Abstract

We have simulated backscatter signals of spaceborne lidar systems with the help of a Monte Carlo model. Calculations were performed for various combinations of system parameters. As typical examples of atmospheric observation targets, two kinds of cirrus cloud and two kinds of aerosol were considered. Both total multiple scattering and the significance of individual higher scattering orders are discussed. For all cases, an approximate multiple scattering factor F was calculated that can be used to correct the single-scattering lidar equation to account also for multiple scattering.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. M. Winker, R. H. Couch, M. P. McCormick, “An overview of LITE: NASA’s Lidar In-space Technology Experiment,” Proc. IEEE 84, 164–180 (1996).
    [Crossref]
  2. D. M. Winker, C. R. Trepte, “Laminar cirrus observed near the tropical tropopause by LITE,” Geophys. Res. Lett. 25, 3351–3354 (1998).
    [Crossref]
  3. C. M. R. Platt, D. M. Winker, M. A. Vaughan, S. D. Miller, “Backscatter-to-extinction ratios in the top layers of tropical mesoscale convective systems and in isolated cirrus from LITE observations,” J. Appl. Meteorol. 38, 1330–1345 (1999).
    [Crossref]
  4. K. A. Powell, C. R. Trepte, G. S. Kent, “Observation of Saharan dust by LITE,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1997), pp. 149–152.
    [Crossref]
  5. W. B. Grant, E. V. Browell, C. F. Butler, G. D. Nowicki, “LITE measurements of biomass burning aerosols and comparisons with correlative airborne lidar measurements of multiple scattering in the planetary boundary layer,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1997), pp. 153–156.
    [Crossref]
  6. R. M. Hoff, K. B. Strawbridge, “LITE observations of anthropogenically produced aerosols,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1997), pp. 145–148.
    [Crossref]
  7. M.-L. Chanin, A. Hauchecorne, C. Malique, M. Desbois, G. Tulinov, V. Melnikov, “The ALISSA lidar on board the MIR platform,” in Advances in Laser Remote Sensing, A. Dabas, C. Loth, J. Pelon, eds. (Edition de l’Ecole Polytechnique, Palaiseau, France, 2001), pp. 23–26.
  8. D. M. Winker, J. Pelon, M. P. McCormick, “PICASSO-CENA: aerosol and cloud observations from combined lidar and passive instruments,” in Advances in Laser Remote Sensing, A. Dabas, C. Loth, J. Pelon, eds. (Edition de l’Ecole Polytechnique, Palaiseau, France, 2001), pp. 39–42.
  9. R. Frehlich, “Simulation of coherent Doppler lidar performance for space-based platforms,” J. Appl. Meteorol. 39, 245–262 (2000).
    [Crossref]
  10. J. P. V. Poiares Baptista, W. Leibrandt, “Reports for assessment—the five candidate earth explorer core missions: Earth CARE—Earth clouds, aerosols, and radiation explorer, (European Space Agency, Noordwijk, The Netherlands, 2001).
  11. P. Ingmann, J. Fuchs, R. Meynart, A. Culoma, “ESA’s Earth Explorer Cor Mission: the atmospheric dynamics mission and ideas for future missions embarking lidars,” in Advances in Laser Remote Sensing, A. Dabas, C. Loth, J. Pelon, eds. (Edition de l’Ecole Polytechnique, Palaiseau, France, 2001), pp. 7–10.
  12. K. Asai, Y. Sasano, N. Sugimoto, O. Uchino, T. Itabe, K. Mizutani, Y. Kawamura, M. Ishizu, T. Imai, K. Terada, N. Saki, “Planned/proposed spaceborne lidar programs in Japan,” in Advances in Laser Remote Sensing, A. Dabas, C. Loth, J. Pelon, eds. (Edition de l’Ecole Polytechnique, Palaiseau, France, 2001), pp. 11–14.
  13. D. Morançais, F. Fabre, P. Berlioz, R. Maurer, A. Culoma, “Spaceborne wind lidar concept for the Atmospheric Dynamics Mission (ALADIN),” in Advances in Laser Remote Sensing, A. Dabas, C. Loth, J. Pelon, eds. (Edition de l’Ecole Polytechnique, Palaiseau, France, 2001), pp. 15–18.
  14. M. P. McCormick, “A bright future for spaceborne lidars,” in Advances in Laser Remote Sensing, A. Dabas, C. Loth, J. Pelon, eds. (Edition de l’Ecole Polytechnique, Palaiseau, France, 2001), pp. 3–6.
  15. J. D. Spinhirne, “Lidar clear atmosphere multiple scattering dependence on receiver range,” Appl. Opt. 21, 2467–2468 (1982).
    [Crossref] [PubMed]
  16. M. Wiegner, “Relevance of multiple scattering for spaceborne lidar returns,” in Lidar Techniques for Remote Sensing II, C. Werner, ed., Proc. SPIE2581, 137–144 (1995).
    [Crossref]
  17. D. M. Winker, L. R. Poole, “Monte-Carlo calculations of cloud returns for ground-based and space-based lidar,” Appl. Phys. B 60, 341–344 (1995).
    [Crossref]
  18. H. Chepfer, J. Pelon, G. Brogniez, C. Flamant, V. Trouillet, P. H. Flamant, “Impact of cirrus cloud ice crystal shape and size on multiple scattering effects: application to spaceborne and airborne backscatter lidar measurements during LITE mission and E-LITE campaign,” Geophys. Res. Lett. 26, 2203–2206 (1999).
    [Crossref]
  19. Y. S. Balin, S. V. Samoilova, M. M. Krekova, D. M. Winker, “Retrieval of cloud optical parameters from space-based backscatter lidar data,” Appl. Opt. 38, 6365–6373 (1999).
    [Crossref]
  20. P. Völger, Z. Liu, N. Sugimoto, “Multiple scattering simulations for the Japanese space lidar project ELISE,” IEEE Trans. Geosci. Remote Sensing 40, 550–559 (2002).
    [Crossref]
  21. Y.-X. Hu, D. Winker, P. Yang, B. Baum, L. Poole, L. Vann, “Identification of cloud phase from PICASSO-CENA lidar depolarization: a multiple scattering sensitivity study,” J. Quant. Spectrosc. Radiat. Transfer 70, 569–579 (2001).
    [Crossref]
  22. S. Reichardt, J. Reichardt, “Effect of multiple scattering on depolarization measurements with spaceborne lidars,” Appl. Opt. 42, 3620–3633 (2003).
    [Crossref] [PubMed]
  23. Y.-X. Hu, P. Yang, B. Lin, G. Gibson, C. Hostetler, “Discimination between spherical and non-spherical scatterers with lidar using circular polarization: a theoretical study,” J. Quant. Spectrosc. Radiat. Transfer 79–80, 757–764 (2003).
    [Crossref]
  24. S. R. Pal, L. R. Bissonnette, “Multiple-scattering effect on ozone retrieval from space-based differential absorption lidar measurements,” Appl. Opt. 37, 6500–6510 (1998).
    [Crossref]
  25. P. Chazette, J. Pelon, G. Megie, “Determination by spaceborne backscatter lidar of the structural parameters of atmospheric scattering layers,” Appl. Opt. 40, 3428–3440 (2001).
    [Crossref]
  26. V. Noel, H. Chepfer, G. Ledanois, A. Delaval, P. H. Flamant, “Classification of particle shape ratios in cirrus clouds based on the lidar deploarization ratio,” Appl. Opt. 41, 4245–4257 (2002).
    [Crossref] [PubMed]
  27. S. A. Young, “Analysis of lidar backscatter profiles in optically thin clouds,” Appl. Opt. 34, 7019–7031 (1995).
    [Crossref] [PubMed]
  28. G. H. Ruppersberg, M. Kerscher, M. Noormohammadian, U. G. Oppel, W. Renger, “The influence of multiple scattering on lidar returns by cirrus clouds and an effective inversion algorithm for the extinction coefficient,” Contrib. Atmos. Phys. 70, 91–107 (1997).
  29. S. D. Miller, G. L. Stephens, “Multiple scattering effects in the lidar pulse stretching problem,” J. Geophys. Res. D104, 22205–22219 (1999).
    [Crossref]
  30. K. E. Kunkel, J. A. Weinman, “Monte Carlo analysis of multiply scattered lidar returns,” J. Atmos. Sci. 33, 1772–1780 (1976).
    [Crossref]
  31. F. G. Fernald, “Analysis of atmospheric observations: some comments,” Appl. Opt. 23, 652–653 (1984).
    [Crossref]
  32. J. D. Klett, “Lidar inversion with variable backscatter/extinction ratios,” Appl. Opt. 24, 1638–1643 (1985).
    [Crossref] [PubMed]
  33. A. V. Starkov, M. Noormohammadian, U. G. Oppel, “A stochastic model and a variance-reduction. Monte-Carlo method for the calculation of light transport,” Appl. Phys. B 60, 335–340 (1995).
    [Crossref]
  34. M. Kerscher, W. Krichbaumer, U. G. Oppel, M. Noormohammadian, “Polarized multiply scattered lidar returns,” Opt. Rev. 2, 304–307 (1995).
    [Crossref]
  35. A. Heymsfield, C. M. R. Platt, “A parameterization of the particle size spectrum of ice clouds in terms of the ambient temperature and ice water content,” J. Atmos. Sci. 41, 846–855 (1984).
    [Crossref]
  36. M. Hess, R. B. A. Koelemeijer, P. Stammes, “Scattering matrices of imperfect hexagonal ice crystals,” J. Quant. Spectrosc. Radiat. Transfer 60, 301–308 (1998).
    [Crossref]
  37. M. Hess, P. Koepke, I. Schult, “Optical properties of aerosols and clouds: the software package OPAC,” Bull. Am. Meteorol. Soc. 79, 831–844 (1998).
    [Crossref]
  38. D. Deirmendjian, Electromagnetic Scattering on Spherical Polydispersions (Elsevier, New York, 1969).
  39. P. B. Russell, T. J. Swissler, M. P. McCormick, “Methodology for error analysis and simulation of lidar aerosol measurements,” Appl. Opt. 18, 3783–3797 (1979)
    [PubMed]
  40. L. R. Bissonnette, “Sensitivity analysis of lidar inversion algorithms,” Appl. Opt. 25, 2122–2125 (1986).
    [Crossref] [PubMed]
  41. Y. Sasano, E. V. Browell, S. Ismael, “Error caused by using a constant extinction/backscattering ratio in the lidar solution,” Appl. Opt. 24, 3929–3932 (1985).
    [Crossref] [PubMed]
  42. Z. Liu, P. Voelger, N. Sugimoto, “Simulations of the observation of clouds and aerosols with the Experimental Lidar in Space Equipment System,” Appl. Opt. 39, 3120–3137 (2000).
    [Crossref]

2003 (2)

S. Reichardt, J. Reichardt, “Effect of multiple scattering on depolarization measurements with spaceborne lidars,” Appl. Opt. 42, 3620–3633 (2003).
[Crossref] [PubMed]

Y.-X. Hu, P. Yang, B. Lin, G. Gibson, C. Hostetler, “Discimination between spherical and non-spherical scatterers with lidar using circular polarization: a theoretical study,” J. Quant. Spectrosc. Radiat. Transfer 79–80, 757–764 (2003).
[Crossref]

2002 (2)

P. Völger, Z. Liu, N. Sugimoto, “Multiple scattering simulations for the Japanese space lidar project ELISE,” IEEE Trans. Geosci. Remote Sensing 40, 550–559 (2002).
[Crossref]

V. Noel, H. Chepfer, G. Ledanois, A. Delaval, P. H. Flamant, “Classification of particle shape ratios in cirrus clouds based on the lidar deploarization ratio,” Appl. Opt. 41, 4245–4257 (2002).
[Crossref] [PubMed]

2001 (2)

P. Chazette, J. Pelon, G. Megie, “Determination by spaceborne backscatter lidar of the structural parameters of atmospheric scattering layers,” Appl. Opt. 40, 3428–3440 (2001).
[Crossref]

Y.-X. Hu, D. Winker, P. Yang, B. Baum, L. Poole, L. Vann, “Identification of cloud phase from PICASSO-CENA lidar depolarization: a multiple scattering sensitivity study,” J. Quant. Spectrosc. Radiat. Transfer 70, 569–579 (2001).
[Crossref]

2000 (2)

R. Frehlich, “Simulation of coherent Doppler lidar performance for space-based platforms,” J. Appl. Meteorol. 39, 245–262 (2000).
[Crossref]

Z. Liu, P. Voelger, N. Sugimoto, “Simulations of the observation of clouds and aerosols with the Experimental Lidar in Space Equipment System,” Appl. Opt. 39, 3120–3137 (2000).
[Crossref]

1999 (4)

S. D. Miller, G. L. Stephens, “Multiple scattering effects in the lidar pulse stretching problem,” J. Geophys. Res. D104, 22205–22219 (1999).
[Crossref]

C. M. R. Platt, D. M. Winker, M. A. Vaughan, S. D. Miller, “Backscatter-to-extinction ratios in the top layers of tropical mesoscale convective systems and in isolated cirrus from LITE observations,” J. Appl. Meteorol. 38, 1330–1345 (1999).
[Crossref]

H. Chepfer, J. Pelon, G. Brogniez, C. Flamant, V. Trouillet, P. H. Flamant, “Impact of cirrus cloud ice crystal shape and size on multiple scattering effects: application to spaceborne and airborne backscatter lidar measurements during LITE mission and E-LITE campaign,” Geophys. Res. Lett. 26, 2203–2206 (1999).
[Crossref]

Y. S. Balin, S. V. Samoilova, M. M. Krekova, D. M. Winker, “Retrieval of cloud optical parameters from space-based backscatter lidar data,” Appl. Opt. 38, 6365–6373 (1999).
[Crossref]

1998 (4)

D. M. Winker, C. R. Trepte, “Laminar cirrus observed near the tropical tropopause by LITE,” Geophys. Res. Lett. 25, 3351–3354 (1998).
[Crossref]

S. R. Pal, L. R. Bissonnette, “Multiple-scattering effect on ozone retrieval from space-based differential absorption lidar measurements,” Appl. Opt. 37, 6500–6510 (1998).
[Crossref]

M. Hess, R. B. A. Koelemeijer, P. Stammes, “Scattering matrices of imperfect hexagonal ice crystals,” J. Quant. Spectrosc. Radiat. Transfer 60, 301–308 (1998).
[Crossref]

M. Hess, P. Koepke, I. Schult, “Optical properties of aerosols and clouds: the software package OPAC,” Bull. Am. Meteorol. Soc. 79, 831–844 (1998).
[Crossref]

1997 (1)

G. H. Ruppersberg, M. Kerscher, M. Noormohammadian, U. G. Oppel, W. Renger, “The influence of multiple scattering on lidar returns by cirrus clouds and an effective inversion algorithm for the extinction coefficient,” Contrib. Atmos. Phys. 70, 91–107 (1997).

1996 (1)

D. M. Winker, R. H. Couch, M. P. McCormick, “An overview of LITE: NASA’s Lidar In-space Technology Experiment,” Proc. IEEE 84, 164–180 (1996).
[Crossref]

1995 (4)

D. M. Winker, L. R. Poole, “Monte-Carlo calculations of cloud returns for ground-based and space-based lidar,” Appl. Phys. B 60, 341–344 (1995).
[Crossref]

S. A. Young, “Analysis of lidar backscatter profiles in optically thin clouds,” Appl. Opt. 34, 7019–7031 (1995).
[Crossref] [PubMed]

A. V. Starkov, M. Noormohammadian, U. G. Oppel, “A stochastic model and a variance-reduction. Monte-Carlo method for the calculation of light transport,” Appl. Phys. B 60, 335–340 (1995).
[Crossref]

M. Kerscher, W. Krichbaumer, U. G. Oppel, M. Noormohammadian, “Polarized multiply scattered lidar returns,” Opt. Rev. 2, 304–307 (1995).
[Crossref]

1986 (1)

1985 (2)

1984 (2)

F. G. Fernald, “Analysis of atmospheric observations: some comments,” Appl. Opt. 23, 652–653 (1984).
[Crossref]

A. Heymsfield, C. M. R. Platt, “A parameterization of the particle size spectrum of ice clouds in terms of the ambient temperature and ice water content,” J. Atmos. Sci. 41, 846–855 (1984).
[Crossref]

1982 (1)

1979 (1)

1976 (1)

K. E. Kunkel, J. A. Weinman, “Monte Carlo analysis of multiply scattered lidar returns,” J. Atmos. Sci. 33, 1772–1780 (1976).
[Crossref]

Asai, K.

K. Asai, Y. Sasano, N. Sugimoto, O. Uchino, T. Itabe, K. Mizutani, Y. Kawamura, M. Ishizu, T. Imai, K. Terada, N. Saki, “Planned/proposed spaceborne lidar programs in Japan,” in Advances in Laser Remote Sensing, A. Dabas, C. Loth, J. Pelon, eds. (Edition de l’Ecole Polytechnique, Palaiseau, France, 2001), pp. 11–14.

Balin, Y. S.

Baum, B.

Y.-X. Hu, D. Winker, P. Yang, B. Baum, L. Poole, L. Vann, “Identification of cloud phase from PICASSO-CENA lidar depolarization: a multiple scattering sensitivity study,” J. Quant. Spectrosc. Radiat. Transfer 70, 569–579 (2001).
[Crossref]

Berlioz, P.

D. Morançais, F. Fabre, P. Berlioz, R. Maurer, A. Culoma, “Spaceborne wind lidar concept for the Atmospheric Dynamics Mission (ALADIN),” in Advances in Laser Remote Sensing, A. Dabas, C. Loth, J. Pelon, eds. (Edition de l’Ecole Polytechnique, Palaiseau, France, 2001), pp. 15–18.

Bissonnette, L. R.

Brogniez, G.

H. Chepfer, J. Pelon, G. Brogniez, C. Flamant, V. Trouillet, P. H. Flamant, “Impact of cirrus cloud ice crystal shape and size on multiple scattering effects: application to spaceborne and airborne backscatter lidar measurements during LITE mission and E-LITE campaign,” Geophys. Res. Lett. 26, 2203–2206 (1999).
[Crossref]

Browell, E. V.

Y. Sasano, E. V. Browell, S. Ismael, “Error caused by using a constant extinction/backscattering ratio in the lidar solution,” Appl. Opt. 24, 3929–3932 (1985).
[Crossref] [PubMed]

W. B. Grant, E. V. Browell, C. F. Butler, G. D. Nowicki, “LITE measurements of biomass burning aerosols and comparisons with correlative airborne lidar measurements of multiple scattering in the planetary boundary layer,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1997), pp. 153–156.
[Crossref]

Butler, C. F.

W. B. Grant, E. V. Browell, C. F. Butler, G. D. Nowicki, “LITE measurements of biomass burning aerosols and comparisons with correlative airborne lidar measurements of multiple scattering in the planetary boundary layer,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1997), pp. 153–156.
[Crossref]

Chanin, M.-L.

M.-L. Chanin, A. Hauchecorne, C. Malique, M. Desbois, G. Tulinov, V. Melnikov, “The ALISSA lidar on board the MIR platform,” in Advances in Laser Remote Sensing, A. Dabas, C. Loth, J. Pelon, eds. (Edition de l’Ecole Polytechnique, Palaiseau, France, 2001), pp. 23–26.

Chazette, P.

Chepfer, H.

V. Noel, H. Chepfer, G. Ledanois, A. Delaval, P. H. Flamant, “Classification of particle shape ratios in cirrus clouds based on the lidar deploarization ratio,” Appl. Opt. 41, 4245–4257 (2002).
[Crossref] [PubMed]

H. Chepfer, J. Pelon, G. Brogniez, C. Flamant, V. Trouillet, P. H. Flamant, “Impact of cirrus cloud ice crystal shape and size on multiple scattering effects: application to spaceborne and airborne backscatter lidar measurements during LITE mission and E-LITE campaign,” Geophys. Res. Lett. 26, 2203–2206 (1999).
[Crossref]

Couch, R. H.

D. M. Winker, R. H. Couch, M. P. McCormick, “An overview of LITE: NASA’s Lidar In-space Technology Experiment,” Proc. IEEE 84, 164–180 (1996).
[Crossref]

Culoma, A.

D. Morançais, F. Fabre, P. Berlioz, R. Maurer, A. Culoma, “Spaceborne wind lidar concept for the Atmospheric Dynamics Mission (ALADIN),” in Advances in Laser Remote Sensing, A. Dabas, C. Loth, J. Pelon, eds. (Edition de l’Ecole Polytechnique, Palaiseau, France, 2001), pp. 15–18.

P. Ingmann, J. Fuchs, R. Meynart, A. Culoma, “ESA’s Earth Explorer Cor Mission: the atmospheric dynamics mission and ideas for future missions embarking lidars,” in Advances in Laser Remote Sensing, A. Dabas, C. Loth, J. Pelon, eds. (Edition de l’Ecole Polytechnique, Palaiseau, France, 2001), pp. 7–10.

Deirmendjian, D.

D. Deirmendjian, Electromagnetic Scattering on Spherical Polydispersions (Elsevier, New York, 1969).

Delaval, A.

Desbois, M.

M.-L. Chanin, A. Hauchecorne, C. Malique, M. Desbois, G. Tulinov, V. Melnikov, “The ALISSA lidar on board the MIR platform,” in Advances in Laser Remote Sensing, A. Dabas, C. Loth, J. Pelon, eds. (Edition de l’Ecole Polytechnique, Palaiseau, France, 2001), pp. 23–26.

Fabre, F.

D. Morançais, F. Fabre, P. Berlioz, R. Maurer, A. Culoma, “Spaceborne wind lidar concept for the Atmospheric Dynamics Mission (ALADIN),” in Advances in Laser Remote Sensing, A. Dabas, C. Loth, J. Pelon, eds. (Edition de l’Ecole Polytechnique, Palaiseau, France, 2001), pp. 15–18.

Fernald, F. G.

Flamant, C.

H. Chepfer, J. Pelon, G. Brogniez, C. Flamant, V. Trouillet, P. H. Flamant, “Impact of cirrus cloud ice crystal shape and size on multiple scattering effects: application to spaceborne and airborne backscatter lidar measurements during LITE mission and E-LITE campaign,” Geophys. Res. Lett. 26, 2203–2206 (1999).
[Crossref]

Flamant, P. H.

V. Noel, H. Chepfer, G. Ledanois, A. Delaval, P. H. Flamant, “Classification of particle shape ratios in cirrus clouds based on the lidar deploarization ratio,” Appl. Opt. 41, 4245–4257 (2002).
[Crossref] [PubMed]

H. Chepfer, J. Pelon, G. Brogniez, C. Flamant, V. Trouillet, P. H. Flamant, “Impact of cirrus cloud ice crystal shape and size on multiple scattering effects: application to spaceborne and airborne backscatter lidar measurements during LITE mission and E-LITE campaign,” Geophys. Res. Lett. 26, 2203–2206 (1999).
[Crossref]

Frehlich, R.

R. Frehlich, “Simulation of coherent Doppler lidar performance for space-based platforms,” J. Appl. Meteorol. 39, 245–262 (2000).
[Crossref]

Fuchs, J.

P. Ingmann, J. Fuchs, R. Meynart, A. Culoma, “ESA’s Earth Explorer Cor Mission: the atmospheric dynamics mission and ideas for future missions embarking lidars,” in Advances in Laser Remote Sensing, A. Dabas, C. Loth, J. Pelon, eds. (Edition de l’Ecole Polytechnique, Palaiseau, France, 2001), pp. 7–10.

Gibson, G.

Y.-X. Hu, P. Yang, B. Lin, G. Gibson, C. Hostetler, “Discimination between spherical and non-spherical scatterers with lidar using circular polarization: a theoretical study,” J. Quant. Spectrosc. Radiat. Transfer 79–80, 757–764 (2003).
[Crossref]

Grant, W. B.

W. B. Grant, E. V. Browell, C. F. Butler, G. D. Nowicki, “LITE measurements of biomass burning aerosols and comparisons with correlative airborne lidar measurements of multiple scattering in the planetary boundary layer,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1997), pp. 153–156.
[Crossref]

Hauchecorne, A.

M.-L. Chanin, A. Hauchecorne, C. Malique, M. Desbois, G. Tulinov, V. Melnikov, “The ALISSA lidar on board the MIR platform,” in Advances in Laser Remote Sensing, A. Dabas, C. Loth, J. Pelon, eds. (Edition de l’Ecole Polytechnique, Palaiseau, France, 2001), pp. 23–26.

Hess, M.

M. Hess, P. Koepke, I. Schult, “Optical properties of aerosols and clouds: the software package OPAC,” Bull. Am. Meteorol. Soc. 79, 831–844 (1998).
[Crossref]

M. Hess, R. B. A. Koelemeijer, P. Stammes, “Scattering matrices of imperfect hexagonal ice crystals,” J. Quant. Spectrosc. Radiat. Transfer 60, 301–308 (1998).
[Crossref]

Heymsfield, A.

A. Heymsfield, C. M. R. Platt, “A parameterization of the particle size spectrum of ice clouds in terms of the ambient temperature and ice water content,” J. Atmos. Sci. 41, 846–855 (1984).
[Crossref]

Hoff, R. M.

R. M. Hoff, K. B. Strawbridge, “LITE observations of anthropogenically produced aerosols,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1997), pp. 145–148.
[Crossref]

Hostetler, C.

Y.-X. Hu, P. Yang, B. Lin, G. Gibson, C. Hostetler, “Discimination between spherical and non-spherical scatterers with lidar using circular polarization: a theoretical study,” J. Quant. Spectrosc. Radiat. Transfer 79–80, 757–764 (2003).
[Crossref]

Hu, Y.-X.

Y.-X. Hu, P. Yang, B. Lin, G. Gibson, C. Hostetler, “Discimination between spherical and non-spherical scatterers with lidar using circular polarization: a theoretical study,” J. Quant. Spectrosc. Radiat. Transfer 79–80, 757–764 (2003).
[Crossref]

Y.-X. Hu, D. Winker, P. Yang, B. Baum, L. Poole, L. Vann, “Identification of cloud phase from PICASSO-CENA lidar depolarization: a multiple scattering sensitivity study,” J. Quant. Spectrosc. Radiat. Transfer 70, 569–579 (2001).
[Crossref]

Imai, T.

K. Asai, Y. Sasano, N. Sugimoto, O. Uchino, T. Itabe, K. Mizutani, Y. Kawamura, M. Ishizu, T. Imai, K. Terada, N. Saki, “Planned/proposed spaceborne lidar programs in Japan,” in Advances in Laser Remote Sensing, A. Dabas, C. Loth, J. Pelon, eds. (Edition de l’Ecole Polytechnique, Palaiseau, France, 2001), pp. 11–14.

Ingmann, P.

P. Ingmann, J. Fuchs, R. Meynart, A. Culoma, “ESA’s Earth Explorer Cor Mission: the atmospheric dynamics mission and ideas for future missions embarking lidars,” in Advances in Laser Remote Sensing, A. Dabas, C. Loth, J. Pelon, eds. (Edition de l’Ecole Polytechnique, Palaiseau, France, 2001), pp. 7–10.

Ishizu, M.

K. Asai, Y. Sasano, N. Sugimoto, O. Uchino, T. Itabe, K. Mizutani, Y. Kawamura, M. Ishizu, T. Imai, K. Terada, N. Saki, “Planned/proposed spaceborne lidar programs in Japan,” in Advances in Laser Remote Sensing, A. Dabas, C. Loth, J. Pelon, eds. (Edition de l’Ecole Polytechnique, Palaiseau, France, 2001), pp. 11–14.

Ismael, S.

Itabe, T.

K. Asai, Y. Sasano, N. Sugimoto, O. Uchino, T. Itabe, K. Mizutani, Y. Kawamura, M. Ishizu, T. Imai, K. Terada, N. Saki, “Planned/proposed spaceborne lidar programs in Japan,” in Advances in Laser Remote Sensing, A. Dabas, C. Loth, J. Pelon, eds. (Edition de l’Ecole Polytechnique, Palaiseau, France, 2001), pp. 11–14.

Kawamura, Y.

K. Asai, Y. Sasano, N. Sugimoto, O. Uchino, T. Itabe, K. Mizutani, Y. Kawamura, M. Ishizu, T. Imai, K. Terada, N. Saki, “Planned/proposed spaceborne lidar programs in Japan,” in Advances in Laser Remote Sensing, A. Dabas, C. Loth, J. Pelon, eds. (Edition de l’Ecole Polytechnique, Palaiseau, France, 2001), pp. 11–14.

Kent, G. S.

K. A. Powell, C. R. Trepte, G. S. Kent, “Observation of Saharan dust by LITE,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1997), pp. 149–152.
[Crossref]

Kerscher, M.

G. H. Ruppersberg, M. Kerscher, M. Noormohammadian, U. G. Oppel, W. Renger, “The influence of multiple scattering on lidar returns by cirrus clouds and an effective inversion algorithm for the extinction coefficient,” Contrib. Atmos. Phys. 70, 91–107 (1997).

M. Kerscher, W. Krichbaumer, U. G. Oppel, M. Noormohammadian, “Polarized multiply scattered lidar returns,” Opt. Rev. 2, 304–307 (1995).
[Crossref]

Klett, J. D.

Koelemeijer, R. B. A.

M. Hess, R. B. A. Koelemeijer, P. Stammes, “Scattering matrices of imperfect hexagonal ice crystals,” J. Quant. Spectrosc. Radiat. Transfer 60, 301–308 (1998).
[Crossref]

Koepke, P.

M. Hess, P. Koepke, I. Schult, “Optical properties of aerosols and clouds: the software package OPAC,” Bull. Am. Meteorol. Soc. 79, 831–844 (1998).
[Crossref]

Krekova, M. M.

Krichbaumer, W.

M. Kerscher, W. Krichbaumer, U. G. Oppel, M. Noormohammadian, “Polarized multiply scattered lidar returns,” Opt. Rev. 2, 304–307 (1995).
[Crossref]

Kunkel, K. E.

K. E. Kunkel, J. A. Weinman, “Monte Carlo analysis of multiply scattered lidar returns,” J. Atmos. Sci. 33, 1772–1780 (1976).
[Crossref]

Ledanois, G.

Leibrandt, W.

J. P. V. Poiares Baptista, W. Leibrandt, “Reports for assessment—the five candidate earth explorer core missions: Earth CARE—Earth clouds, aerosols, and radiation explorer, (European Space Agency, Noordwijk, The Netherlands, 2001).

Lin, B.

Y.-X. Hu, P. Yang, B. Lin, G. Gibson, C. Hostetler, “Discimination between spherical and non-spherical scatterers with lidar using circular polarization: a theoretical study,” J. Quant. Spectrosc. Radiat. Transfer 79–80, 757–764 (2003).
[Crossref]

Liu, Z.

P. Völger, Z. Liu, N. Sugimoto, “Multiple scattering simulations for the Japanese space lidar project ELISE,” IEEE Trans. Geosci. Remote Sensing 40, 550–559 (2002).
[Crossref]

Z. Liu, P. Voelger, N. Sugimoto, “Simulations of the observation of clouds and aerosols with the Experimental Lidar in Space Equipment System,” Appl. Opt. 39, 3120–3137 (2000).
[Crossref]

Malique, C.

M.-L. Chanin, A. Hauchecorne, C. Malique, M. Desbois, G. Tulinov, V. Melnikov, “The ALISSA lidar on board the MIR platform,” in Advances in Laser Remote Sensing, A. Dabas, C. Loth, J. Pelon, eds. (Edition de l’Ecole Polytechnique, Palaiseau, France, 2001), pp. 23–26.

Maurer, R.

D. Morançais, F. Fabre, P. Berlioz, R. Maurer, A. Culoma, “Spaceborne wind lidar concept for the Atmospheric Dynamics Mission (ALADIN),” in Advances in Laser Remote Sensing, A. Dabas, C. Loth, J. Pelon, eds. (Edition de l’Ecole Polytechnique, Palaiseau, France, 2001), pp. 15–18.

McCormick, M. P.

D. M. Winker, R. H. Couch, M. P. McCormick, “An overview of LITE: NASA’s Lidar In-space Technology Experiment,” Proc. IEEE 84, 164–180 (1996).
[Crossref]

P. B. Russell, T. J. Swissler, M. P. McCormick, “Methodology for error analysis and simulation of lidar aerosol measurements,” Appl. Opt. 18, 3783–3797 (1979)
[PubMed]

D. M. Winker, J. Pelon, M. P. McCormick, “PICASSO-CENA: aerosol and cloud observations from combined lidar and passive instruments,” in Advances in Laser Remote Sensing, A. Dabas, C. Loth, J. Pelon, eds. (Edition de l’Ecole Polytechnique, Palaiseau, France, 2001), pp. 39–42.

M. P. McCormick, “A bright future for spaceborne lidars,” in Advances in Laser Remote Sensing, A. Dabas, C. Loth, J. Pelon, eds. (Edition de l’Ecole Polytechnique, Palaiseau, France, 2001), pp. 3–6.

Megie, G.

Melnikov, V.

M.-L. Chanin, A. Hauchecorne, C. Malique, M. Desbois, G. Tulinov, V. Melnikov, “The ALISSA lidar on board the MIR platform,” in Advances in Laser Remote Sensing, A. Dabas, C. Loth, J. Pelon, eds. (Edition de l’Ecole Polytechnique, Palaiseau, France, 2001), pp. 23–26.

Meynart, R.

P. Ingmann, J. Fuchs, R. Meynart, A. Culoma, “ESA’s Earth Explorer Cor Mission: the atmospheric dynamics mission and ideas for future missions embarking lidars,” in Advances in Laser Remote Sensing, A. Dabas, C. Loth, J. Pelon, eds. (Edition de l’Ecole Polytechnique, Palaiseau, France, 2001), pp. 7–10.

Miller, S. D.

C. M. R. Platt, D. M. Winker, M. A. Vaughan, S. D. Miller, “Backscatter-to-extinction ratios in the top layers of tropical mesoscale convective systems and in isolated cirrus from LITE observations,” J. Appl. Meteorol. 38, 1330–1345 (1999).
[Crossref]

S. D. Miller, G. L. Stephens, “Multiple scattering effects in the lidar pulse stretching problem,” J. Geophys. Res. D104, 22205–22219 (1999).
[Crossref]

Mizutani, K.

K. Asai, Y. Sasano, N. Sugimoto, O. Uchino, T. Itabe, K. Mizutani, Y. Kawamura, M. Ishizu, T. Imai, K. Terada, N. Saki, “Planned/proposed spaceborne lidar programs in Japan,” in Advances in Laser Remote Sensing, A. Dabas, C. Loth, J. Pelon, eds. (Edition de l’Ecole Polytechnique, Palaiseau, France, 2001), pp. 11–14.

Morançais, D.

D. Morançais, F. Fabre, P. Berlioz, R. Maurer, A. Culoma, “Spaceborne wind lidar concept for the Atmospheric Dynamics Mission (ALADIN),” in Advances in Laser Remote Sensing, A. Dabas, C. Loth, J. Pelon, eds. (Edition de l’Ecole Polytechnique, Palaiseau, France, 2001), pp. 15–18.

Noel, V.

Noormohammadian, M.

G. H. Ruppersberg, M. Kerscher, M. Noormohammadian, U. G. Oppel, W. Renger, “The influence of multiple scattering on lidar returns by cirrus clouds and an effective inversion algorithm for the extinction coefficient,” Contrib. Atmos. Phys. 70, 91–107 (1997).

A. V. Starkov, M. Noormohammadian, U. G. Oppel, “A stochastic model and a variance-reduction. Monte-Carlo method for the calculation of light transport,” Appl. Phys. B 60, 335–340 (1995).
[Crossref]

M. Kerscher, W. Krichbaumer, U. G. Oppel, M. Noormohammadian, “Polarized multiply scattered lidar returns,” Opt. Rev. 2, 304–307 (1995).
[Crossref]

Nowicki, G. D.

W. B. Grant, E. V. Browell, C. F. Butler, G. D. Nowicki, “LITE measurements of biomass burning aerosols and comparisons with correlative airborne lidar measurements of multiple scattering in the planetary boundary layer,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1997), pp. 153–156.
[Crossref]

Oppel, U. G.

G. H. Ruppersberg, M. Kerscher, M. Noormohammadian, U. G. Oppel, W. Renger, “The influence of multiple scattering on lidar returns by cirrus clouds and an effective inversion algorithm for the extinction coefficient,” Contrib. Atmos. Phys. 70, 91–107 (1997).

A. V. Starkov, M. Noormohammadian, U. G. Oppel, “A stochastic model and a variance-reduction. Monte-Carlo method for the calculation of light transport,” Appl. Phys. B 60, 335–340 (1995).
[Crossref]

M. Kerscher, W. Krichbaumer, U. G. Oppel, M. Noormohammadian, “Polarized multiply scattered lidar returns,” Opt. Rev. 2, 304–307 (1995).
[Crossref]

Pal, S. R.

Pelon, J.

P. Chazette, J. Pelon, G. Megie, “Determination by spaceborne backscatter lidar of the structural parameters of atmospheric scattering layers,” Appl. Opt. 40, 3428–3440 (2001).
[Crossref]

H. Chepfer, J. Pelon, G. Brogniez, C. Flamant, V. Trouillet, P. H. Flamant, “Impact of cirrus cloud ice crystal shape and size on multiple scattering effects: application to spaceborne and airborne backscatter lidar measurements during LITE mission and E-LITE campaign,” Geophys. Res. Lett. 26, 2203–2206 (1999).
[Crossref]

D. M. Winker, J. Pelon, M. P. McCormick, “PICASSO-CENA: aerosol and cloud observations from combined lidar and passive instruments,” in Advances in Laser Remote Sensing, A. Dabas, C. Loth, J. Pelon, eds. (Edition de l’Ecole Polytechnique, Palaiseau, France, 2001), pp. 39–42.

Platt, C. M. R.

C. M. R. Platt, D. M. Winker, M. A. Vaughan, S. D. Miller, “Backscatter-to-extinction ratios in the top layers of tropical mesoscale convective systems and in isolated cirrus from LITE observations,” J. Appl. Meteorol. 38, 1330–1345 (1999).
[Crossref]

A. Heymsfield, C. M. R. Platt, “A parameterization of the particle size spectrum of ice clouds in terms of the ambient temperature and ice water content,” J. Atmos. Sci. 41, 846–855 (1984).
[Crossref]

Poiares Baptista, J. P. V.

J. P. V. Poiares Baptista, W. Leibrandt, “Reports for assessment—the five candidate earth explorer core missions: Earth CARE—Earth clouds, aerosols, and radiation explorer, (European Space Agency, Noordwijk, The Netherlands, 2001).

Poole, L.

Y.-X. Hu, D. Winker, P. Yang, B. Baum, L. Poole, L. Vann, “Identification of cloud phase from PICASSO-CENA lidar depolarization: a multiple scattering sensitivity study,” J. Quant. Spectrosc. Radiat. Transfer 70, 569–579 (2001).
[Crossref]

Poole, L. R.

D. M. Winker, L. R. Poole, “Monte-Carlo calculations of cloud returns for ground-based and space-based lidar,” Appl. Phys. B 60, 341–344 (1995).
[Crossref]

Powell, K. A.

K. A. Powell, C. R. Trepte, G. S. Kent, “Observation of Saharan dust by LITE,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1997), pp. 149–152.
[Crossref]

Reichardt, J.

Reichardt, S.

Renger, W.

G. H. Ruppersberg, M. Kerscher, M. Noormohammadian, U. G. Oppel, W. Renger, “The influence of multiple scattering on lidar returns by cirrus clouds and an effective inversion algorithm for the extinction coefficient,” Contrib. Atmos. Phys. 70, 91–107 (1997).

Ruppersberg, G. H.

G. H. Ruppersberg, M. Kerscher, M. Noormohammadian, U. G. Oppel, W. Renger, “The influence of multiple scattering on lidar returns by cirrus clouds and an effective inversion algorithm for the extinction coefficient,” Contrib. Atmos. Phys. 70, 91–107 (1997).

Russell, P. B.

Saki, N.

K. Asai, Y. Sasano, N. Sugimoto, O. Uchino, T. Itabe, K. Mizutani, Y. Kawamura, M. Ishizu, T. Imai, K. Terada, N. Saki, “Planned/proposed spaceborne lidar programs in Japan,” in Advances in Laser Remote Sensing, A. Dabas, C. Loth, J. Pelon, eds. (Edition de l’Ecole Polytechnique, Palaiseau, France, 2001), pp. 11–14.

Samoilova, S. V.

Sasano, Y.

Y. Sasano, E. V. Browell, S. Ismael, “Error caused by using a constant extinction/backscattering ratio in the lidar solution,” Appl. Opt. 24, 3929–3932 (1985).
[Crossref] [PubMed]

K. Asai, Y. Sasano, N. Sugimoto, O. Uchino, T. Itabe, K. Mizutani, Y. Kawamura, M. Ishizu, T. Imai, K. Terada, N. Saki, “Planned/proposed spaceborne lidar programs in Japan,” in Advances in Laser Remote Sensing, A. Dabas, C. Loth, J. Pelon, eds. (Edition de l’Ecole Polytechnique, Palaiseau, France, 2001), pp. 11–14.

Schult, I.

M. Hess, P. Koepke, I. Schult, “Optical properties of aerosols and clouds: the software package OPAC,” Bull. Am. Meteorol. Soc. 79, 831–844 (1998).
[Crossref]

Spinhirne, J. D.

Stammes, P.

M. Hess, R. B. A. Koelemeijer, P. Stammes, “Scattering matrices of imperfect hexagonal ice crystals,” J. Quant. Spectrosc. Radiat. Transfer 60, 301–308 (1998).
[Crossref]

Starkov, A. V.

A. V. Starkov, M. Noormohammadian, U. G. Oppel, “A stochastic model and a variance-reduction. Monte-Carlo method for the calculation of light transport,” Appl. Phys. B 60, 335–340 (1995).
[Crossref]

Stephens, G. L.

S. D. Miller, G. L. Stephens, “Multiple scattering effects in the lidar pulse stretching problem,” J. Geophys. Res. D104, 22205–22219 (1999).
[Crossref]

Strawbridge, K. B.

R. M. Hoff, K. B. Strawbridge, “LITE observations of anthropogenically produced aerosols,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1997), pp. 145–148.
[Crossref]

Sugimoto, N.

P. Völger, Z. Liu, N. Sugimoto, “Multiple scattering simulations for the Japanese space lidar project ELISE,” IEEE Trans. Geosci. Remote Sensing 40, 550–559 (2002).
[Crossref]

Z. Liu, P. Voelger, N. Sugimoto, “Simulations of the observation of clouds and aerosols with the Experimental Lidar in Space Equipment System,” Appl. Opt. 39, 3120–3137 (2000).
[Crossref]

K. Asai, Y. Sasano, N. Sugimoto, O. Uchino, T. Itabe, K. Mizutani, Y. Kawamura, M. Ishizu, T. Imai, K. Terada, N. Saki, “Planned/proposed spaceborne lidar programs in Japan,” in Advances in Laser Remote Sensing, A. Dabas, C. Loth, J. Pelon, eds. (Edition de l’Ecole Polytechnique, Palaiseau, France, 2001), pp. 11–14.

Swissler, T. J.

Terada, K.

K. Asai, Y. Sasano, N. Sugimoto, O. Uchino, T. Itabe, K. Mizutani, Y. Kawamura, M. Ishizu, T. Imai, K. Terada, N. Saki, “Planned/proposed spaceborne lidar programs in Japan,” in Advances in Laser Remote Sensing, A. Dabas, C. Loth, J. Pelon, eds. (Edition de l’Ecole Polytechnique, Palaiseau, France, 2001), pp. 11–14.

Trepte, C. R.

D. M. Winker, C. R. Trepte, “Laminar cirrus observed near the tropical tropopause by LITE,” Geophys. Res. Lett. 25, 3351–3354 (1998).
[Crossref]

K. A. Powell, C. R. Trepte, G. S. Kent, “Observation of Saharan dust by LITE,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1997), pp. 149–152.
[Crossref]

Trouillet, V.

H. Chepfer, J. Pelon, G. Brogniez, C. Flamant, V. Trouillet, P. H. Flamant, “Impact of cirrus cloud ice crystal shape and size on multiple scattering effects: application to spaceborne and airborne backscatter lidar measurements during LITE mission and E-LITE campaign,” Geophys. Res. Lett. 26, 2203–2206 (1999).
[Crossref]

Tulinov, G.

M.-L. Chanin, A. Hauchecorne, C. Malique, M. Desbois, G. Tulinov, V. Melnikov, “The ALISSA lidar on board the MIR platform,” in Advances in Laser Remote Sensing, A. Dabas, C. Loth, J. Pelon, eds. (Edition de l’Ecole Polytechnique, Palaiseau, France, 2001), pp. 23–26.

Uchino, O.

K. Asai, Y. Sasano, N. Sugimoto, O. Uchino, T. Itabe, K. Mizutani, Y. Kawamura, M. Ishizu, T. Imai, K. Terada, N. Saki, “Planned/proposed spaceborne lidar programs in Japan,” in Advances in Laser Remote Sensing, A. Dabas, C. Loth, J. Pelon, eds. (Edition de l’Ecole Polytechnique, Palaiseau, France, 2001), pp. 11–14.

Vann, L.

Y.-X. Hu, D. Winker, P. Yang, B. Baum, L. Poole, L. Vann, “Identification of cloud phase from PICASSO-CENA lidar depolarization: a multiple scattering sensitivity study,” J. Quant. Spectrosc. Radiat. Transfer 70, 569–579 (2001).
[Crossref]

Vaughan, M. A.

C. M. R. Platt, D. M. Winker, M. A. Vaughan, S. D. Miller, “Backscatter-to-extinction ratios in the top layers of tropical mesoscale convective systems and in isolated cirrus from LITE observations,” J. Appl. Meteorol. 38, 1330–1345 (1999).
[Crossref]

Voelger, P.

Völger, P.

P. Völger, Z. Liu, N. Sugimoto, “Multiple scattering simulations for the Japanese space lidar project ELISE,” IEEE Trans. Geosci. Remote Sensing 40, 550–559 (2002).
[Crossref]

Weinman, J. A.

K. E. Kunkel, J. A. Weinman, “Monte Carlo analysis of multiply scattered lidar returns,” J. Atmos. Sci. 33, 1772–1780 (1976).
[Crossref]

Wiegner, M.

M. Wiegner, “Relevance of multiple scattering for spaceborne lidar returns,” in Lidar Techniques for Remote Sensing II, C. Werner, ed., Proc. SPIE2581, 137–144 (1995).
[Crossref]

Winker, D.

Y.-X. Hu, D. Winker, P. Yang, B. Baum, L. Poole, L. Vann, “Identification of cloud phase from PICASSO-CENA lidar depolarization: a multiple scattering sensitivity study,” J. Quant. Spectrosc. Radiat. Transfer 70, 569–579 (2001).
[Crossref]

Winker, D. M.

C. M. R. Platt, D. M. Winker, M. A. Vaughan, S. D. Miller, “Backscatter-to-extinction ratios in the top layers of tropical mesoscale convective systems and in isolated cirrus from LITE observations,” J. Appl. Meteorol. 38, 1330–1345 (1999).
[Crossref]

Y. S. Balin, S. V. Samoilova, M. M. Krekova, D. M. Winker, “Retrieval of cloud optical parameters from space-based backscatter lidar data,” Appl. Opt. 38, 6365–6373 (1999).
[Crossref]

D. M. Winker, C. R. Trepte, “Laminar cirrus observed near the tropical tropopause by LITE,” Geophys. Res. Lett. 25, 3351–3354 (1998).
[Crossref]

D. M. Winker, R. H. Couch, M. P. McCormick, “An overview of LITE: NASA’s Lidar In-space Technology Experiment,” Proc. IEEE 84, 164–180 (1996).
[Crossref]

D. M. Winker, L. R. Poole, “Monte-Carlo calculations of cloud returns for ground-based and space-based lidar,” Appl. Phys. B 60, 341–344 (1995).
[Crossref]

D. M. Winker, J. Pelon, M. P. McCormick, “PICASSO-CENA: aerosol and cloud observations from combined lidar and passive instruments,” in Advances in Laser Remote Sensing, A. Dabas, C. Loth, J. Pelon, eds. (Edition de l’Ecole Polytechnique, Palaiseau, France, 2001), pp. 39–42.

Yang, P.

Y.-X. Hu, P. Yang, B. Lin, G. Gibson, C. Hostetler, “Discimination between spherical and non-spherical scatterers with lidar using circular polarization: a theoretical study,” J. Quant. Spectrosc. Radiat. Transfer 79–80, 757–764 (2003).
[Crossref]

Y.-X. Hu, D. Winker, P. Yang, B. Baum, L. Poole, L. Vann, “Identification of cloud phase from PICASSO-CENA lidar depolarization: a multiple scattering sensitivity study,” J. Quant. Spectrosc. Radiat. Transfer 70, 569–579 (2001).
[Crossref]

Young, S. A.

Appl. Opt. (13)

J. D. Spinhirne, “Lidar clear atmosphere multiple scattering dependence on receiver range,” Appl. Opt. 21, 2467–2468 (1982).
[Crossref] [PubMed]

Y. S. Balin, S. V. Samoilova, M. M. Krekova, D. M. Winker, “Retrieval of cloud optical parameters from space-based backscatter lidar data,” Appl. Opt. 38, 6365–6373 (1999).
[Crossref]

S. Reichardt, J. Reichardt, “Effect of multiple scattering on depolarization measurements with spaceborne lidars,” Appl. Opt. 42, 3620–3633 (2003).
[Crossref] [PubMed]

S. R. Pal, L. R. Bissonnette, “Multiple-scattering effect on ozone retrieval from space-based differential absorption lidar measurements,” Appl. Opt. 37, 6500–6510 (1998).
[Crossref]

P. Chazette, J. Pelon, G. Megie, “Determination by spaceborne backscatter lidar of the structural parameters of atmospheric scattering layers,” Appl. Opt. 40, 3428–3440 (2001).
[Crossref]

V. Noel, H. Chepfer, G. Ledanois, A. Delaval, P. H. Flamant, “Classification of particle shape ratios in cirrus clouds based on the lidar deploarization ratio,” Appl. Opt. 41, 4245–4257 (2002).
[Crossref] [PubMed]

S. A. Young, “Analysis of lidar backscatter profiles in optically thin clouds,” Appl. Opt. 34, 7019–7031 (1995).
[Crossref] [PubMed]

F. G. Fernald, “Analysis of atmospheric observations: some comments,” Appl. Opt. 23, 652–653 (1984).
[Crossref]

J. D. Klett, “Lidar inversion with variable backscatter/extinction ratios,” Appl. Opt. 24, 1638–1643 (1985).
[Crossref] [PubMed]

P. B. Russell, T. J. Swissler, M. P. McCormick, “Methodology for error analysis and simulation of lidar aerosol measurements,” Appl. Opt. 18, 3783–3797 (1979)
[PubMed]

L. R. Bissonnette, “Sensitivity analysis of lidar inversion algorithms,” Appl. Opt. 25, 2122–2125 (1986).
[Crossref] [PubMed]

Y. Sasano, E. V. Browell, S. Ismael, “Error caused by using a constant extinction/backscattering ratio in the lidar solution,” Appl. Opt. 24, 3929–3932 (1985).
[Crossref] [PubMed]

Z. Liu, P. Voelger, N. Sugimoto, “Simulations of the observation of clouds and aerosols with the Experimental Lidar in Space Equipment System,” Appl. Opt. 39, 3120–3137 (2000).
[Crossref]

Appl. Phys. B (2)

A. V. Starkov, M. Noormohammadian, U. G. Oppel, “A stochastic model and a variance-reduction. Monte-Carlo method for the calculation of light transport,” Appl. Phys. B 60, 335–340 (1995).
[Crossref]

D. M. Winker, L. R. Poole, “Monte-Carlo calculations of cloud returns for ground-based and space-based lidar,” Appl. Phys. B 60, 341–344 (1995).
[Crossref]

Bull. Am. Meteorol. Soc. (1)

M. Hess, P. Koepke, I. Schult, “Optical properties of aerosols and clouds: the software package OPAC,” Bull. Am. Meteorol. Soc. 79, 831–844 (1998).
[Crossref]

Contrib. Atmos. Phys. (1)

G. H. Ruppersberg, M. Kerscher, M. Noormohammadian, U. G. Oppel, W. Renger, “The influence of multiple scattering on lidar returns by cirrus clouds and an effective inversion algorithm for the extinction coefficient,” Contrib. Atmos. Phys. 70, 91–107 (1997).

Geophys. Res. Lett. (2)

H. Chepfer, J. Pelon, G. Brogniez, C. Flamant, V. Trouillet, P. H. Flamant, “Impact of cirrus cloud ice crystal shape and size on multiple scattering effects: application to spaceborne and airborne backscatter lidar measurements during LITE mission and E-LITE campaign,” Geophys. Res. Lett. 26, 2203–2206 (1999).
[Crossref]

D. M. Winker, C. R. Trepte, “Laminar cirrus observed near the tropical tropopause by LITE,” Geophys. Res. Lett. 25, 3351–3354 (1998).
[Crossref]

IEEE Trans. Geosci. Remote Sensing (1)

P. Völger, Z. Liu, N. Sugimoto, “Multiple scattering simulations for the Japanese space lidar project ELISE,” IEEE Trans. Geosci. Remote Sensing 40, 550–559 (2002).
[Crossref]

J. Appl. Meteorol. (2)

C. M. R. Platt, D. M. Winker, M. A. Vaughan, S. D. Miller, “Backscatter-to-extinction ratios in the top layers of tropical mesoscale convective systems and in isolated cirrus from LITE observations,” J. Appl. Meteorol. 38, 1330–1345 (1999).
[Crossref]

R. Frehlich, “Simulation of coherent Doppler lidar performance for space-based platforms,” J. Appl. Meteorol. 39, 245–262 (2000).
[Crossref]

J. Atmos. Sci. (2)

K. E. Kunkel, J. A. Weinman, “Monte Carlo analysis of multiply scattered lidar returns,” J. Atmos. Sci. 33, 1772–1780 (1976).
[Crossref]

A. Heymsfield, C. M. R. Platt, “A parameterization of the particle size spectrum of ice clouds in terms of the ambient temperature and ice water content,” J. Atmos. Sci. 41, 846–855 (1984).
[Crossref]

J. Geophys. Res. (1)

S. D. Miller, G. L. Stephens, “Multiple scattering effects in the lidar pulse stretching problem,” J. Geophys. Res. D104, 22205–22219 (1999).
[Crossref]

J. Quant. Spectrosc. Radiat. Transfer (3)

M. Hess, R. B. A. Koelemeijer, P. Stammes, “Scattering matrices of imperfect hexagonal ice crystals,” J. Quant. Spectrosc. Radiat. Transfer 60, 301–308 (1998).
[Crossref]

Y.-X. Hu, D. Winker, P. Yang, B. Baum, L. Poole, L. Vann, “Identification of cloud phase from PICASSO-CENA lidar depolarization: a multiple scattering sensitivity study,” J. Quant. Spectrosc. Radiat. Transfer 70, 569–579 (2001).
[Crossref]

Y.-X. Hu, P. Yang, B. Lin, G. Gibson, C. Hostetler, “Discimination between spherical and non-spherical scatterers with lidar using circular polarization: a theoretical study,” J. Quant. Spectrosc. Radiat. Transfer 79–80, 757–764 (2003).
[Crossref]

Opt. Rev. (1)

M. Kerscher, W. Krichbaumer, U. G. Oppel, M. Noormohammadian, “Polarized multiply scattered lidar returns,” Opt. Rev. 2, 304–307 (1995).
[Crossref]

Proc. IEEE (1)

D. M. Winker, R. H. Couch, M. P. McCormick, “An overview of LITE: NASA’s Lidar In-space Technology Experiment,” Proc. IEEE 84, 164–180 (1996).
[Crossref]

Other (12)

M. Wiegner, “Relevance of multiple scattering for spaceborne lidar returns,” in Lidar Techniques for Remote Sensing II, C. Werner, ed., Proc. SPIE2581, 137–144 (1995).
[Crossref]

J. P. V. Poiares Baptista, W. Leibrandt, “Reports for assessment—the five candidate earth explorer core missions: Earth CARE—Earth clouds, aerosols, and radiation explorer, (European Space Agency, Noordwijk, The Netherlands, 2001).

P. Ingmann, J. Fuchs, R. Meynart, A. Culoma, “ESA’s Earth Explorer Cor Mission: the atmospheric dynamics mission and ideas for future missions embarking lidars,” in Advances in Laser Remote Sensing, A. Dabas, C. Loth, J. Pelon, eds. (Edition de l’Ecole Polytechnique, Palaiseau, France, 2001), pp. 7–10.

K. Asai, Y. Sasano, N. Sugimoto, O. Uchino, T. Itabe, K. Mizutani, Y. Kawamura, M. Ishizu, T. Imai, K. Terada, N. Saki, “Planned/proposed spaceborne lidar programs in Japan,” in Advances in Laser Remote Sensing, A. Dabas, C. Loth, J. Pelon, eds. (Edition de l’Ecole Polytechnique, Palaiseau, France, 2001), pp. 11–14.

D. Morançais, F. Fabre, P. Berlioz, R. Maurer, A. Culoma, “Spaceborne wind lidar concept for the Atmospheric Dynamics Mission (ALADIN),” in Advances in Laser Remote Sensing, A. Dabas, C. Loth, J. Pelon, eds. (Edition de l’Ecole Polytechnique, Palaiseau, France, 2001), pp. 15–18.

M. P. McCormick, “A bright future for spaceborne lidars,” in Advances in Laser Remote Sensing, A. Dabas, C. Loth, J. Pelon, eds. (Edition de l’Ecole Polytechnique, Palaiseau, France, 2001), pp. 3–6.

K. A. Powell, C. R. Trepte, G. S. Kent, “Observation of Saharan dust by LITE,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1997), pp. 149–152.
[Crossref]

W. B. Grant, E. V. Browell, C. F. Butler, G. D. Nowicki, “LITE measurements of biomass burning aerosols and comparisons with correlative airborne lidar measurements of multiple scattering in the planetary boundary layer,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1997), pp. 153–156.
[Crossref]

R. M. Hoff, K. B. Strawbridge, “LITE observations of anthropogenically produced aerosols,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer-Verlag, Berlin, 1997), pp. 145–148.
[Crossref]

M.-L. Chanin, A. Hauchecorne, C. Malique, M. Desbois, G. Tulinov, V. Melnikov, “The ALISSA lidar on board the MIR platform,” in Advances in Laser Remote Sensing, A. Dabas, C. Loth, J. Pelon, eds. (Edition de l’Ecole Polytechnique, Palaiseau, France, 2001), pp. 23–26.

D. M. Winker, J. Pelon, M. P. McCormick, “PICASSO-CENA: aerosol and cloud observations from combined lidar and passive instruments,” in Advances in Laser Remote Sensing, A. Dabas, C. Loth, J. Pelon, eds. (Edition de l’Ecole Polytechnique, Palaiseau, France, 2001), pp. 39–42.

D. Deirmendjian, Electromagnetic Scattering on Spherical Polydispersions (Elsevier, New York, 1969).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Phase functions (upper panel) and cumulative phase functions (lower panel) for cloud and aerosol types that we considered in this study: solid curves, cirrus consisting of hexagonal columns (cirrus A); long dashed curves cirrus consisting of hexagonal plates (cirrus B); short dashed curves, aerosol with large mode radius (Haze L); dotted curves, aerosol with small mode radius (continental polluted).

Fig. 2
Fig. 2

Ratio of MS to single-scattering intensities for cirrus A assuming different FOV angles for a 650-km orbit height. Extinction coefficients were set to 0.3 and 1.0 km31.

Fig. 3
Fig. 3

Ratios of intensities of individual higher scattering orders to single-scattering intensities for cirrus A assuming 0.21 mrad as the FOV angle for a 650-km orbit height. Extinctions were 0.3 and 1.0 km−1.

Fig. 4
Fig. 4

MS factor F for cirrus A assuming different FOV angles. Orbit heights are 260 and 650 km; the extinction coefficients were 0.3 and 1.0 km−1.

Fig. 5
Fig. 5

Ratio of MS to single-scattering intensities for cirrus-B assuming different FOV angles for 650-km orbit height. Extinction coefficients were set to 0.3 and 1.0 km−1.

Fig. 6
Fig. 6

MS factor F for cirrus B assuming different FOV angles. Orbit heights are 260 and 650 km; the extinction coefficients were 0.3 and 1.0 km−1.

Fig. 7
Fig. 7

Ratio of MS to single-scattering intensity for a boundary layer with continental polluted aerosol (70% relative humidity). Line coding as in Fig. 5.

Fig. 8
Fig. 8

Ratios of intensities of individual higher scattering orders to single-scattering intensities for the aerosol mixture continental polluted assuming 1.1 mrad as the FOV angle for a 650-km orbit height. Extinction was 0.3 or 1.0 km−1.

Fig. 9
Fig. 9

MS factor F for various combinations of orbit height, FOV angle, and extinction coefficient: Line coding as in Fig. 6.

Fig. 10
Fig. 10

MS factor F as a function of the FOV angle for aerosol mixture continental polluted.

Fig. 11
Fig. 11

MS factor F as a function of orbit height for the aerosol mixture continental polluted.

Fig. 12
Fig. 12

Ratio of MS to single-scattering intensity for a boundary layer with aerosol type Haze L. Line coding as in Fig. 5.

Fig. 13
Fig. 13

Ratios of intensities of individual higher scattering orders to single-scattering intensities for aerosol Haze L assuming 0.4 mrad as the FOV angle for a 650-km orbit height. Extinction was 0.3 or 1.0 km−1.

Fig. 14
Fig. 14

MS factor F for aerosol Haze L for various combinations of orbit height, FOV angle, and extinction coefficient. Line coding as in Fig. 6.

Fig. 15
Fig. 15

MS factor F as a function of the FOV angle for aerosol Haze L.

Fig. 16
Fig. 16

MS factor F as a function of orbit height for aerosol Haze L.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P 1 ( R ) = P 0 C R 2 β ( R ) exp [ - 2 0 R σ ( r ) d r ] ,
P t ( R ) = i = 1 P i ( R ) = P 1 ( R ) + P m s ( R ) ,
P t ( R ) = P 0 C R 2 β ( R ) exp { - 2 [ 1 - F ( R ) ] 0 R σ ( r ) d r } ,
F ( R ) = 1 2 0 R σ ( r ) d r ln P t ( R ) P 1 ( R ) .

Metrics