc. Am. B (1)

J. X-Ray Sci. Technol. (1)

T. A. Pikuz, A. Ya Fanenov, S. A. Pikuz, V. M. Romanova, T. A. Shelkovenko, “Bragg x-ray optics for imaging spectroscopy of plasma microstructures,” J. X-Ray Sci. Technol. 5, 323–340 (1995).
[CrossRef]

Laser Part. Beams (1)

E. Forster, K. Gabel, I. Uschmann, “X-ray microscopy of laser-produced plasmas with the use of bent crystals,” Laser Part. Beams 9, 135–148 (1991).
[CrossRef]

Opt. Commun. (2)

C. L. S. Lewis, J. McGlinchey, “Quasi-monochromatic, projection radiography of dense laser driven spherical targets,” Opt. Commun. 53, 179–186 (1985).
[CrossRef]

T. R. Boehly, D. L. Brown, R. S. Craxton, R. L. Keck, J. P. Knauer, J. H. Kelly, T. J. Kessler, S. A. Kumpan, S. J. Loucks, S. A. Letzring, F. J. Marshall, R. L. McCrory, S. F. B. Morse, W. Seka, J. M. Soures, C. P. Verdon, “Initial performance results of the Omega laser system,” Opt. Commun. 133, 495–506 (1997).
[CrossRef]

Opt. Lett. (1)

Phys. Fluids B (1)

B. A. Hammel, D. Griswold, O. L. Landen, T. S. Perry, B. A. Remington, P. L. Miller, T. A. Peyser, J. D. Kilkenny, “X-ray radiographic measurements of radiation-driven shock and interface motion in solid density material,” Phys. Fluids B 5, 2259–2264 (1993).
[CrossRef]

Phys. Plasmas (2)

S. R. Goldman, S. E. Caldwell, M. D. Wilke, D. C. Wilson, C. W. Barnes, W. W. Hsing, N. D. Delamater, G. T. Schappert, J. W. Grove, E. L. Lindman, J. M. Wallace, R. P. Weaver, A. M. Dunne, M. J. Edwards, P. Graham, B. R. Thomas, “Shock structuring due to fabrication joints in targets,” Phys. Plasmas 6, 3327–3344 (1999).
[CrossRef]

S. M. Pollaine, D. K. Braley, O. L. Landen, R. J. Wallace, O. S. Jones, P. A. Amendt, L. J. Suter, R. E. Turner, “National Ignition Facility scale hohlraum asymmetry studies by thin shell radiography,” Phys. Plasmas 8, 2357–2364 (2001).
[CrossRef]

Phys. Rev. A (3)

J. Balmer, C. L. S. Lewis, R. E. Corbett, E. Robertson, S. Saadat, D. O’Neill, J. D. Kilkenny, C. A. Back, R. W. Lee, “X-ray absorption spectroscopy of laser-produced plasmas: a study of the experiments and data analysis,” Phys. Rev. A 40, 330–340 (1989).
[CrossRef] [PubMed]

D. M. O’Neill, C. L. S. Lewis, D. Neely, S. J. Davidson, S. J. Rose, R. W. Lee, “Characterization of a laser-produced plasma using the technique of point-projection absorption spectroscopy,” Phys. Rev. A 44, 2641–2648 (1991).
[CrossRef]

C. A. Back, C. Chenais-Popovics, P. Renaudin, J. P. Geindre, P. Audebert, J. C. Gauthier, “Study of Kα absorption structures in a subcritical-density laser-produced plasma,” Phys. Rev. A 46, 3405–3412 (1992).
[CrossRef] [PubMed]

Phys. Rev. Lett. (2)

R. R. Whittock, M. H. Emergy, J. A. Stamper, E. A. McLean, S. P. Obenschain, M. C. Peckerar, “Observation of Rayleigh–Taylor-like structures in a laser-accelerated foil,” Phys. Rev. Lett. 52, 819–822 (1984).
[CrossRef]

W. Priedhorsky, D. Lier, R. Day, D. Gerke, “Hard-X-ray measurements of 10.6-μm laser-irradiated targets,” Phys. Rev. Lett. 47, 1661–1664 (1981).
[CrossRef]

Rev. Sci. Instrum. (8)

A. Snigirev, I. Snigireva, V. Kohn, S. Kuznetsov, I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high-energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486–5492 (1995).
[CrossRef]

S. H. Batha, C. W. Barnes, C. R. Christensen, “Backlighter predictive capability,” Rev. Sci. Instrum. 74, 2174–2177 (2003).
[CrossRef]

O. L. Landen, D. R. Farley, S. G. Glendinning, L. M. Logony, P. M. Bell, J. A. Koch, F. D. Lee, D. K. Bradley, D. H. Kalantar, C. A. Back, R. E. Turner, “X-ray backlighting for the National Ignition Facility,” Rev. Sci. Instrum. 72, 627–634 (2001).
[CrossRef]

Y. Aglitskiy, T. Lehecka, S. Obenschain, C. Pawley, C. M. Brown, J. Seely, “X-ray crystal imagers for inertial confinement fusion experiments,” Rev. Sci. Instrum. 70, 530–535 (1999).
[CrossRef]

T. Missalla, I. Uschmann, E. Forster, G. Jenke, D. von der Linde, “Monochromatic focusing of subpicosecond x-ray pulses in the keV range,” Rev. Sci. Instrum. 70, 1288–1299 (1999).
[CrossRef]

A. B. Bullock, O. L. Landen, D. K. Bradley, “10 and 5 μm pinhole-assisted point-projection backlit imaging for the National Ignition Facility,” Rev. Sci. Instrum. 72, 690–693 (2001).
[CrossRef]

J. D. Molitoris, M. M. Morin, D. W. Phillion, A. L. Osterheld, R. E. Stewart, S. D. Rothman, “8–11-keV x-ray sources for imaging and absorption experiments,” Rev. Sci. Instrum. 63, 5104–5107 (1992).
[CrossRef]

K. S. Budil, T. S. Perry, S. A. Alvarez, D. Hargrove, J. R. Mazuch, A. Nikitin, P. M. Bell, “Point projection radiography with the flexible x-ray imager,” Rev. Sci. Instrum. 68, 796–798 (1997).
[CrossRef]

Other (7)

This ratio is from a calculation that includes the extended source and finite pinhole thickness.

D. Montgomery, Los Alamos National Laboratory, Los Alamos, N.M. 87545 (personal communication, 2004).

The backlighter assembly did strike the detector off-center; however, this is not sufficient to show that the wedge made a significant contribution.

The location of the grid was chosen to reduce debris launched at the detector by the radial expansion of the hohlraum walls.

For a more complete study of conversion efficiency, see J. Workman, G. A. Kyrala, “Scaling of x-ray K-shell sources from laser-solid interactions,” in Applications of X Rays Generated from Lasers and Other Bright Sources II, G. A. Kyrala, J. C. Gauthier, eds., Proc. SPIE4504, 168–179 (2001).
[CrossRef]

L. N. Koppel, J. D. Eckels, “High resolution x-ray crystal spectrographs,” (Lawrence Livermore National Laboratory, Livermore, Calif., 1977).

Direct Exposure Film (DEF) is an x-ray film produced by Kodak Corporation, Rochester, New York.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Zn conversion efficiency and yield as a function of laser irradiance obtained from a time-integrated spectrometer. Conversion efficiency is in x-ray joules into 4π/laser joules incident, shown as the triangles. The open triangles indicate the conversion efficiency obtained from a pinhole camera in the radiography experiment. Total x-ray yield is plotted as joules into 4π, shown as the stars. It is interesting to note that the conversion efficiency appears to peak at 2–5 × 1015 W/cm2.

Fig. 2
Fig. 2

Time-integrated spectrum of Zn K-shell emission at a laser irradiance of 8 × 1015 W/cm2 using 36 kJ in a 3-μm focal diameter. He-like n = 2–1 transitions dominate the x-ray emission near 9 keV, while a small peak from H-like emission is evident near 9.3 keV. There is also a peak from the cold Kα emission produced by nonthermal electrons.

Fig. 3
Fig. 3

Backlit pinhole imaging model with a hohlraum as the object. At the left is the side view showing the wedged backlighter substrate and projection of the illumination at the object. The inset at the bottom of the figure shows the tubelike structure of the pinhole defining the x-ray geometry. The right-hand side shows an end-on (tilted to show the hohlraum) view of the configuration from the backlighter substrate side.

Fig. 4
Fig. 4

Radiographs of a 2.7-μm gold-walled hohlraum recorded on DEF x-ray film: (a) the full image on the front-most piece of film; (b) magnified view of the rear end of the hohlraum on the second layer of film showing the 90-μm epoxy layer.

Fig. 5
Fig. 5

Diagnostic nosetip opening was 3 mm in diameter at a distance of 5 mm from the hohlraum center. The backlighter assembly, driven from the far side, was at a distance of 10.5 mm from the hohlraum. The hohlraum is shown in the center, and would typically be driven by 12 beams.

Fig. 6
Fig. 6

(a) Expanded view of the grid in Fig. 4(a) showing the pattern of 10- and 16-μm bars. (b) An averaged lineout of the 10-and 16-μm-bar, 42-μm-period grid. The 10-μm bars show a width of 15.5 μm with a rise from 10–90% of 10–12 μm.

Fig. 7
Fig. 7

Comparison of observed transmission through the cylindrical hohlraum compared with calculations for 9 and 20 keV. The solid dark curve is the experimental data, the long-dashed curve is the prediction at 9 keV, and the dotted curve is the prediction at 20 keV. The light dashed curves on the left-hand side represent transmission predictions for 2.2- and 3.2-μm gold wall thicknesses at 9 keV. The match in shape to the 9-keV calculation shows a relatively pure backlighter source.

Fig. 8
Fig. 8

(a) Static x-ray pinhole image of the irradiated side of the Zn source at 4× magnification using a 10-μm pinhole. (b) and (c) Averaged lineouts of the pinhole-camera image in the vertical and horizontal directions. The dashed curves are the Gaussian fits. (d) Lineout from the hohlraum Fig. 4(a). The curve shows the raw cylindrical profile peaked at 0.5 photons/μm2, while the top flat profile has been corrected for the known cylindrical profile and transmission. The flat profile shows a standard deviation of 3.5% over 1 mm. All lineouts are averaged over 100 μm at the respective object planes.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

f PAPBL f PHC × d r e l I rel × ( M PAPBL M PHC ) 2 × ρ PHC ρ PAPBL ,

Metrics