Abstract

Trace explosive residues are measured in real time by surface laser photofragmentation–fragment detection (SPF–FD) spectroscopy at ambient conditions. A 248-nm laser photofragments the target residue on a substrate, and a 226-nm laser ionizes the resulting NO fragment by resonance-enhanced multiphoton ionization by means of its AX (0, 0) transitions near 226 nm. We tested two probes on selected explosives and modeled their electric field in the presence of a substrate with an ion optics simulation program. The limits of detection range from 1 to 15 ng/cm2 (signal-to-noise ratio of 3) at 1 atm and 298 K and depend on the electrode orientation and mechanism for NO formation.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. D. Usachev, T. S. Miller, J. P. Singh, F. Y. Yueh, P. R. Jang, D. L. Monts, “Optical properties of gaseous 2,4,6-trinitrotoluene in the ultraviolet region,” Appl. Spectrosc. 55, 125–129 (2001).
    [CrossRef]
  2. M. Todd, R. Provencal, T. Owano, B. Paldus, A. Kachanov, K. Vodopyanov, M. Hunter, S. Coy, J. Steinfeld, J. Arnold, “Application of mid-infrared cavity-ringdown spectroscopy to trace explosives vapor detection using a broadly tunable (6–8 3m) optical parametric oscillator,” Appl. Phys. B 75, 367–376 (2002).
    [CrossRef]
  3. G. M. Boudreaux, T. S. Miller, A. J. Kunefke, J. P. Singh, F. Yueh, D. Monts, “Development of a photofragmentation laser-induced-fluorescence laser sensor for detection of 2,4,6-trinitrotoluene in soil and groundwater,” Appl. Opt. 38, 1411–1417 (1999).
    [CrossRef]
  4. D. Heflinger, T. Arusi-Parpar, Y. Ron, R. Lavi, “Application of a unique scheme for remote detection of explosives,” Opt. Commun. 204, 327–331 (2002).
    [CrossRef]
  5. T. Arusi-Parpar, D. Heflinger, R. Lavi, “Photodissociation followed by laser-induced fluorescence at atmospheric pressure and 24 °C: a unique scheme for remote detection of explosives,” Appl. Opt. 40, 6677–6681 (2001).
    [CrossRef]
  6. V. Swayambunathan, G. Singh, R. Sausa, “Laser photofragmentation–fragment detection and pyrolysis laser-induced fluorescence studies on energetic materials,” Appl. Opt. 38, 6447–6454 (1999).
    [CrossRef]
  7. V. Swayambunathan, R. Sausa, G. Singh, “Investigations into trace detection of nitrocompounds by one- and two-color laser photofragmentation/fragment detection spectrometry,” Appl. Spectrosc. 54, 651–658 (2000).
    [CrossRef]
  8. B. C. Dionne, D. P. Rounbehler, E. K. Achter, J. R. Hobbs, D. H. Fine, “Vapor pressure of explosives,” J. Energetic Mater. 4, 447–472 (1986), and references therein.
    [CrossRef]
  9. R. B. Cundal, T. F. Frank, C. Colin, “Vapor pressure measurements of some organic high explosives,” J. Chem. Soc. Faraday Trans. 1 74, 1339–1345 (1978).
    [CrossRef]
  10. J. M. Rosen, C. Dickinson, “Vapor pressures and heats of sublimation of some high melting organic explosives,” J. Chem. Eng. Data 14, 120–124 (1969).
    [CrossRef]
  11. References 8–10 report the vapor pressure of HMX, RDX, and TNT. The vapor pressure of CL20 is not reported in the open literature: It is probably much less than that of RDX at room temperature based on its molecular structure.
  12. T. B. Tang, M. M. Chaudhri, C. S. Rees, S. J. Mullock, “Decomposition of solid explosives by laser irradiation—a mass-spectrometric study,” J. Mater. Sci. 22, 1037–1044 (1987).
    [CrossRef]
  13. J. T. Dickinson, L. C. Jensen, D. L. Doering, R. Lee, “Mass-spectroscopy study of products from exposure of cyclotrimethylene trinitramine single-crystals to KrF excimer laser-radiation,” J. Appl. Phys. 67, 3641–3651 (1990).
    [CrossRef]
  14. J. Cabalo, R. Sausa, “Detection of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by laser surface photofragmentation-fragment detection spectroscopy,” Appl. Spectrosc. 57, 1196–1199 (2003), and references therein.
    [CrossRef] [PubMed]
  15. simion is an electrostatic lens analysis and design program developed originally by D. C. McGilvery at Latrobe University, Bundoora, Victoria, Australia (1977). SIMION 7.0 is a PC-based program developed by David Dahl of the Idaho National Engineering and Environmental Laboratory. Additional information can be found at http://www.simion.com/ .
  16. W. A. Schroeder, P. E. Wilcox, K. N. Trueblood, A. O. Dekker, “Ultraviolet and visible absorption spectra in ethyl alcohol: data for certain nitric esters, nitramines, nitroalkylbenzenes, and derivatives of phenol, aniline, urea, carbamic acid, diphenylamine, carbazole, and triphenylamine,” Anal. Chem. 23, 1740–1747 (1951).
    [CrossRef]
  17. M. J. Kamlet, H. G. Adolph, J. C. Hoffsommer, “Steric enhancement of resonance. I. Absorption spectra of the alkyltrinitrobenzenes,” J. Am. Chem. Soc. 84, 3925–3928 (1962).
    [CrossRef]
  18. C. J. Wu, L. E. Fried, “Ab initio study of RDX decomposition mechanisms,” J. Phys. Chem. A 101, 8675–8679 (1997).
    [CrossRef]
  19. M. M. Kuklja, A. B. Kunz, “Electronic structure of molecular crystals containing edge dislocations,” J. Appl. Phys. 89, 4962–4970 (2001).
    [CrossRef]
  20. D. Chakraborty, R. P. Muller, S. Dasgupta, W. A. Goddard, “Mechanism for unimolecular decomposition of HMX (1,3,5,7-tetranitro-1,3,5,7-tetrazocine), an ab initio study,” J. Phys. Chem A 105, 1302–1314 (2001).
    [CrossRef]
  21. B. Rice, U.S. Army Research Laboratory, AMRSRD-ARL-WM-BD, Aberdeen Proving Ground, Md. (personal communication, 2004). A preliminary density functional theory calculation at the B3LYP/6-31G* level yields a CL20 N—NO2bond strength of 38.6 kcal/mol. The error limit is plus or minus a few kilocalories per mole.
  22. A. C. Gonzalez, C. W. Larson, D. F. McMillen, D. M. Golden, “Mechanism of decomposition of nitroaromatics-laser-powered homogeneous pyrolysis of substituted nitrobenzenes,” J. Phys. Chem. 89, 4809–4814 (1985).
    [CrossRef]
  23. C. Cheng, T. E. Kirkbridge, D. N. Batchelder, R. J. Lacey, T. G. Sheldon, “In-situ detection and identification of trace explosives by Raman microscopy,” J. Forensic Sci. 40, 31–37 (1995).
  24. Y. Z. He, J. P. Cui, W. G. Mallard, W. Tsang, “Homogeneous gas-phase formation and destruction of anthranil from o-nitrotoluene decomposition,” J. Am. Chem. Soc. 110, 3754–3759 (1988).
    [CrossRef]
  25. D. G. Patil, T. B. Brill, “Thermal decomposition of energetic materials 53. Kinetics and mechanisms of thermolysis of hexanitrohexazaisowurtzitane,” Combust. Flame 87, 145–151 (1991).
    [CrossRef]
  26. M. Geetha, U. R. Nair, D. B. Sarwade, G. M. Gore, S. N. Asthana, H. Singh, “Studies on CL20: the most powerful high energy material,” J. Therm. Anal. Cal. 73, 913–922 (2003).
    [CrossRef]
  27. R. L. Pastel, R. C. Sausa, “Spectral differentiation of trace concentrations of NO2from NO by laser photofragmentation with fragment ionization at 226 and 452 nm: quantitative analysis of N—NO2mixtures,” Appl. Opt. 39, 2487–2495 (2000).
    [CrossRef]
  28. Y. Oyumi, T. B. Brill, “Thermal-decomposition of energetic materials 3. A high-rate, in situ,FTIR study of the thermolysis of RDX and HMX with pressure and heating rate as variables,” Combust. Flame 62, 213–224 (1985).
    [CrossRef]
  29. P. E. Gongwer, T. B. Brill, “Thermal decomposition of energetic materials 73. The identity and temperature dependence of ’minor″ products from flash-heated RDX,” Combust. Flame 115, 417–423 (1998).
    [CrossRef]

2003 (2)

M. Geetha, U. R. Nair, D. B. Sarwade, G. M. Gore, S. N. Asthana, H. Singh, “Studies on CL20: the most powerful high energy material,” J. Therm. Anal. Cal. 73, 913–922 (2003).
[CrossRef]

J. Cabalo, R. Sausa, “Detection of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by laser surface photofragmentation-fragment detection spectroscopy,” Appl. Spectrosc. 57, 1196–1199 (2003), and references therein.
[CrossRef] [PubMed]

2002 (2)

M. Todd, R. Provencal, T. Owano, B. Paldus, A. Kachanov, K. Vodopyanov, M. Hunter, S. Coy, J. Steinfeld, J. Arnold, “Application of mid-infrared cavity-ringdown spectroscopy to trace explosives vapor detection using a broadly tunable (6–8 3m) optical parametric oscillator,” Appl. Phys. B 75, 367–376 (2002).
[CrossRef]

D. Heflinger, T. Arusi-Parpar, Y. Ron, R. Lavi, “Application of a unique scheme for remote detection of explosives,” Opt. Commun. 204, 327–331 (2002).
[CrossRef]

2001 (4)

M. M. Kuklja, A. B. Kunz, “Electronic structure of molecular crystals containing edge dislocations,” J. Appl. Phys. 89, 4962–4970 (2001).
[CrossRef]

D. Chakraborty, R. P. Muller, S. Dasgupta, W. A. Goddard, “Mechanism for unimolecular decomposition of HMX (1,3,5,7-tetranitro-1,3,5,7-tetrazocine), an ab initio study,” J. Phys. Chem A 105, 1302–1314 (2001).
[CrossRef]

A. D. Usachev, T. S. Miller, J. P. Singh, F. Y. Yueh, P. R. Jang, D. L. Monts, “Optical properties of gaseous 2,4,6-trinitrotoluene in the ultraviolet region,” Appl. Spectrosc. 55, 125–129 (2001).
[CrossRef]

T. Arusi-Parpar, D. Heflinger, R. Lavi, “Photodissociation followed by laser-induced fluorescence at atmospheric pressure and 24 °C: a unique scheme for remote detection of explosives,” Appl. Opt. 40, 6677–6681 (2001).
[CrossRef]

2000 (2)

1999 (2)

1998 (1)

P. E. Gongwer, T. B. Brill, “Thermal decomposition of energetic materials 73. The identity and temperature dependence of ’minor″ products from flash-heated RDX,” Combust. Flame 115, 417–423 (1998).
[CrossRef]

1997 (1)

C. J. Wu, L. E. Fried, “Ab initio study of RDX decomposition mechanisms,” J. Phys. Chem. A 101, 8675–8679 (1997).
[CrossRef]

1995 (1)

C. Cheng, T. E. Kirkbridge, D. N. Batchelder, R. J. Lacey, T. G. Sheldon, “In-situ detection and identification of trace explosives by Raman microscopy,” J. Forensic Sci. 40, 31–37 (1995).

1991 (1)

D. G. Patil, T. B. Brill, “Thermal decomposition of energetic materials 53. Kinetics and mechanisms of thermolysis of hexanitrohexazaisowurtzitane,” Combust. Flame 87, 145–151 (1991).
[CrossRef]

1990 (1)

J. T. Dickinson, L. C. Jensen, D. L. Doering, R. Lee, “Mass-spectroscopy study of products from exposure of cyclotrimethylene trinitramine single-crystals to KrF excimer laser-radiation,” J. Appl. Phys. 67, 3641–3651 (1990).
[CrossRef]

1988 (1)

Y. Z. He, J. P. Cui, W. G. Mallard, W. Tsang, “Homogeneous gas-phase formation and destruction of anthranil from o-nitrotoluene decomposition,” J. Am. Chem. Soc. 110, 3754–3759 (1988).
[CrossRef]

1987 (1)

T. B. Tang, M. M. Chaudhri, C. S. Rees, S. J. Mullock, “Decomposition of solid explosives by laser irradiation—a mass-spectrometric study,” J. Mater. Sci. 22, 1037–1044 (1987).
[CrossRef]

1986 (1)

B. C. Dionne, D. P. Rounbehler, E. K. Achter, J. R. Hobbs, D. H. Fine, “Vapor pressure of explosives,” J. Energetic Mater. 4, 447–472 (1986), and references therein.
[CrossRef]

1985 (2)

A. C. Gonzalez, C. W. Larson, D. F. McMillen, D. M. Golden, “Mechanism of decomposition of nitroaromatics-laser-powered homogeneous pyrolysis of substituted nitrobenzenes,” J. Phys. Chem. 89, 4809–4814 (1985).
[CrossRef]

Y. Oyumi, T. B. Brill, “Thermal-decomposition of energetic materials 3. A high-rate, in situ,FTIR study of the thermolysis of RDX and HMX with pressure and heating rate as variables,” Combust. Flame 62, 213–224 (1985).
[CrossRef]

1978 (1)

R. B. Cundal, T. F. Frank, C. Colin, “Vapor pressure measurements of some organic high explosives,” J. Chem. Soc. Faraday Trans. 1 74, 1339–1345 (1978).
[CrossRef]

1969 (1)

J. M. Rosen, C. Dickinson, “Vapor pressures and heats of sublimation of some high melting organic explosives,” J. Chem. Eng. Data 14, 120–124 (1969).
[CrossRef]

1962 (1)

M. J. Kamlet, H. G. Adolph, J. C. Hoffsommer, “Steric enhancement of resonance. I. Absorption spectra of the alkyltrinitrobenzenes,” J. Am. Chem. Soc. 84, 3925–3928 (1962).
[CrossRef]

1951 (1)

W. A. Schroeder, P. E. Wilcox, K. N. Trueblood, A. O. Dekker, “Ultraviolet and visible absorption spectra in ethyl alcohol: data for certain nitric esters, nitramines, nitroalkylbenzenes, and derivatives of phenol, aniline, urea, carbamic acid, diphenylamine, carbazole, and triphenylamine,” Anal. Chem. 23, 1740–1747 (1951).
[CrossRef]

Achter, E. K.

B. C. Dionne, D. P. Rounbehler, E. K. Achter, J. R. Hobbs, D. H. Fine, “Vapor pressure of explosives,” J. Energetic Mater. 4, 447–472 (1986), and references therein.
[CrossRef]

Adolph, H. G.

M. J. Kamlet, H. G. Adolph, J. C. Hoffsommer, “Steric enhancement of resonance. I. Absorption spectra of the alkyltrinitrobenzenes,” J. Am. Chem. Soc. 84, 3925–3928 (1962).
[CrossRef]

Arnold, J.

M. Todd, R. Provencal, T. Owano, B. Paldus, A. Kachanov, K. Vodopyanov, M. Hunter, S. Coy, J. Steinfeld, J. Arnold, “Application of mid-infrared cavity-ringdown spectroscopy to trace explosives vapor detection using a broadly tunable (6–8 3m) optical parametric oscillator,” Appl. Phys. B 75, 367–376 (2002).
[CrossRef]

Arusi-Parpar, T.

Asthana, S. N.

M. Geetha, U. R. Nair, D. B. Sarwade, G. M. Gore, S. N. Asthana, H. Singh, “Studies on CL20: the most powerful high energy material,” J. Therm. Anal. Cal. 73, 913–922 (2003).
[CrossRef]

Batchelder, D. N.

C. Cheng, T. E. Kirkbridge, D. N. Batchelder, R. J. Lacey, T. G. Sheldon, “In-situ detection and identification of trace explosives by Raman microscopy,” J. Forensic Sci. 40, 31–37 (1995).

Boudreaux, G. M.

Brill, T. B.

P. E. Gongwer, T. B. Brill, “Thermal decomposition of energetic materials 73. The identity and temperature dependence of ’minor″ products from flash-heated RDX,” Combust. Flame 115, 417–423 (1998).
[CrossRef]

D. G. Patil, T. B. Brill, “Thermal decomposition of energetic materials 53. Kinetics and mechanisms of thermolysis of hexanitrohexazaisowurtzitane,” Combust. Flame 87, 145–151 (1991).
[CrossRef]

Y. Oyumi, T. B. Brill, “Thermal-decomposition of energetic materials 3. A high-rate, in situ,FTIR study of the thermolysis of RDX and HMX with pressure and heating rate as variables,” Combust. Flame 62, 213–224 (1985).
[CrossRef]

Cabalo, J.

Chakraborty, D.

D. Chakraborty, R. P. Muller, S. Dasgupta, W. A. Goddard, “Mechanism for unimolecular decomposition of HMX (1,3,5,7-tetranitro-1,3,5,7-tetrazocine), an ab initio study,” J. Phys. Chem A 105, 1302–1314 (2001).
[CrossRef]

Chaudhri, M. M.

T. B. Tang, M. M. Chaudhri, C. S. Rees, S. J. Mullock, “Decomposition of solid explosives by laser irradiation—a mass-spectrometric study,” J. Mater. Sci. 22, 1037–1044 (1987).
[CrossRef]

Cheng, C.

C. Cheng, T. E. Kirkbridge, D. N. Batchelder, R. J. Lacey, T. G. Sheldon, “In-situ detection and identification of trace explosives by Raman microscopy,” J. Forensic Sci. 40, 31–37 (1995).

Colin, C.

R. B. Cundal, T. F. Frank, C. Colin, “Vapor pressure measurements of some organic high explosives,” J. Chem. Soc. Faraday Trans. 1 74, 1339–1345 (1978).
[CrossRef]

Coy, S.

M. Todd, R. Provencal, T. Owano, B. Paldus, A. Kachanov, K. Vodopyanov, M. Hunter, S. Coy, J. Steinfeld, J. Arnold, “Application of mid-infrared cavity-ringdown spectroscopy to trace explosives vapor detection using a broadly tunable (6–8 3m) optical parametric oscillator,” Appl. Phys. B 75, 367–376 (2002).
[CrossRef]

Cui, J. P.

Y. Z. He, J. P. Cui, W. G. Mallard, W. Tsang, “Homogeneous gas-phase formation and destruction of anthranil from o-nitrotoluene decomposition,” J. Am. Chem. Soc. 110, 3754–3759 (1988).
[CrossRef]

Cundal, R. B.

R. B. Cundal, T. F. Frank, C. Colin, “Vapor pressure measurements of some organic high explosives,” J. Chem. Soc. Faraday Trans. 1 74, 1339–1345 (1978).
[CrossRef]

Dasgupta, S.

D. Chakraborty, R. P. Muller, S. Dasgupta, W. A. Goddard, “Mechanism for unimolecular decomposition of HMX (1,3,5,7-tetranitro-1,3,5,7-tetrazocine), an ab initio study,” J. Phys. Chem A 105, 1302–1314 (2001).
[CrossRef]

Dekker, A. O.

W. A. Schroeder, P. E. Wilcox, K. N. Trueblood, A. O. Dekker, “Ultraviolet and visible absorption spectra in ethyl alcohol: data for certain nitric esters, nitramines, nitroalkylbenzenes, and derivatives of phenol, aniline, urea, carbamic acid, diphenylamine, carbazole, and triphenylamine,” Anal. Chem. 23, 1740–1747 (1951).
[CrossRef]

Dickinson, C.

J. M. Rosen, C. Dickinson, “Vapor pressures and heats of sublimation of some high melting organic explosives,” J. Chem. Eng. Data 14, 120–124 (1969).
[CrossRef]

Dickinson, J. T.

J. T. Dickinson, L. C. Jensen, D. L. Doering, R. Lee, “Mass-spectroscopy study of products from exposure of cyclotrimethylene trinitramine single-crystals to KrF excimer laser-radiation,” J. Appl. Phys. 67, 3641–3651 (1990).
[CrossRef]

Dionne, B. C.

B. C. Dionne, D. P. Rounbehler, E. K. Achter, J. R. Hobbs, D. H. Fine, “Vapor pressure of explosives,” J. Energetic Mater. 4, 447–472 (1986), and references therein.
[CrossRef]

Doering, D. L.

J. T. Dickinson, L. C. Jensen, D. L. Doering, R. Lee, “Mass-spectroscopy study of products from exposure of cyclotrimethylene trinitramine single-crystals to KrF excimer laser-radiation,” J. Appl. Phys. 67, 3641–3651 (1990).
[CrossRef]

Fine, D. H.

B. C. Dionne, D. P. Rounbehler, E. K. Achter, J. R. Hobbs, D. H. Fine, “Vapor pressure of explosives,” J. Energetic Mater. 4, 447–472 (1986), and references therein.
[CrossRef]

Frank, T. F.

R. B. Cundal, T. F. Frank, C. Colin, “Vapor pressure measurements of some organic high explosives,” J. Chem. Soc. Faraday Trans. 1 74, 1339–1345 (1978).
[CrossRef]

Fried, L. E.

C. J. Wu, L. E. Fried, “Ab initio study of RDX decomposition mechanisms,” J. Phys. Chem. A 101, 8675–8679 (1997).
[CrossRef]

Geetha, M.

M. Geetha, U. R. Nair, D. B. Sarwade, G. M. Gore, S. N. Asthana, H. Singh, “Studies on CL20: the most powerful high energy material,” J. Therm. Anal. Cal. 73, 913–922 (2003).
[CrossRef]

Goddard, W. A.

D. Chakraborty, R. P. Muller, S. Dasgupta, W. A. Goddard, “Mechanism for unimolecular decomposition of HMX (1,3,5,7-tetranitro-1,3,5,7-tetrazocine), an ab initio study,” J. Phys. Chem A 105, 1302–1314 (2001).
[CrossRef]

Golden, D. M.

A. C. Gonzalez, C. W. Larson, D. F. McMillen, D. M. Golden, “Mechanism of decomposition of nitroaromatics-laser-powered homogeneous pyrolysis of substituted nitrobenzenes,” J. Phys. Chem. 89, 4809–4814 (1985).
[CrossRef]

Gongwer, P. E.

P. E. Gongwer, T. B. Brill, “Thermal decomposition of energetic materials 73. The identity and temperature dependence of ’minor″ products from flash-heated RDX,” Combust. Flame 115, 417–423 (1998).
[CrossRef]

Gonzalez, A. C.

A. C. Gonzalez, C. W. Larson, D. F. McMillen, D. M. Golden, “Mechanism of decomposition of nitroaromatics-laser-powered homogeneous pyrolysis of substituted nitrobenzenes,” J. Phys. Chem. 89, 4809–4814 (1985).
[CrossRef]

Gore, G. M.

M. Geetha, U. R. Nair, D. B. Sarwade, G. M. Gore, S. N. Asthana, H. Singh, “Studies on CL20: the most powerful high energy material,” J. Therm. Anal. Cal. 73, 913–922 (2003).
[CrossRef]

He, Y. Z.

Y. Z. He, J. P. Cui, W. G. Mallard, W. Tsang, “Homogeneous gas-phase formation and destruction of anthranil from o-nitrotoluene decomposition,” J. Am. Chem. Soc. 110, 3754–3759 (1988).
[CrossRef]

Heflinger, D.

Hobbs, J. R.

B. C. Dionne, D. P. Rounbehler, E. K. Achter, J. R. Hobbs, D. H. Fine, “Vapor pressure of explosives,” J. Energetic Mater. 4, 447–472 (1986), and references therein.
[CrossRef]

Hoffsommer, J. C.

M. J. Kamlet, H. G. Adolph, J. C. Hoffsommer, “Steric enhancement of resonance. I. Absorption spectra of the alkyltrinitrobenzenes,” J. Am. Chem. Soc. 84, 3925–3928 (1962).
[CrossRef]

Hunter, M.

M. Todd, R. Provencal, T. Owano, B. Paldus, A. Kachanov, K. Vodopyanov, M. Hunter, S. Coy, J. Steinfeld, J. Arnold, “Application of mid-infrared cavity-ringdown spectroscopy to trace explosives vapor detection using a broadly tunable (6–8 3m) optical parametric oscillator,” Appl. Phys. B 75, 367–376 (2002).
[CrossRef]

Jang, P. R.

Jensen, L. C.

J. T. Dickinson, L. C. Jensen, D. L. Doering, R. Lee, “Mass-spectroscopy study of products from exposure of cyclotrimethylene trinitramine single-crystals to KrF excimer laser-radiation,” J. Appl. Phys. 67, 3641–3651 (1990).
[CrossRef]

Kachanov, A.

M. Todd, R. Provencal, T. Owano, B. Paldus, A. Kachanov, K. Vodopyanov, M. Hunter, S. Coy, J. Steinfeld, J. Arnold, “Application of mid-infrared cavity-ringdown spectroscopy to trace explosives vapor detection using a broadly tunable (6–8 3m) optical parametric oscillator,” Appl. Phys. B 75, 367–376 (2002).
[CrossRef]

Kamlet, M. J.

M. J. Kamlet, H. G. Adolph, J. C. Hoffsommer, “Steric enhancement of resonance. I. Absorption spectra of the alkyltrinitrobenzenes,” J. Am. Chem. Soc. 84, 3925–3928 (1962).
[CrossRef]

Kirkbridge, T. E.

C. Cheng, T. E. Kirkbridge, D. N. Batchelder, R. J. Lacey, T. G. Sheldon, “In-situ detection and identification of trace explosives by Raman microscopy,” J. Forensic Sci. 40, 31–37 (1995).

Kuklja, M. M.

M. M. Kuklja, A. B. Kunz, “Electronic structure of molecular crystals containing edge dislocations,” J. Appl. Phys. 89, 4962–4970 (2001).
[CrossRef]

Kunefke, A. J.

Kunz, A. B.

M. M. Kuklja, A. B. Kunz, “Electronic structure of molecular crystals containing edge dislocations,” J. Appl. Phys. 89, 4962–4970 (2001).
[CrossRef]

Lacey, R. J.

C. Cheng, T. E. Kirkbridge, D. N. Batchelder, R. J. Lacey, T. G. Sheldon, “In-situ detection and identification of trace explosives by Raman microscopy,” J. Forensic Sci. 40, 31–37 (1995).

Larson, C. W.

A. C. Gonzalez, C. W. Larson, D. F. McMillen, D. M. Golden, “Mechanism of decomposition of nitroaromatics-laser-powered homogeneous pyrolysis of substituted nitrobenzenes,” J. Phys. Chem. 89, 4809–4814 (1985).
[CrossRef]

Lavi, R.

Lee, R.

J. T. Dickinson, L. C. Jensen, D. L. Doering, R. Lee, “Mass-spectroscopy study of products from exposure of cyclotrimethylene trinitramine single-crystals to KrF excimer laser-radiation,” J. Appl. Phys. 67, 3641–3651 (1990).
[CrossRef]

Mallard, W. G.

Y. Z. He, J. P. Cui, W. G. Mallard, W. Tsang, “Homogeneous gas-phase formation and destruction of anthranil from o-nitrotoluene decomposition,” J. Am. Chem. Soc. 110, 3754–3759 (1988).
[CrossRef]

McMillen, D. F.

A. C. Gonzalez, C. W. Larson, D. F. McMillen, D. M. Golden, “Mechanism of decomposition of nitroaromatics-laser-powered homogeneous pyrolysis of substituted nitrobenzenes,” J. Phys. Chem. 89, 4809–4814 (1985).
[CrossRef]

Miller, T. S.

Monts, D.

Monts, D. L.

Muller, R. P.

D. Chakraborty, R. P. Muller, S. Dasgupta, W. A. Goddard, “Mechanism for unimolecular decomposition of HMX (1,3,5,7-tetranitro-1,3,5,7-tetrazocine), an ab initio study,” J. Phys. Chem A 105, 1302–1314 (2001).
[CrossRef]

Mullock, S. J.

T. B. Tang, M. M. Chaudhri, C. S. Rees, S. J. Mullock, “Decomposition of solid explosives by laser irradiation—a mass-spectrometric study,” J. Mater. Sci. 22, 1037–1044 (1987).
[CrossRef]

Nair, U. R.

M. Geetha, U. R. Nair, D. B. Sarwade, G. M. Gore, S. N. Asthana, H. Singh, “Studies on CL20: the most powerful high energy material,” J. Therm. Anal. Cal. 73, 913–922 (2003).
[CrossRef]

Owano, T.

M. Todd, R. Provencal, T. Owano, B. Paldus, A. Kachanov, K. Vodopyanov, M. Hunter, S. Coy, J. Steinfeld, J. Arnold, “Application of mid-infrared cavity-ringdown spectroscopy to trace explosives vapor detection using a broadly tunable (6–8 3m) optical parametric oscillator,” Appl. Phys. B 75, 367–376 (2002).
[CrossRef]

Oyumi, Y.

Y. Oyumi, T. B. Brill, “Thermal-decomposition of energetic materials 3. A high-rate, in situ,FTIR study of the thermolysis of RDX and HMX with pressure and heating rate as variables,” Combust. Flame 62, 213–224 (1985).
[CrossRef]

Paldus, B.

M. Todd, R. Provencal, T. Owano, B. Paldus, A. Kachanov, K. Vodopyanov, M. Hunter, S. Coy, J. Steinfeld, J. Arnold, “Application of mid-infrared cavity-ringdown spectroscopy to trace explosives vapor detection using a broadly tunable (6–8 3m) optical parametric oscillator,” Appl. Phys. B 75, 367–376 (2002).
[CrossRef]

Pastel, R. L.

Patil, D. G.

D. G. Patil, T. B. Brill, “Thermal decomposition of energetic materials 53. Kinetics and mechanisms of thermolysis of hexanitrohexazaisowurtzitane,” Combust. Flame 87, 145–151 (1991).
[CrossRef]

Provencal, R.

M. Todd, R. Provencal, T. Owano, B. Paldus, A. Kachanov, K. Vodopyanov, M. Hunter, S. Coy, J. Steinfeld, J. Arnold, “Application of mid-infrared cavity-ringdown spectroscopy to trace explosives vapor detection using a broadly tunable (6–8 3m) optical parametric oscillator,” Appl. Phys. B 75, 367–376 (2002).
[CrossRef]

Rees, C. S.

T. B. Tang, M. M. Chaudhri, C. S. Rees, S. J. Mullock, “Decomposition of solid explosives by laser irradiation—a mass-spectrometric study,” J. Mater. Sci. 22, 1037–1044 (1987).
[CrossRef]

Rice, B.

B. Rice, U.S. Army Research Laboratory, AMRSRD-ARL-WM-BD, Aberdeen Proving Ground, Md. (personal communication, 2004). A preliminary density functional theory calculation at the B3LYP/6-31G* level yields a CL20 N—NO2bond strength of 38.6 kcal/mol. The error limit is plus or minus a few kilocalories per mole.

Ron, Y.

D. Heflinger, T. Arusi-Parpar, Y. Ron, R. Lavi, “Application of a unique scheme for remote detection of explosives,” Opt. Commun. 204, 327–331 (2002).
[CrossRef]

Rosen, J. M.

J. M. Rosen, C. Dickinson, “Vapor pressures and heats of sublimation of some high melting organic explosives,” J. Chem. Eng. Data 14, 120–124 (1969).
[CrossRef]

Rounbehler, D. P.

B. C. Dionne, D. P. Rounbehler, E. K. Achter, J. R. Hobbs, D. H. Fine, “Vapor pressure of explosives,” J. Energetic Mater. 4, 447–472 (1986), and references therein.
[CrossRef]

Sarwade, D. B.

M. Geetha, U. R. Nair, D. B. Sarwade, G. M. Gore, S. N. Asthana, H. Singh, “Studies on CL20: the most powerful high energy material,” J. Therm. Anal. Cal. 73, 913–922 (2003).
[CrossRef]

Sausa, R.

Sausa, R. C.

Schroeder, W. A.

W. A. Schroeder, P. E. Wilcox, K. N. Trueblood, A. O. Dekker, “Ultraviolet and visible absorption spectra in ethyl alcohol: data for certain nitric esters, nitramines, nitroalkylbenzenes, and derivatives of phenol, aniline, urea, carbamic acid, diphenylamine, carbazole, and triphenylamine,” Anal. Chem. 23, 1740–1747 (1951).
[CrossRef]

Sheldon, T. G.

C. Cheng, T. E. Kirkbridge, D. N. Batchelder, R. J. Lacey, T. G. Sheldon, “In-situ detection and identification of trace explosives by Raman microscopy,” J. Forensic Sci. 40, 31–37 (1995).

Singh, G.

Singh, H.

M. Geetha, U. R. Nair, D. B. Sarwade, G. M. Gore, S. N. Asthana, H. Singh, “Studies on CL20: the most powerful high energy material,” J. Therm. Anal. Cal. 73, 913–922 (2003).
[CrossRef]

Singh, J. P.

Steinfeld, J.

M. Todd, R. Provencal, T. Owano, B. Paldus, A. Kachanov, K. Vodopyanov, M. Hunter, S. Coy, J. Steinfeld, J. Arnold, “Application of mid-infrared cavity-ringdown spectroscopy to trace explosives vapor detection using a broadly tunable (6–8 3m) optical parametric oscillator,” Appl. Phys. B 75, 367–376 (2002).
[CrossRef]

Swayambunathan, V.

Tang, T. B.

T. B. Tang, M. M. Chaudhri, C. S. Rees, S. J. Mullock, “Decomposition of solid explosives by laser irradiation—a mass-spectrometric study,” J. Mater. Sci. 22, 1037–1044 (1987).
[CrossRef]

Todd, M.

M. Todd, R. Provencal, T. Owano, B. Paldus, A. Kachanov, K. Vodopyanov, M. Hunter, S. Coy, J. Steinfeld, J. Arnold, “Application of mid-infrared cavity-ringdown spectroscopy to trace explosives vapor detection using a broadly tunable (6–8 3m) optical parametric oscillator,” Appl. Phys. B 75, 367–376 (2002).
[CrossRef]

Trueblood, K. N.

W. A. Schroeder, P. E. Wilcox, K. N. Trueblood, A. O. Dekker, “Ultraviolet and visible absorption spectra in ethyl alcohol: data for certain nitric esters, nitramines, nitroalkylbenzenes, and derivatives of phenol, aniline, urea, carbamic acid, diphenylamine, carbazole, and triphenylamine,” Anal. Chem. 23, 1740–1747 (1951).
[CrossRef]

Tsang, W.

Y. Z. He, J. P. Cui, W. G. Mallard, W. Tsang, “Homogeneous gas-phase formation and destruction of anthranil from o-nitrotoluene decomposition,” J. Am. Chem. Soc. 110, 3754–3759 (1988).
[CrossRef]

Usachev, A. D.

Vodopyanov, K.

M. Todd, R. Provencal, T. Owano, B. Paldus, A. Kachanov, K. Vodopyanov, M. Hunter, S. Coy, J. Steinfeld, J. Arnold, “Application of mid-infrared cavity-ringdown spectroscopy to trace explosives vapor detection using a broadly tunable (6–8 3m) optical parametric oscillator,” Appl. Phys. B 75, 367–376 (2002).
[CrossRef]

Wilcox, P. E.

W. A. Schroeder, P. E. Wilcox, K. N. Trueblood, A. O. Dekker, “Ultraviolet and visible absorption spectra in ethyl alcohol: data for certain nitric esters, nitramines, nitroalkylbenzenes, and derivatives of phenol, aniline, urea, carbamic acid, diphenylamine, carbazole, and triphenylamine,” Anal. Chem. 23, 1740–1747 (1951).
[CrossRef]

Wu, C. J.

C. J. Wu, L. E. Fried, “Ab initio study of RDX decomposition mechanisms,” J. Phys. Chem. A 101, 8675–8679 (1997).
[CrossRef]

Yueh, F.

Yueh, F. Y.

Anal. Chem. (1)

W. A. Schroeder, P. E. Wilcox, K. N. Trueblood, A. O. Dekker, “Ultraviolet and visible absorption spectra in ethyl alcohol: data for certain nitric esters, nitramines, nitroalkylbenzenes, and derivatives of phenol, aniline, urea, carbamic acid, diphenylamine, carbazole, and triphenylamine,” Anal. Chem. 23, 1740–1747 (1951).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. B (1)

M. Todd, R. Provencal, T. Owano, B. Paldus, A. Kachanov, K. Vodopyanov, M. Hunter, S. Coy, J. Steinfeld, J. Arnold, “Application of mid-infrared cavity-ringdown spectroscopy to trace explosives vapor detection using a broadly tunable (6–8 3m) optical parametric oscillator,” Appl. Phys. B 75, 367–376 (2002).
[CrossRef]

Appl. Spectrosc. (3)

Combust. Flame (3)

D. G. Patil, T. B. Brill, “Thermal decomposition of energetic materials 53. Kinetics and mechanisms of thermolysis of hexanitrohexazaisowurtzitane,” Combust. Flame 87, 145–151 (1991).
[CrossRef]

Y. Oyumi, T. B. Brill, “Thermal-decomposition of energetic materials 3. A high-rate, in situ,FTIR study of the thermolysis of RDX and HMX with pressure and heating rate as variables,” Combust. Flame 62, 213–224 (1985).
[CrossRef]

P. E. Gongwer, T. B. Brill, “Thermal decomposition of energetic materials 73. The identity and temperature dependence of ’minor″ products from flash-heated RDX,” Combust. Flame 115, 417–423 (1998).
[CrossRef]

J. Am. Chem. Soc. (2)

M. J. Kamlet, H. G. Adolph, J. C. Hoffsommer, “Steric enhancement of resonance. I. Absorption spectra of the alkyltrinitrobenzenes,” J. Am. Chem. Soc. 84, 3925–3928 (1962).
[CrossRef]

Y. Z. He, J. P. Cui, W. G. Mallard, W. Tsang, “Homogeneous gas-phase formation and destruction of anthranil from o-nitrotoluene decomposition,” J. Am. Chem. Soc. 110, 3754–3759 (1988).
[CrossRef]

J. Appl. Phys. (2)

M. M. Kuklja, A. B. Kunz, “Electronic structure of molecular crystals containing edge dislocations,” J. Appl. Phys. 89, 4962–4970 (2001).
[CrossRef]

J. T. Dickinson, L. C. Jensen, D. L. Doering, R. Lee, “Mass-spectroscopy study of products from exposure of cyclotrimethylene trinitramine single-crystals to KrF excimer laser-radiation,” J. Appl. Phys. 67, 3641–3651 (1990).
[CrossRef]

J. Chem. Eng. Data (1)

J. M. Rosen, C. Dickinson, “Vapor pressures and heats of sublimation of some high melting organic explosives,” J. Chem. Eng. Data 14, 120–124 (1969).
[CrossRef]

J. Chem. Soc. Faraday Trans. 1 (1)

R. B. Cundal, T. F. Frank, C. Colin, “Vapor pressure measurements of some organic high explosives,” J. Chem. Soc. Faraday Trans. 1 74, 1339–1345 (1978).
[CrossRef]

J. Energetic Mater. (1)

B. C. Dionne, D. P. Rounbehler, E. K. Achter, J. R. Hobbs, D. H. Fine, “Vapor pressure of explosives,” J. Energetic Mater. 4, 447–472 (1986), and references therein.
[CrossRef]

J. Forensic Sci. (1)

C. Cheng, T. E. Kirkbridge, D. N. Batchelder, R. J. Lacey, T. G. Sheldon, “In-situ detection and identification of trace explosives by Raman microscopy,” J. Forensic Sci. 40, 31–37 (1995).

J. Mater. Sci. (1)

T. B. Tang, M. M. Chaudhri, C. S. Rees, S. J. Mullock, “Decomposition of solid explosives by laser irradiation—a mass-spectrometric study,” J. Mater. Sci. 22, 1037–1044 (1987).
[CrossRef]

J. Phys. Chem A (1)

D. Chakraborty, R. P. Muller, S. Dasgupta, W. A. Goddard, “Mechanism for unimolecular decomposition of HMX (1,3,5,7-tetranitro-1,3,5,7-tetrazocine), an ab initio study,” J. Phys. Chem A 105, 1302–1314 (2001).
[CrossRef]

J. Phys. Chem. (1)

A. C. Gonzalez, C. W. Larson, D. F. McMillen, D. M. Golden, “Mechanism of decomposition of nitroaromatics-laser-powered homogeneous pyrolysis of substituted nitrobenzenes,” J. Phys. Chem. 89, 4809–4814 (1985).
[CrossRef]

J. Phys. Chem. A (1)

C. J. Wu, L. E. Fried, “Ab initio study of RDX decomposition mechanisms,” J. Phys. Chem. A 101, 8675–8679 (1997).
[CrossRef]

J. Therm. Anal. Cal. (1)

M. Geetha, U. R. Nair, D. B. Sarwade, G. M. Gore, S. N. Asthana, H. Singh, “Studies on CL20: the most powerful high energy material,” J. Therm. Anal. Cal. 73, 913–922 (2003).
[CrossRef]

Opt. Commun. (1)

D. Heflinger, T. Arusi-Parpar, Y. Ron, R. Lavi, “Application of a unique scheme for remote detection of explosives,” Opt. Commun. 204, 327–331 (2002).
[CrossRef]

Other (3)

References 8–10 report the vapor pressure of HMX, RDX, and TNT. The vapor pressure of CL20 is not reported in the open literature: It is probably much less than that of RDX at room temperature based on its molecular structure.

simion is an electrostatic lens analysis and design program developed originally by D. C. McGilvery at Latrobe University, Bundoora, Victoria, Australia (1977). SIMION 7.0 is a PC-based program developed by David Dahl of the Idaho National Engineering and Environmental Laboratory. Additional information can be found at http://www.simion.com/ .

B. Rice, U.S. Army Research Laboratory, AMRSRD-ARL-WM-BD, Aberdeen Proving Ground, Md. (personal communication, 2004). A preliminary density functional theory calculation at the B3LYP/6-31G* level yields a CL20 N—NO2bond strength of 38.6 kcal/mol. The error limit is plus or minus a few kilocalories per mole.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Structure formulas of selected energetic materials.

Fig. 2
Fig. 2

Ionization probes. (a) Vertical electrodes (VEs) whose electric field is parallel to the substrate surface. The excitation laser beam is normal to the substrate, and the ionization laser is parallel to the substrate surface and 0.5 mm above it. (b) Horizontal electrodes (HEs) whose electric field is normal to the substrate surface. The excitation and probe beams are oriented as in (a).

Fig. 3
Fig. 3

SLP–FD spectra of RDX, TNT, HMX, and CL20, and a REMPI spectrum of NO in the region of 225.8–226.8 nm. The spectroscopic fingerprint of NO appears in the spectra of all the energetic materials.

Fig. 4
Fig. 4

simeon simulations of the electric field in the VE and HE probes with the probes near a dielectric substrate. (a) A three-dimensional perspective of the VE electrode’s electric field (top panel) and a slice of the region between the plates showing the substrate and the equipotential lines within the plates (bottom panel). (b) The HE electrode’s electric field with a perspective drawing in the top panel and a two-dimensional slice in the bottom panel. In the SPF–FD sampling region, the substrate disturbs the electric field in HE probe much less than in the VE probe.

Fig. 5
Fig. 5

REMPI spectra at 226 nm of NO gas at ambient temperature and pressure. The HE and VE probes are near a clean substrate, and the ionization laser is fired 1 ms after the excitation laser, as shown in the insert. The ionization laser beam passes through the center of the HE plates and near the edges of the VE plates, slightly above the substrate’s surface. Trace (b) from the VE probe shows a weaker signal compared with trace (a) from the HE probe because the substrate perturbs the electric field in the VE probe much more than in the HE probe. Trace (c) is from the VE electrodes with the probe beam passing between plates at ~0.75 mm from the substrate surface (center of plates). The VE probe’s electric field is nearly uniform because the substrate is not close to the ionization region, and the resulting trace is similar to trace (a).

Fig. 6
Fig. 6

Total charge time plot resulting from the prompt, 248-nm excitation of RDX with both the VE probe [trace (a)] and HE probe [trace (b)]. The 226-nm probe laser is off.

Fig. 7
Fig. 7

RDX, HMX, CL20, and TNT response plots with the HE probe. The excitation and probe lasers are set at 248 and 226.28 nm, respectively.

Fig. 8
Fig. 8

Absorbance curves of 2.25 × 10−5 M RDX and CL20 in acetonitrile in the 190–290-nm range.

Fig. 9
Fig. 9

SPF–FD spectra of NO from RDX. The dashed curve is a best fit of the observed data, shown as a solid curve. The spectra are offset for clarity. A Boltzmann analysis yields a rotational temperature of 304 ± 10 K.

Tables (1)

Tables Icon

Table 1 Energetic Materials with Their Limits of Detection and Extinction Coefficients at 248 nm and their R–NO2 Bond Dissociation Energies

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R NO 2 ( s ) h ν ( 248 nm ) R + NO ( X 2 Π ) + O ,
NO ( X 2 Π ) h ν ( 226 nm ) NO ( A 2 Σ + ) h ν ( 226 nm ) NO + ( X 2 Σ + ) + e ,

Metrics