Abstract

A numerical technique with which to compute the output characteristics of a solid-state laser with an unstable cavity and a super-Gaussian coupling mirror is proposed. This technique is applied to an Yb:YAG actively Q-switched laser. With this formalism, the mode formation for the fundamental mode is analyzed and the performance achievable by such a laser for various cavity parameters is determined. Then the results obtained with such a cavity are compared with those given for a stable cavity with graded phase output mirror that is also used for obtaining super-Gaussian mode.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29, 1179–1191 (1993).
    [CrossRef]
  2. A. Brenier, G. Boulon, “Overview of the best Yb3+-doped laser crystals,” J. Alloys Compd. 323–324, 210–213 (2001).
    [CrossRef]
  3. A. Brenier, “A new evaluation of Yb3+-doped crystals for laser application,” J. Lumin. 92, 199–204 (2001).
    [CrossRef]
  4. G. L. Bourdet, “New evaluation of ytterbium doped materials for cw lasers applications,” Opt. Commun. 198, 411–417 (2001).
    [CrossRef]
  5. G. L. Bourdet, “Comparison of pulse amplification performances in longitudinally pumped ytterbium doped materials,” Opt. Commun. 200, 331–342 (2001).
    [CrossRef]
  6. R. J. Beach, E. C. Honea, S. B. Sutton, C. M. Bibeau, J. A. Skidmore, M. A. Emanuel, S. A. Payne, P. V. Avizonis, R. S. Monroe, D. G. Harris, “High-average-power diode-pumped Yb:YAG lasers,” in Advanced High-Power Lasers, M. Osinski, H. T. Powell, K. Toyoda, eds., Proc. SPIE3889, 246–260 (2000).
    [CrossRef]
  7. C. Stewen, K. Contag, M. Larionov, A. Giesen, H. Hügel, “A 1 kW cw thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6, 650–657 (2000).
    [CrossRef]
  8. C. Bibeau, “The Mercury project—a gas cooled, 10 Hz, diode pumped Yb:S-FAP system for inertial fusion energy,” presented at the EPS-QEOD Europhoton Conference, Lausanne, Switzerland, 29 August–3 September, 2004.
  9. J. Hein, S. Podleska, M. Siebold, M. Hellwing, R. Bödefeld, R. Sauerbrey, D. Ehrt, W. Wintzer, “Diode-pumped chirped pulse amplification to the joule level,” Appl. Phys. B 79, 419–422 (2004).
    [CrossRef]
  10. G. L. Bourdet, J.-C. Chanteloup, A. Fülöp, Y. Julien, A. Migus, “The LUCIA project: a high average power ytterbium diode pumped solid state laser chain,” in Laser Optics 2003: Solid State Lasers and Nonlinear Frequency Conversion, V. I. Ustugov, ed., Proc. SPIE5478, 4–7 (2003).
  11. E. Innerhofer, T. Südmeyer, F. Brunner, R. Häring, A. Aschwanden, R. Paschotta, C. Hönninger, M. Kumkar, U. Keller, “60-W average power in 810-fs from a thin-disk YB: YAG laser,” Opt. Lett. 28, 367–369 (2003).
    [CrossRef] [PubMed]
  12. F. Druon, S. Chenais, P. Raybaut, F. Balembois, P. Georges, R. Gaumé, G. Aka, B. Viana, S. Mohr, D. Kopf, “Diode-pumped Yb:Sr3Y(BO3)3 femtosecond laser,” Opt. Lett. 27, 197–199 (2002).
    [CrossRef]
  13. V. V. Ter-Mikirtychev, V. A. Fromzel, “Directly single-diode-pumped continuous-wave Yb3+:YAG laser tunable in the 1047–1051-nm wavelength range,” Appl. Opt. 39, 4964–4969 (2000).
    [CrossRef]
  14. F. Druon, F. Augé, F. Balembois, P. Georges, A. Brun, A. Aron, F. Mougel, G. Aka, D. Vivien, “Efficient, tunable, zero-line diode-pumped continuous-wave Yb3+:CaLn O(BO3)3(Ln = Gd, Y) lasers at room temperature and application to miniature lasers,” J. Opt. Soc. Am. B 17, 18–22 (2000).
    [CrossRef]
  15. Y. Zhou, Q. Thai, Y. C. Chen, S. Zhou, “Monolithic Q-switched Cr, Yb:YAG laser,” Opt. Commun. 219, 365–367 (2003).
    [CrossRef]
  16. E. C. Honea, R. J. Beach, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, S. B. Sutton, S. A. Payne, P. V. Avizonis, R. S. Monroe, D. G. Harris, “High-power dual-road Yb:YAG laser,” Opt. Lett. 25, 805–807 (2000).
    [CrossRef]
  17. G. Zhao, J. Si, X. Xu, J. Xu, H. Song, Y. Zhou, “Growth of large-sized Yb:YAG single crystals by temperature gradient technique,” J. Cryst. Growth 252, 355–359 (2003).
    [CrossRef]
  18. U. Brauch, A. Giesen, M. Karszewski, C. Stewen, A. Voss, “Multiwatt diode pumped Yb:YAG thin disk laser continuously tunable between 1018 and 1053 nm,” Opt. Lett. 20, 713–715 (1995).
    [CrossRef] [PubMed]
  19. J.-F. Bisson, Y. F. A. Shirakawa, H. Yoneda, J. Lu, H. Yagi, T. Yanagitani, K.-I. Ueda, “Laser damage threshold of ceramic YAG,” Jpn. J. Appl. Phys. Part 2 42, L1025–L1027 (2003).
    [CrossRef]
  20. J.-Y. Natoli, L. Gallais, H. Akhouayri, C. Amra, “Laser-induced damage of materials in bulk, thin-film, and liquid forms,” Appl. Opt. 41, 3156–3166 (2002).
    [CrossRef] [PubMed]
  21. Zhiwei Zhao, Shanghai Institute of Optics and Fine Mechanics, Shanghai, China (personal communication, 2004).
  22. B. Pinot, H. Leplan, F. Houbre, E. Lavastre, J. C. Poncetta, G. Chabassier, “Laser megajoule 1.06 μm mirror production with very high laser damage threshold,” in Laser-Induced Damage in Optical Materials: 2001, G. J. Exarhos, A. H. Guenther, K. L. Lewis, M. J. Soileau, C. J. Stolz, eds., Proc. SPIE4679, 234–241 (2001).
  23. A. G. Siegman, “Unstable optical resonator for laser applications,” Proc. IEEE 53, 277–287 (1965).
    [CrossRef]
  24. A. G. Vakhimov, “Open resonators with mirror having variable reflexion coefficients,” Radio Eng. Electron. Phys. 10, 1439–1446 (1965).
  25. M. Couture, M. Piché, “Resonator with variable-reflectivity output coupler,” Appl. Opt. 23, 2510–2513 (1987).
    [CrossRef]
  26. S. de Silvestri, P. Laporta, V. Magni, O. Svelto, “Solid-state laser unstable resonators with tapered reflectivity mirrors: the super-Gaussian approach,” IEEE J. Quantum Electron. 24, 1172–1177 (1988).
    [CrossRef]
  27. S. A. Collins, “Lens-system diffraction integral written in terms of matrix optics,” J. Opt. Soc. Am. A 60, 1168–1177 (1970).
    [CrossRef]
  28. G. L. Bourdet, R. A. Muller, “Tm, Ho:YLF microchip laser under Ti:sapphire and diode pumping,” Appl. Phys. B 70, 345–349 (2000).
    [CrossRef]
  29. P. A. Bélanger, C. Paré, “Optical resonators using graded-phase mirrors,” Opt. Lett. 16, 1057–1059 (1991).
    [CrossRef] [PubMed]
  30. C. Paré, P. A. Bélanger, “Custom laser resonators using graded-phase mirrors,” IEEE J. Quantum Electron. 28, 355–362 (1992).
    [CrossRef]
  31. C. Paré, P. A. Bélanger, “Custom laser resonators using graded-phase mirrors: circular geometry,” IEEE J. Quantum Electron. 30, 1141–1148 (1994).
    [CrossRef]
  32. P. A. Bélanger, R. Lachance, C. Paré, “Super-Gaussian output from a CO2laser by using a graded-phase mirror resonator,” Opt. Lett. 17, 739–741 (1992).
    [CrossRef]
  33. R. Van Neste, C. Paré, R. L. Lachance, P. A. Bélanger, “Graded-phase resonator with a super-Gaussian output in a cw CO2laser,” IEEE J. Quantum Electron. 30, 2663–2699 (1994).
    [CrossRef]
  34. J. R. Leger, G. Mowry, “External diode laser array cavity with mode-selecting mirror,” Appl. Phys. Lett. 63, 2884–2886 (1993).
    [CrossRef]
  35. J. R. Leger, D. Chen, Z. Wang, “Diffractive optical element for mode shaping of a ND:YAG laser,” Opt. Lett. 19, 108–110 (1994).
    [CrossRef] [PubMed]
  36. G. L. Bourdet, M. Mérian, “Theoretical investigation of a slab CO2laser resonator with graded-phase mirror,” Opt. Commun. 152, 49–54 (1998).
    [CrossRef]
  37. V. Bagnoud, J. Luce, L. Videau, C. Rouyer, “Diode-pumped regenerative amplifier delivering 100 mJ single mode laser pulses,” Opt. Lett. 26, 337–339 (2001).
    [CrossRef]

2004

J. Hein, S. Podleska, M. Siebold, M. Hellwing, R. Bödefeld, R. Sauerbrey, D. Ehrt, W. Wintzer, “Diode-pumped chirped pulse amplification to the joule level,” Appl. Phys. B 79, 419–422 (2004).
[CrossRef]

2003

E. Innerhofer, T. Südmeyer, F. Brunner, R. Häring, A. Aschwanden, R. Paschotta, C. Hönninger, M. Kumkar, U. Keller, “60-W average power in 810-fs from a thin-disk YB: YAG laser,” Opt. Lett. 28, 367–369 (2003).
[CrossRef] [PubMed]

Y. Zhou, Q. Thai, Y. C. Chen, S. Zhou, “Monolithic Q-switched Cr, Yb:YAG laser,” Opt. Commun. 219, 365–367 (2003).
[CrossRef]

G. Zhao, J. Si, X. Xu, J. Xu, H. Song, Y. Zhou, “Growth of large-sized Yb:YAG single crystals by temperature gradient technique,” J. Cryst. Growth 252, 355–359 (2003).
[CrossRef]

J.-F. Bisson, Y. F. A. Shirakawa, H. Yoneda, J. Lu, H. Yagi, T. Yanagitani, K.-I. Ueda, “Laser damage threshold of ceramic YAG,” Jpn. J. Appl. Phys. Part 2 42, L1025–L1027 (2003).
[CrossRef]

2002

2001

A. Brenier, G. Boulon, “Overview of the best Yb3+-doped laser crystals,” J. Alloys Compd. 323–324, 210–213 (2001).
[CrossRef]

A. Brenier, “A new evaluation of Yb3+-doped crystals for laser application,” J. Lumin. 92, 199–204 (2001).
[CrossRef]

G. L. Bourdet, “New evaluation of ytterbium doped materials for cw lasers applications,” Opt. Commun. 198, 411–417 (2001).
[CrossRef]

G. L. Bourdet, “Comparison of pulse amplification performances in longitudinally pumped ytterbium doped materials,” Opt. Commun. 200, 331–342 (2001).
[CrossRef]

V. Bagnoud, J. Luce, L. Videau, C. Rouyer, “Diode-pumped regenerative amplifier delivering 100 mJ single mode laser pulses,” Opt. Lett. 26, 337–339 (2001).
[CrossRef]

2000

1998

G. L. Bourdet, M. Mérian, “Theoretical investigation of a slab CO2laser resonator with graded-phase mirror,” Opt. Commun. 152, 49–54 (1998).
[CrossRef]

1995

1994

R. Van Neste, C. Paré, R. L. Lachance, P. A. Bélanger, “Graded-phase resonator with a super-Gaussian output in a cw CO2laser,” IEEE J. Quantum Electron. 30, 2663–2699 (1994).
[CrossRef]

J. R. Leger, D. Chen, Z. Wang, “Diffractive optical element for mode shaping of a ND:YAG laser,” Opt. Lett. 19, 108–110 (1994).
[CrossRef] [PubMed]

C. Paré, P. A. Bélanger, “Custom laser resonators using graded-phase mirrors: circular geometry,” IEEE J. Quantum Electron. 30, 1141–1148 (1994).
[CrossRef]

1993

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29, 1179–1191 (1993).
[CrossRef]

J. R. Leger, G. Mowry, “External diode laser array cavity with mode-selecting mirror,” Appl. Phys. Lett. 63, 2884–2886 (1993).
[CrossRef]

1992

C. Paré, P. A. Bélanger, “Custom laser resonators using graded-phase mirrors,” IEEE J. Quantum Electron. 28, 355–362 (1992).
[CrossRef]

P. A. Bélanger, R. Lachance, C. Paré, “Super-Gaussian output from a CO2laser by using a graded-phase mirror resonator,” Opt. Lett. 17, 739–741 (1992).
[CrossRef]

1991

1988

S. de Silvestri, P. Laporta, V. Magni, O. Svelto, “Solid-state laser unstable resonators with tapered reflectivity mirrors: the super-Gaussian approach,” IEEE J. Quantum Electron. 24, 1172–1177 (1988).
[CrossRef]

1987

1970

S. A. Collins, “Lens-system diffraction integral written in terms of matrix optics,” J. Opt. Soc. Am. A 60, 1168–1177 (1970).
[CrossRef]

1965

A. G. Siegman, “Unstable optical resonator for laser applications,” Proc. IEEE 53, 277–287 (1965).
[CrossRef]

A. G. Vakhimov, “Open resonators with mirror having variable reflexion coefficients,” Radio Eng. Electron. Phys. 10, 1439–1446 (1965).

Aka, G.

Akhouayri, H.

Amra, C.

Aron, A.

Aschwanden, A.

Augé, F.

Avizonis, P. V.

E. C. Honea, R. J. Beach, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, S. B. Sutton, S. A. Payne, P. V. Avizonis, R. S. Monroe, D. G. Harris, “High-power dual-road Yb:YAG laser,” Opt. Lett. 25, 805–807 (2000).
[CrossRef]

R. J. Beach, E. C. Honea, S. B. Sutton, C. M. Bibeau, J. A. Skidmore, M. A. Emanuel, S. A. Payne, P. V. Avizonis, R. S. Monroe, D. G. Harris, “High-average-power diode-pumped Yb:YAG lasers,” in Advanced High-Power Lasers, M. Osinski, H. T. Powell, K. Toyoda, eds., Proc. SPIE3889, 246–260 (2000).
[CrossRef]

Bagnoud, V.

Balembois, F.

Beach, R. J.

E. C. Honea, R. J. Beach, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, S. B. Sutton, S. A. Payne, P. V. Avizonis, R. S. Monroe, D. G. Harris, “High-power dual-road Yb:YAG laser,” Opt. Lett. 25, 805–807 (2000).
[CrossRef]

R. J. Beach, E. C. Honea, S. B. Sutton, C. M. Bibeau, J. A. Skidmore, M. A. Emanuel, S. A. Payne, P. V. Avizonis, R. S. Monroe, D. G. Harris, “High-average-power diode-pumped Yb:YAG lasers,” in Advanced High-Power Lasers, M. Osinski, H. T. Powell, K. Toyoda, eds., Proc. SPIE3889, 246–260 (2000).
[CrossRef]

Bélanger, P. A.

C. Paré, P. A. Bélanger, “Custom laser resonators using graded-phase mirrors: circular geometry,” IEEE J. Quantum Electron. 30, 1141–1148 (1994).
[CrossRef]

R. Van Neste, C. Paré, R. L. Lachance, P. A. Bélanger, “Graded-phase resonator with a super-Gaussian output in a cw CO2laser,” IEEE J. Quantum Electron. 30, 2663–2699 (1994).
[CrossRef]

C. Paré, P. A. Bélanger, “Custom laser resonators using graded-phase mirrors,” IEEE J. Quantum Electron. 28, 355–362 (1992).
[CrossRef]

P. A. Bélanger, R. Lachance, C. Paré, “Super-Gaussian output from a CO2laser by using a graded-phase mirror resonator,” Opt. Lett. 17, 739–741 (1992).
[CrossRef]

P. A. Bélanger, C. Paré, “Optical resonators using graded-phase mirrors,” Opt. Lett. 16, 1057–1059 (1991).
[CrossRef] [PubMed]

Bibeau, C.

C. Bibeau, “The Mercury project—a gas cooled, 10 Hz, diode pumped Yb:S-FAP system for inertial fusion energy,” presented at the EPS-QEOD Europhoton Conference, Lausanne, Switzerland, 29 August–3 September, 2004.

Bibeau, C. M.

R. J. Beach, E. C. Honea, S. B. Sutton, C. M. Bibeau, J. A. Skidmore, M. A. Emanuel, S. A. Payne, P. V. Avizonis, R. S. Monroe, D. G. Harris, “High-average-power diode-pumped Yb:YAG lasers,” in Advanced High-Power Lasers, M. Osinski, H. T. Powell, K. Toyoda, eds., Proc. SPIE3889, 246–260 (2000).
[CrossRef]

Bisson, J.-F.

J.-F. Bisson, Y. F. A. Shirakawa, H. Yoneda, J. Lu, H. Yagi, T. Yanagitani, K.-I. Ueda, “Laser damage threshold of ceramic YAG,” Jpn. J. Appl. Phys. Part 2 42, L1025–L1027 (2003).
[CrossRef]

Bödefeld, R.

J. Hein, S. Podleska, M. Siebold, M. Hellwing, R. Bödefeld, R. Sauerbrey, D. Ehrt, W. Wintzer, “Diode-pumped chirped pulse amplification to the joule level,” Appl. Phys. B 79, 419–422 (2004).
[CrossRef]

Boulon, G.

A. Brenier, G. Boulon, “Overview of the best Yb3+-doped laser crystals,” J. Alloys Compd. 323–324, 210–213 (2001).
[CrossRef]

Bourdet, G. L.

G. L. Bourdet, “New evaluation of ytterbium doped materials for cw lasers applications,” Opt. Commun. 198, 411–417 (2001).
[CrossRef]

G. L. Bourdet, “Comparison of pulse amplification performances in longitudinally pumped ytterbium doped materials,” Opt. Commun. 200, 331–342 (2001).
[CrossRef]

G. L. Bourdet, R. A. Muller, “Tm, Ho:YLF microchip laser under Ti:sapphire and diode pumping,” Appl. Phys. B 70, 345–349 (2000).
[CrossRef]

G. L. Bourdet, M. Mérian, “Theoretical investigation of a slab CO2laser resonator with graded-phase mirror,” Opt. Commun. 152, 49–54 (1998).
[CrossRef]

G. L. Bourdet, J.-C. Chanteloup, A. Fülöp, Y. Julien, A. Migus, “The LUCIA project: a high average power ytterbium diode pumped solid state laser chain,” in Laser Optics 2003: Solid State Lasers and Nonlinear Frequency Conversion, V. I. Ustugov, ed., Proc. SPIE5478, 4–7 (2003).

Brauch, U.

Brenier, A.

A. Brenier, “A new evaluation of Yb3+-doped crystals for laser application,” J. Lumin. 92, 199–204 (2001).
[CrossRef]

A. Brenier, G. Boulon, “Overview of the best Yb3+-doped laser crystals,” J. Alloys Compd. 323–324, 210–213 (2001).
[CrossRef]

Brun, A.

Brunner, F.

Chabassier, G.

B. Pinot, H. Leplan, F. Houbre, E. Lavastre, J. C. Poncetta, G. Chabassier, “Laser megajoule 1.06 μm mirror production with very high laser damage threshold,” in Laser-Induced Damage in Optical Materials: 2001, G. J. Exarhos, A. H. Guenther, K. L. Lewis, M. J. Soileau, C. J. Stolz, eds., Proc. SPIE4679, 234–241 (2001).

Chanteloup, J.-C.

G. L. Bourdet, J.-C. Chanteloup, A. Fülöp, Y. Julien, A. Migus, “The LUCIA project: a high average power ytterbium diode pumped solid state laser chain,” in Laser Optics 2003: Solid State Lasers and Nonlinear Frequency Conversion, V. I. Ustugov, ed., Proc. SPIE5478, 4–7 (2003).

Chase, L. L.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29, 1179–1191 (1993).
[CrossRef]

Chen, D.

Chen, Y. C.

Y. Zhou, Q. Thai, Y. C. Chen, S. Zhou, “Monolithic Q-switched Cr, Yb:YAG laser,” Opt. Commun. 219, 365–367 (2003).
[CrossRef]

Chenais, S.

Collins, S. A.

S. A. Collins, “Lens-system diffraction integral written in terms of matrix optics,” J. Opt. Soc. Am. A 60, 1168–1177 (1970).
[CrossRef]

Contag, K.

C. Stewen, K. Contag, M. Larionov, A. Giesen, H. Hügel, “A 1 kW cw thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6, 650–657 (2000).
[CrossRef]

Couture, M.

de Silvestri, S.

S. de Silvestri, P. Laporta, V. Magni, O. Svelto, “Solid-state laser unstable resonators with tapered reflectivity mirrors: the super-Gaussian approach,” IEEE J. Quantum Electron. 24, 1172–1177 (1988).
[CrossRef]

DeLoach, L. D.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29, 1179–1191 (1993).
[CrossRef]

Druon, F.

Ehrt, D.

J. Hein, S. Podleska, M. Siebold, M. Hellwing, R. Bödefeld, R. Sauerbrey, D. Ehrt, W. Wintzer, “Diode-pumped chirped pulse amplification to the joule level,” Appl. Phys. B 79, 419–422 (2004).
[CrossRef]

Emanuel, M. A.

E. C. Honea, R. J. Beach, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, S. B. Sutton, S. A. Payne, P. V. Avizonis, R. S. Monroe, D. G. Harris, “High-power dual-road Yb:YAG laser,” Opt. Lett. 25, 805–807 (2000).
[CrossRef]

R. J. Beach, E. C. Honea, S. B. Sutton, C. M. Bibeau, J. A. Skidmore, M. A. Emanuel, S. A. Payne, P. V. Avizonis, R. S. Monroe, D. G. Harris, “High-average-power diode-pumped Yb:YAG lasers,” in Advanced High-Power Lasers, M. Osinski, H. T. Powell, K. Toyoda, eds., Proc. SPIE3889, 246–260 (2000).
[CrossRef]

Fromzel, V. A.

Fülöp, A.

G. L. Bourdet, J.-C. Chanteloup, A. Fülöp, Y. Julien, A. Migus, “The LUCIA project: a high average power ytterbium diode pumped solid state laser chain,” in Laser Optics 2003: Solid State Lasers and Nonlinear Frequency Conversion, V. I. Ustugov, ed., Proc. SPIE5478, 4–7 (2003).

Gallais, L.

Gaumé, R.

Georges, P.

Giesen, A.

C. Stewen, K. Contag, M. Larionov, A. Giesen, H. Hügel, “A 1 kW cw thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6, 650–657 (2000).
[CrossRef]

U. Brauch, A. Giesen, M. Karszewski, C. Stewen, A. Voss, “Multiwatt diode pumped Yb:YAG thin disk laser continuously tunable between 1018 and 1053 nm,” Opt. Lett. 20, 713–715 (1995).
[CrossRef] [PubMed]

Häring, R.

Harris, D. G.

E. C. Honea, R. J. Beach, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, S. B. Sutton, S. A. Payne, P. V. Avizonis, R. S. Monroe, D. G. Harris, “High-power dual-road Yb:YAG laser,” Opt. Lett. 25, 805–807 (2000).
[CrossRef]

R. J. Beach, E. C. Honea, S. B. Sutton, C. M. Bibeau, J. A. Skidmore, M. A. Emanuel, S. A. Payne, P. V. Avizonis, R. S. Monroe, D. G. Harris, “High-average-power diode-pumped Yb:YAG lasers,” in Advanced High-Power Lasers, M. Osinski, H. T. Powell, K. Toyoda, eds., Proc. SPIE3889, 246–260 (2000).
[CrossRef]

Hein, J.

J. Hein, S. Podleska, M. Siebold, M. Hellwing, R. Bödefeld, R. Sauerbrey, D. Ehrt, W. Wintzer, “Diode-pumped chirped pulse amplification to the joule level,” Appl. Phys. B 79, 419–422 (2004).
[CrossRef]

Hellwing, M.

J. Hein, S. Podleska, M. Siebold, M. Hellwing, R. Bödefeld, R. Sauerbrey, D. Ehrt, W. Wintzer, “Diode-pumped chirped pulse amplification to the joule level,” Appl. Phys. B 79, 419–422 (2004).
[CrossRef]

Honea, E. C.

E. C. Honea, R. J. Beach, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, S. B. Sutton, S. A. Payne, P. V. Avizonis, R. S. Monroe, D. G. Harris, “High-power dual-road Yb:YAG laser,” Opt. Lett. 25, 805–807 (2000).
[CrossRef]

R. J. Beach, E. C. Honea, S. B. Sutton, C. M. Bibeau, J. A. Skidmore, M. A. Emanuel, S. A. Payne, P. V. Avizonis, R. S. Monroe, D. G. Harris, “High-average-power diode-pumped Yb:YAG lasers,” in Advanced High-Power Lasers, M. Osinski, H. T. Powell, K. Toyoda, eds., Proc. SPIE3889, 246–260 (2000).
[CrossRef]

Hönninger, C.

Houbre, F.

B. Pinot, H. Leplan, F. Houbre, E. Lavastre, J. C. Poncetta, G. Chabassier, “Laser megajoule 1.06 μm mirror production with very high laser damage threshold,” in Laser-Induced Damage in Optical Materials: 2001, G. J. Exarhos, A. H. Guenther, K. L. Lewis, M. J. Soileau, C. J. Stolz, eds., Proc. SPIE4679, 234–241 (2001).

Hügel, H.

C. Stewen, K. Contag, M. Larionov, A. Giesen, H. Hügel, “A 1 kW cw thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6, 650–657 (2000).
[CrossRef]

Innerhofer, E.

Julien, Y.

G. L. Bourdet, J.-C. Chanteloup, A. Fülöp, Y. Julien, A. Migus, “The LUCIA project: a high average power ytterbium diode pumped solid state laser chain,” in Laser Optics 2003: Solid State Lasers and Nonlinear Frequency Conversion, V. I. Ustugov, ed., Proc. SPIE5478, 4–7 (2003).

Karszewski, M.

Keller, U.

Kopf, D.

Krupke, W. F.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29, 1179–1191 (1993).
[CrossRef]

Kumkar, M.

Kway, W. L.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29, 1179–1191 (1993).
[CrossRef]

Lachance, R.

Lachance, R. L.

R. Van Neste, C. Paré, R. L. Lachance, P. A. Bélanger, “Graded-phase resonator with a super-Gaussian output in a cw CO2laser,” IEEE J. Quantum Electron. 30, 2663–2699 (1994).
[CrossRef]

Laporta, P.

S. de Silvestri, P. Laporta, V. Magni, O. Svelto, “Solid-state laser unstable resonators with tapered reflectivity mirrors: the super-Gaussian approach,” IEEE J. Quantum Electron. 24, 1172–1177 (1988).
[CrossRef]

Larionov, M.

C. Stewen, K. Contag, M. Larionov, A. Giesen, H. Hügel, “A 1 kW cw thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6, 650–657 (2000).
[CrossRef]

Lavastre, E.

B. Pinot, H. Leplan, F. Houbre, E. Lavastre, J. C. Poncetta, G. Chabassier, “Laser megajoule 1.06 μm mirror production with very high laser damage threshold,” in Laser-Induced Damage in Optical Materials: 2001, G. J. Exarhos, A. H. Guenther, K. L. Lewis, M. J. Soileau, C. J. Stolz, eds., Proc. SPIE4679, 234–241 (2001).

Leger, J. R.

J. R. Leger, D. Chen, Z. Wang, “Diffractive optical element for mode shaping of a ND:YAG laser,” Opt. Lett. 19, 108–110 (1994).
[CrossRef] [PubMed]

J. R. Leger, G. Mowry, “External diode laser array cavity with mode-selecting mirror,” Appl. Phys. Lett. 63, 2884–2886 (1993).
[CrossRef]

Leplan, H.

B. Pinot, H. Leplan, F. Houbre, E. Lavastre, J. C. Poncetta, G. Chabassier, “Laser megajoule 1.06 μm mirror production with very high laser damage threshold,” in Laser-Induced Damage in Optical Materials: 2001, G. J. Exarhos, A. H. Guenther, K. L. Lewis, M. J. Soileau, C. J. Stolz, eds., Proc. SPIE4679, 234–241 (2001).

Lu, J.

J.-F. Bisson, Y. F. A. Shirakawa, H. Yoneda, J. Lu, H. Yagi, T. Yanagitani, K.-I. Ueda, “Laser damage threshold of ceramic YAG,” Jpn. J. Appl. Phys. Part 2 42, L1025–L1027 (2003).
[CrossRef]

Luce, J.

Magni, V.

S. de Silvestri, P. Laporta, V. Magni, O. Svelto, “Solid-state laser unstable resonators with tapered reflectivity mirrors: the super-Gaussian approach,” IEEE J. Quantum Electron. 24, 1172–1177 (1988).
[CrossRef]

Mérian, M.

G. L. Bourdet, M. Mérian, “Theoretical investigation of a slab CO2laser resonator with graded-phase mirror,” Opt. Commun. 152, 49–54 (1998).
[CrossRef]

Migus, A.

G. L. Bourdet, J.-C. Chanteloup, A. Fülöp, Y. Julien, A. Migus, “The LUCIA project: a high average power ytterbium diode pumped solid state laser chain,” in Laser Optics 2003: Solid State Lasers and Nonlinear Frequency Conversion, V. I. Ustugov, ed., Proc. SPIE5478, 4–7 (2003).

Mitchell, S. C.

Mohr, S.

Monroe, R. S.

E. C. Honea, R. J. Beach, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, S. B. Sutton, S. A. Payne, P. V. Avizonis, R. S. Monroe, D. G. Harris, “High-power dual-road Yb:YAG laser,” Opt. Lett. 25, 805–807 (2000).
[CrossRef]

R. J. Beach, E. C. Honea, S. B. Sutton, C. M. Bibeau, J. A. Skidmore, M. A. Emanuel, S. A. Payne, P. V. Avizonis, R. S. Monroe, D. G. Harris, “High-average-power diode-pumped Yb:YAG lasers,” in Advanced High-Power Lasers, M. Osinski, H. T. Powell, K. Toyoda, eds., Proc. SPIE3889, 246–260 (2000).
[CrossRef]

Mougel, F.

Mowry, G.

J. R. Leger, G. Mowry, “External diode laser array cavity with mode-selecting mirror,” Appl. Phys. Lett. 63, 2884–2886 (1993).
[CrossRef]

Muller, R. A.

G. L. Bourdet, R. A. Muller, “Tm, Ho:YLF microchip laser under Ti:sapphire and diode pumping,” Appl. Phys. B 70, 345–349 (2000).
[CrossRef]

Natoli, J.-Y.

Paré, C.

R. Van Neste, C. Paré, R. L. Lachance, P. A. Bélanger, “Graded-phase resonator with a super-Gaussian output in a cw CO2laser,” IEEE J. Quantum Electron. 30, 2663–2699 (1994).
[CrossRef]

C. Paré, P. A. Bélanger, “Custom laser resonators using graded-phase mirrors: circular geometry,” IEEE J. Quantum Electron. 30, 1141–1148 (1994).
[CrossRef]

P. A. Bélanger, R. Lachance, C. Paré, “Super-Gaussian output from a CO2laser by using a graded-phase mirror resonator,” Opt. Lett. 17, 739–741 (1992).
[CrossRef]

C. Paré, P. A. Bélanger, “Custom laser resonators using graded-phase mirrors,” IEEE J. Quantum Electron. 28, 355–362 (1992).
[CrossRef]

P. A. Bélanger, C. Paré, “Optical resonators using graded-phase mirrors,” Opt. Lett. 16, 1057–1059 (1991).
[CrossRef] [PubMed]

Paschotta, R.

Payne, S. A.

E. C. Honea, R. J. Beach, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, S. B. Sutton, S. A. Payne, P. V. Avizonis, R. S. Monroe, D. G. Harris, “High-power dual-road Yb:YAG laser,” Opt. Lett. 25, 805–807 (2000).
[CrossRef]

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29, 1179–1191 (1993).
[CrossRef]

R. J. Beach, E. C. Honea, S. B. Sutton, C. M. Bibeau, J. A. Skidmore, M. A. Emanuel, S. A. Payne, P. V. Avizonis, R. S. Monroe, D. G. Harris, “High-average-power diode-pumped Yb:YAG lasers,” in Advanced High-Power Lasers, M. Osinski, H. T. Powell, K. Toyoda, eds., Proc. SPIE3889, 246–260 (2000).
[CrossRef]

Piché, M.

Pinot, B.

B. Pinot, H. Leplan, F. Houbre, E. Lavastre, J. C. Poncetta, G. Chabassier, “Laser megajoule 1.06 μm mirror production with very high laser damage threshold,” in Laser-Induced Damage in Optical Materials: 2001, G. J. Exarhos, A. H. Guenther, K. L. Lewis, M. J. Soileau, C. J. Stolz, eds., Proc. SPIE4679, 234–241 (2001).

Podleska, S.

J. Hein, S. Podleska, M. Siebold, M. Hellwing, R. Bödefeld, R. Sauerbrey, D. Ehrt, W. Wintzer, “Diode-pumped chirped pulse amplification to the joule level,” Appl. Phys. B 79, 419–422 (2004).
[CrossRef]

Poncetta, J. C.

B. Pinot, H. Leplan, F. Houbre, E. Lavastre, J. C. Poncetta, G. Chabassier, “Laser megajoule 1.06 μm mirror production with very high laser damage threshold,” in Laser-Induced Damage in Optical Materials: 2001, G. J. Exarhos, A. H. Guenther, K. L. Lewis, M. J. Soileau, C. J. Stolz, eds., Proc. SPIE4679, 234–241 (2001).

Raybaut, P.

Rouyer, C.

Sauerbrey, R.

J. Hein, S. Podleska, M. Siebold, M. Hellwing, R. Bödefeld, R. Sauerbrey, D. Ehrt, W. Wintzer, “Diode-pumped chirped pulse amplification to the joule level,” Appl. Phys. B 79, 419–422 (2004).
[CrossRef]

Shirakawa, Y. F. A.

J.-F. Bisson, Y. F. A. Shirakawa, H. Yoneda, J. Lu, H. Yagi, T. Yanagitani, K.-I. Ueda, “Laser damage threshold of ceramic YAG,” Jpn. J. Appl. Phys. Part 2 42, L1025–L1027 (2003).
[CrossRef]

Si, J.

G. Zhao, J. Si, X. Xu, J. Xu, H. Song, Y. Zhou, “Growth of large-sized Yb:YAG single crystals by temperature gradient technique,” J. Cryst. Growth 252, 355–359 (2003).
[CrossRef]

Siebold, M.

J. Hein, S. Podleska, M. Siebold, M. Hellwing, R. Bödefeld, R. Sauerbrey, D. Ehrt, W. Wintzer, “Diode-pumped chirped pulse amplification to the joule level,” Appl. Phys. B 79, 419–422 (2004).
[CrossRef]

Siegman, A. G.

A. G. Siegman, “Unstable optical resonator for laser applications,” Proc. IEEE 53, 277–287 (1965).
[CrossRef]

Skidmore, J. A.

E. C. Honea, R. J. Beach, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, S. B. Sutton, S. A. Payne, P. V. Avizonis, R. S. Monroe, D. G. Harris, “High-power dual-road Yb:YAG laser,” Opt. Lett. 25, 805–807 (2000).
[CrossRef]

R. J. Beach, E. C. Honea, S. B. Sutton, C. M. Bibeau, J. A. Skidmore, M. A. Emanuel, S. A. Payne, P. V. Avizonis, R. S. Monroe, D. G. Harris, “High-average-power diode-pumped Yb:YAG lasers,” in Advanced High-Power Lasers, M. Osinski, H. T. Powell, K. Toyoda, eds., Proc. SPIE3889, 246–260 (2000).
[CrossRef]

Smith, L. K.

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29, 1179–1191 (1993).
[CrossRef]

Song, H.

G. Zhao, J. Si, X. Xu, J. Xu, H. Song, Y. Zhou, “Growth of large-sized Yb:YAG single crystals by temperature gradient technique,” J. Cryst. Growth 252, 355–359 (2003).
[CrossRef]

Stewen, C.

C. Stewen, K. Contag, M. Larionov, A. Giesen, H. Hügel, “A 1 kW cw thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6, 650–657 (2000).
[CrossRef]

U. Brauch, A. Giesen, M. Karszewski, C. Stewen, A. Voss, “Multiwatt diode pumped Yb:YAG thin disk laser continuously tunable between 1018 and 1053 nm,” Opt. Lett. 20, 713–715 (1995).
[CrossRef] [PubMed]

Südmeyer, T.

Sutton, S. B.

E. C. Honea, R. J. Beach, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, S. B. Sutton, S. A. Payne, P. V. Avizonis, R. S. Monroe, D. G. Harris, “High-power dual-road Yb:YAG laser,” Opt. Lett. 25, 805–807 (2000).
[CrossRef]

R. J. Beach, E. C. Honea, S. B. Sutton, C. M. Bibeau, J. A. Skidmore, M. A. Emanuel, S. A. Payne, P. V. Avizonis, R. S. Monroe, D. G. Harris, “High-average-power diode-pumped Yb:YAG lasers,” in Advanced High-Power Lasers, M. Osinski, H. T. Powell, K. Toyoda, eds., Proc. SPIE3889, 246–260 (2000).
[CrossRef]

Svelto, O.

S. de Silvestri, P. Laporta, V. Magni, O. Svelto, “Solid-state laser unstable resonators with tapered reflectivity mirrors: the super-Gaussian approach,” IEEE J. Quantum Electron. 24, 1172–1177 (1988).
[CrossRef]

Ter-Mikirtychev, V. V.

Thai, Q.

Y. Zhou, Q. Thai, Y. C. Chen, S. Zhou, “Monolithic Q-switched Cr, Yb:YAG laser,” Opt. Commun. 219, 365–367 (2003).
[CrossRef]

Ueda, K.-I.

J.-F. Bisson, Y. F. A. Shirakawa, H. Yoneda, J. Lu, H. Yagi, T. Yanagitani, K.-I. Ueda, “Laser damage threshold of ceramic YAG,” Jpn. J. Appl. Phys. Part 2 42, L1025–L1027 (2003).
[CrossRef]

Vakhimov, A. G.

A. G. Vakhimov, “Open resonators with mirror having variable reflexion coefficients,” Radio Eng. Electron. Phys. 10, 1439–1446 (1965).

Van Neste, R.

R. Van Neste, C. Paré, R. L. Lachance, P. A. Bélanger, “Graded-phase resonator with a super-Gaussian output in a cw CO2laser,” IEEE J. Quantum Electron. 30, 2663–2699 (1994).
[CrossRef]

Viana, B.

Videau, L.

Vivien, D.

Voss, A.

Wang, Z.

Wintzer, W.

J. Hein, S. Podleska, M. Siebold, M. Hellwing, R. Bödefeld, R. Sauerbrey, D. Ehrt, W. Wintzer, “Diode-pumped chirped pulse amplification to the joule level,” Appl. Phys. B 79, 419–422 (2004).
[CrossRef]

Xu, J.

G. Zhao, J. Si, X. Xu, J. Xu, H. Song, Y. Zhou, “Growth of large-sized Yb:YAG single crystals by temperature gradient technique,” J. Cryst. Growth 252, 355–359 (2003).
[CrossRef]

Xu, X.

G. Zhao, J. Si, X. Xu, J. Xu, H. Song, Y. Zhou, “Growth of large-sized Yb:YAG single crystals by temperature gradient technique,” J. Cryst. Growth 252, 355–359 (2003).
[CrossRef]

Yagi, H.

J.-F. Bisson, Y. F. A. Shirakawa, H. Yoneda, J. Lu, H. Yagi, T. Yanagitani, K.-I. Ueda, “Laser damage threshold of ceramic YAG,” Jpn. J. Appl. Phys. Part 2 42, L1025–L1027 (2003).
[CrossRef]

Yanagitani, T.

J.-F. Bisson, Y. F. A. Shirakawa, H. Yoneda, J. Lu, H. Yagi, T. Yanagitani, K.-I. Ueda, “Laser damage threshold of ceramic YAG,” Jpn. J. Appl. Phys. Part 2 42, L1025–L1027 (2003).
[CrossRef]

Yoneda, H.

J.-F. Bisson, Y. F. A. Shirakawa, H. Yoneda, J. Lu, H. Yagi, T. Yanagitani, K.-I. Ueda, “Laser damage threshold of ceramic YAG,” Jpn. J. Appl. Phys. Part 2 42, L1025–L1027 (2003).
[CrossRef]

Zhao, G.

G. Zhao, J. Si, X. Xu, J. Xu, H. Song, Y. Zhou, “Growth of large-sized Yb:YAG single crystals by temperature gradient technique,” J. Cryst. Growth 252, 355–359 (2003).
[CrossRef]

Zhao, Zhiwei

Zhiwei Zhao, Shanghai Institute of Optics and Fine Mechanics, Shanghai, China (personal communication, 2004).

Zhou, S.

Y. Zhou, Q. Thai, Y. C. Chen, S. Zhou, “Monolithic Q-switched Cr, Yb:YAG laser,” Opt. Commun. 219, 365–367 (2003).
[CrossRef]

Zhou, Y.

Y. Zhou, Q. Thai, Y. C. Chen, S. Zhou, “Monolithic Q-switched Cr, Yb:YAG laser,” Opt. Commun. 219, 365–367 (2003).
[CrossRef]

G. Zhao, J. Si, X. Xu, J. Xu, H. Song, Y. Zhou, “Growth of large-sized Yb:YAG single crystals by temperature gradient technique,” J. Cryst. Growth 252, 355–359 (2003).
[CrossRef]

Appl. Opt.

Appl. Phys. B

G. L. Bourdet, R. A. Muller, “Tm, Ho:YLF microchip laser under Ti:sapphire and diode pumping,” Appl. Phys. B 70, 345–349 (2000).
[CrossRef]

J. Hein, S. Podleska, M. Siebold, M. Hellwing, R. Bödefeld, R. Sauerbrey, D. Ehrt, W. Wintzer, “Diode-pumped chirped pulse amplification to the joule level,” Appl. Phys. B 79, 419–422 (2004).
[CrossRef]

Appl. Phys. Lett.

J. R. Leger, G. Mowry, “External diode laser array cavity with mode-selecting mirror,” Appl. Phys. Lett. 63, 2884–2886 (1993).
[CrossRef]

IEEE J. Quantum Electron.

C. Paré, P. A. Bélanger, “Custom laser resonators using graded-phase mirrors,” IEEE J. Quantum Electron. 28, 355–362 (1992).
[CrossRef]

C. Paré, P. A. Bélanger, “Custom laser resonators using graded-phase mirrors: circular geometry,” IEEE J. Quantum Electron. 30, 1141–1148 (1994).
[CrossRef]

R. Van Neste, C. Paré, R. L. Lachance, P. A. Bélanger, “Graded-phase resonator with a super-Gaussian output in a cw CO2laser,” IEEE J. Quantum Electron. 30, 2663–2699 (1994).
[CrossRef]

S. de Silvestri, P. Laporta, V. Magni, O. Svelto, “Solid-state laser unstable resonators with tapered reflectivity mirrors: the super-Gaussian approach,” IEEE J. Quantum Electron. 24, 1172–1177 (1988).
[CrossRef]

L. D. DeLoach, S. A. Payne, L. L. Chase, L. K. Smith, W. L. Kway, W. F. Krupke, “Evaluation of absorption and emission properties of Yb3+ doped crystals for laser applications,” IEEE J. Quantum Electron. 29, 1179–1191 (1993).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

C. Stewen, K. Contag, M. Larionov, A. Giesen, H. Hügel, “A 1 kW cw thin disc laser,” IEEE J. Sel. Top. Quantum Electron. 6, 650–657 (2000).
[CrossRef]

J. Alloys Compd.

A. Brenier, G. Boulon, “Overview of the best Yb3+-doped laser crystals,” J. Alloys Compd. 323–324, 210–213 (2001).
[CrossRef]

J. Cryst. Growth

G. Zhao, J. Si, X. Xu, J. Xu, H. Song, Y. Zhou, “Growth of large-sized Yb:YAG single crystals by temperature gradient technique,” J. Cryst. Growth 252, 355–359 (2003).
[CrossRef]

J. Lumin.

A. Brenier, “A new evaluation of Yb3+-doped crystals for laser application,” J. Lumin. 92, 199–204 (2001).
[CrossRef]

J. Opt. Soc. Am. A

S. A. Collins, “Lens-system diffraction integral written in terms of matrix optics,” J. Opt. Soc. Am. A 60, 1168–1177 (1970).
[CrossRef]

J. Opt. Soc. Am. B

Jpn. J. Appl. Phys. Part 2

J.-F. Bisson, Y. F. A. Shirakawa, H. Yoneda, J. Lu, H. Yagi, T. Yanagitani, K.-I. Ueda, “Laser damage threshold of ceramic YAG,” Jpn. J. Appl. Phys. Part 2 42, L1025–L1027 (2003).
[CrossRef]

Opt. Commun.

G. L. Bourdet, M. Mérian, “Theoretical investigation of a slab CO2laser resonator with graded-phase mirror,” Opt. Commun. 152, 49–54 (1998).
[CrossRef]

Y. Zhou, Q. Thai, Y. C. Chen, S. Zhou, “Monolithic Q-switched Cr, Yb:YAG laser,” Opt. Commun. 219, 365–367 (2003).
[CrossRef]

G. L. Bourdet, “New evaluation of ytterbium doped materials for cw lasers applications,” Opt. Commun. 198, 411–417 (2001).
[CrossRef]

G. L. Bourdet, “Comparison of pulse amplification performances in longitudinally pumped ytterbium doped materials,” Opt. Commun. 200, 331–342 (2001).
[CrossRef]

Opt. Lett.

E. C. Honea, R. J. Beach, S. C. Mitchell, J. A. Skidmore, M. A. Emanuel, S. B. Sutton, S. A. Payne, P. V. Avizonis, R. S. Monroe, D. G. Harris, “High-power dual-road Yb:YAG laser,” Opt. Lett. 25, 805–807 (2000).
[CrossRef]

U. Brauch, A. Giesen, M. Karszewski, C. Stewen, A. Voss, “Multiwatt diode pumped Yb:YAG thin disk laser continuously tunable between 1018 and 1053 nm,” Opt. Lett. 20, 713–715 (1995).
[CrossRef] [PubMed]

E. Innerhofer, T. Südmeyer, F. Brunner, R. Häring, A. Aschwanden, R. Paschotta, C. Hönninger, M. Kumkar, U. Keller, “60-W average power in 810-fs from a thin-disk YB: YAG laser,” Opt. Lett. 28, 367–369 (2003).
[CrossRef] [PubMed]

F. Druon, S. Chenais, P. Raybaut, F. Balembois, P. Georges, R. Gaumé, G. Aka, B. Viana, S. Mohr, D. Kopf, “Diode-pumped Yb:Sr3Y(BO3)3 femtosecond laser,” Opt. Lett. 27, 197–199 (2002).
[CrossRef]

V. Bagnoud, J. Luce, L. Videau, C. Rouyer, “Diode-pumped regenerative amplifier delivering 100 mJ single mode laser pulses,” Opt. Lett. 26, 337–339 (2001).
[CrossRef]

J. R. Leger, D. Chen, Z. Wang, “Diffractive optical element for mode shaping of a ND:YAG laser,” Opt. Lett. 19, 108–110 (1994).
[CrossRef] [PubMed]

P. A. Bélanger, R. Lachance, C. Paré, “Super-Gaussian output from a CO2laser by using a graded-phase mirror resonator,” Opt. Lett. 17, 739–741 (1992).
[CrossRef]

P. A. Bélanger, C. Paré, “Optical resonators using graded-phase mirrors,” Opt. Lett. 16, 1057–1059 (1991).
[CrossRef] [PubMed]

Proc. IEEE

A. G. Siegman, “Unstable optical resonator for laser applications,” Proc. IEEE 53, 277–287 (1965).
[CrossRef]

Radio Eng. Electron. Phys.

A. G. Vakhimov, “Open resonators with mirror having variable reflexion coefficients,” Radio Eng. Electron. Phys. 10, 1439–1446 (1965).

Other

Zhiwei Zhao, Shanghai Institute of Optics and Fine Mechanics, Shanghai, China (personal communication, 2004).

B. Pinot, H. Leplan, F. Houbre, E. Lavastre, J. C. Poncetta, G. Chabassier, “Laser megajoule 1.06 μm mirror production with very high laser damage threshold,” in Laser-Induced Damage in Optical Materials: 2001, G. J. Exarhos, A. H. Guenther, K. L. Lewis, M. J. Soileau, C. J. Stolz, eds., Proc. SPIE4679, 234–241 (2001).

R. J. Beach, E. C. Honea, S. B. Sutton, C. M. Bibeau, J. A. Skidmore, M. A. Emanuel, S. A. Payne, P. V. Avizonis, R. S. Monroe, D. G. Harris, “High-average-power diode-pumped Yb:YAG lasers,” in Advanced High-Power Lasers, M. Osinski, H. T. Powell, K. Toyoda, eds., Proc. SPIE3889, 246–260 (2000).
[CrossRef]

C. Bibeau, “The Mercury project—a gas cooled, 10 Hz, diode pumped Yb:S-FAP system for inertial fusion energy,” presented at the EPS-QEOD Europhoton Conference, Lausanne, Switzerland, 29 August–3 September, 2004.

G. L. Bourdet, J.-C. Chanteloup, A. Fülöp, Y. Julien, A. Migus, “The LUCIA project: a high average power ytterbium diode pumped solid state laser chain,” in Laser Optics 2003: Solid State Lasers and Nonlinear Frequency Conversion, V. I. Ustugov, ed., Proc. SPIE5478, 4–7 (2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Laser performance for high-gain ytterbium-doped materials.

Fig. 2
Fig. 2

Schematic of the laser cavity: AR, antireflective; HR, highly reflective.

Fig. 3
Fig. 3

Variation of power output (curve A) and parameter ξ (curve B) relative to number of round trips for γ = 0.8 and n = 4.

Fig. 4
Fig. 4

Change of the mode profile (circles) and of the upper-state population density normalized to the initial population density (squares) for number of round trips N equal to 62 (end of the linear propagation in an unsaturated gain medium), 68 (maximum output power), and 80 (beginning of the linear propagation in a totally saturated gain medium) versus radius for γ = 0.8 and n = 4.

Fig. 5
Fig. 5

Output mode averaged on all pulse durations (curve A), the corresponding internal intensity on the output mirror (curve B), and the mirror reflectivity distribution (curve C) versus radius for γ = 0.8 and n = 4.

Fig. 6
Fig. 6

Evolution of the fundamental (L = 0) and the first-order (L = 1) transverse modes versus the number of round trips for γ = 0.8 and n = 4.

Fig. 7
Fig. 7

Evolution of focusing distance (Zed) and fraction of energy in the main lobe (Frac) versus the number of round trips for γ = 0.8 and n = 4.

Fig. 8
Fig. 8

(a) Efficiency versus coupling loss γ for n = 4 and K = 1. (b) Number of round trips necessary to reach maximum output power N and FWHM pulse duration versus coupling loss γ for n = 4 and K = 1. (c) Output energy (Eout) and maximum internal fluence (Fint) versus coupling loss γ for n = 4 and K = 1.

Fig. 9
Fig. 9

(a) Output energy (Eout) and total maximum internal fluence (Fint) versus mode order n for coupling loss γ = 0.8 and K = 1. (b) Efficiency versus mode order n for γ = 0.8 and K = 1. (c) Evolution of focusing distance (Zed) and fraction of energy in the main lobe (Frac) for the maximum output power versus mode order n for γ = 0.8 and K = 1.

Fig. 10
Fig. 10

(a) Variation of (top to bottom) efficiency, extracted energy, and maximum internal fluence versus parameter K for γ = 0.8 and n = 4. (b) Variation of focusing distance (Zed) and fraction of energy in the main lobe (Frac) versus K parameter for γ = 0.8 and n = 4.

Fig. 11
Fig. 11

Intensity stored in a slab of the amplifier medium in the schematic shown in Fig. 2 versus reflectivity of the input face for various reflectivities R of the rear face.

Fig. 12
Fig. 12

Peak intensity of a propagated super-Gaussian mode of order 20 normalized to the intensity of the mode at the center versus propagation distance normalized to the Rayleigh range.

Tables (4)

Tables Icon

Table 1 Optimum Product of Amplifier Length and Yb Concentration (LoptNYb) for a 15 kW/cm Pump Intensity, the Corresponding Optimum Pump Duration (topt), the Number of Passes through the Amplifier Medium for Reaching Gain Saturation (N), and Thermal Conductivity (3) for High-Gain Yb-Doped Doped Crystals

Tables Icon

Table 2 Pump and Cavity Parameters Used for the Computations

Tables Icon

Table 3 Results Obtained with the Parameters of Table 2

Tables Icon

Table 4 Cavity Parameters versus Mode Order for Lc = 0.5 m, γ = 0.8 and K = 1

Equations (25)

Equations on this page are rendered with MathJax. Learn more.

cos θ = λ p / λ l .
R = R 0 exp [ - 2 ( r / w m ) n ] ,
g i = 1 - L R i .
M = A + ɛ A 2 - 1 ,             A = 2 g 1 g 2 - 1 ,             ɛ = ± 1.
I i ( r ) = I 0 exp [ - 2 ( r / w i ) n ] , I r ( r ) = I 0 R 0 exp [ - 2 ( r / w r ) n ] .
w i = w m ( M n - 1 ) 1 / n ,             w r = w m ( 1 - M - n ) 1 / n ,
γ = 1 - ( R 0 / M 2 ) ,
R 0 M n = 1
Z R ( n ) = Z R ( 2 ) [ 8 n 2 Γ ( 1 / 2 + 2 / n ) Γ ( 2 / n ) Γ ( 1 / 2 ) ] 1 / 2 ,
A 2 ( x 2 ,     y 2 ) = - i k 2 π B exp - i k L A 1 ( x 1 , y 1 ) × exp { - i k 2 B [ A ( x 1 2 + y 1 2 ) - 2 ( x 1 x 2 + y 1 y 2 ) + D ( x 2 2 + y 2 2 ) ] } d x 1 d y 1 .
x i = ρ i cos θ ,             y i = ρ i sin θ ,             i = 1 ,     2.
A 2 ( ρ 2 ,     θ 2 ) = - i k 2 π B exp - i k ( L + D 2 B ρ 2 2 ) × ρ = 0 r A 1 ( ρ 1 ) | cos l θ 1 sin l θ 1 × exp - i k A 2 B ρ 1 2 exp i [ k B ρ 1 ρ 2 cos ( θ 1 - θ 2 ) ] ρ 1 d ρ 1 d θ 1 .
0 2 π exp ( i α cos θ ) cos l θ d θ = 2 π i 1 J 1 ( α ) , 0 2 π exp ( i α cos θ ) sin l θ d θ = 0 ,
A 2 ( ρ 2 ,     θ 2 ) = - i l - 1 2 π B exp - i k ( L + D 2 B ρ 2 2 ) | cos l θ 2 sin l θ 2 × ρ = 0 r A 1 ( ρ 1 ) exp - i k × A 2 B ρ 1 2 J 1 ( k B ρ 1 ρ 2 ) ρ 1 d ρ 1 d θ 1 .
F i + 1 = F i exp [ g 0 L ( X u , i - f l ) ]
g 0 = σ l N Yb ( f lm + f un ) ,             f l = f lm f lm + f un ,
X u , i + 1 = f l + ( X u , i - f l ) exp ( - F i )
R cm = 2 L c - R co .
M = 1 - 2 ( L c / R co ) .
ζ = I out ( w m / 2 ) I out ( w m ) .
S ( n ) = 2 2 - 2 / n Γ ( 2 / n ) n S ( 2 ) ,             S ( 2 ) = π ω 0 2 2 ,
η = E out P pump τ p ,             P pump = π ω p 2 I p 0 .
K = M n R 0 .
γ = 1 - K M n + 2 .
M = ( K 1 - γ ) 1 / n + 2 ,             R 0 = K M n , R co = 2 L c 1 - M ,             R cm = - 2 M L c 1 - M .

Metrics