Abstract

Superstructure-grating distributed Bragg reflector lasers are particularly suited for optical frequency-domain reflectometry optical-coherence tomography with wide wavelength tunability and frequency agility. We report theoretical estimates of and experimental results for the data acquisition speed, the observable depth range, the resolution, and the dynamic range of an optical frequency-domain reflectometry system that uses a superstructure-grating distributed Bragg reflector laser whose wavelength can be tuned from 1533 to 1574 nm with a tuning speed of 10 μs/0.1-nm step.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time-domain optical coherence tomography,” Opt. Lett. 28, 2067–2069 (2003).
    [CrossRef] [PubMed]
  3. R. Leitgeb, C. K. Hitzenberger, A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express11, 889–894 (2003), http://www.opticsexpress.org .
    [CrossRef]
  4. M. A. Choma, M. V. Sarunic, C. Yang, J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express11, 2183–2189 (2003), http://www.opticsexpress.org .
    [CrossRef]
  5. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express11, 2953–2963 (2003), http://www.opticsexpress.org .
    [CrossRef]
  6. S. H. Yun, C. Boudoux, G. H. Tearney, B. E. Bouma, “High-speed wavelength-swept semiconductor laser with a polygon-scanner-based wavelength filter,” Opt. Lett. 28, 1981–1983 (2003).
    [CrossRef] [PubMed]
  7. C. K. Hitzenberger, A. F. Fercher, “Alternative OCT technique,” in Handbook of Optical Coherence Tomography, B. E. Bouma, G. J. Tearney, eds. (Marcel Dekker, New York, 2002), pp. 359–383.
  8. M. Kinoshita, M. Takeda, H. Yago, Y. Watanabe, T. Kurokawa, “Optical frequency-domain imaging microprofilometry with a frequency-tunable liquid-crystal Fabry–Perot etalon device,” Appl. Opt. 38, 7063–7068 (1999).
    [CrossRef]
  9. S. R. Chinn, E. A. Swanson, J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22, 340–342 (1997).
    [CrossRef] [PubMed]
  10. H. Hiratsuka, E. Kifo, T. Yoshimura, “Simultaneous measurement of three-dimensional reflectivity distributions in scattering media based on optical frequency-domain reflectometry,” Opt. Lett. 23, 1420–1422 (1998).
    [CrossRef]
  11. A. W. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Ungarunyawee, J. A. Izatt, “In vivo video rate optical coherence tomography,” Opt. Express3, 219–229 (1998), http://www.opticsexpress.org .
    [CrossRef]
  12. B. Golubovic, B. E. Bouma, G. J. Tearney, J. G. Fujimoto, “Optical frequency-domain reflectometry using rapid wavelength tuning of a Cr4+:forsterite laser,” Opt. Lett. 22, 1704–1706 (1997).
    [CrossRef]
  13. U. Haberland, P. Jansen, V. Blazek, H. Schmitt, “Optical coherence tomography of scattering media using frequency modulated continuous wave techniques with tunable near-infrared laser,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications, V. V. Tuchin, H. Podbielska, B. Ovryn, eds., Proc. SPIE2981, 20–28 (1997).
    [CrossRef]
  14. U. Haberland, V. Blazek, H. J. Schmitt, “Chirp optical coherence tomography of layered scattering media,” J. Biomed. Opt. 3, 259–266 (1998).
    [CrossRef] [PubMed]
  15. C. K. Hitzenberger, M. Kulhavy, F. Lexer, A. Baumgartner, A. F. Fercher, “In vivo intraocular ranging by wavelength tuning interferometry,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications II, V. V. Tuchin, J. A. Izatt, eds., Proc. SPIE3251, 47–51 (1998).
    [CrossRef]
  16. Y. Tohmori, Y. Yoshikuni, H. Ishii, F. Kano, T. Tamamura, Y. Kondo, M. Yamamoto, “Broad-range wavelength-tunable superstructure grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 29, 1817–1823 (1993).
    [CrossRef]
  17. F. Kano, H. Ishii, Y. Tohmori, M. Yamamoto, Y. Yoshikuni, “Broad range wavelength switching in superstructured grating distributed Bragg reflector lasers,” Electron. Lett. 29, 1091–1092 (1993).
    [CrossRef]
  18. Y. Sakai, Y. Yoshikuni, Y. Tachikawa, H. Ishii, S. Suzuki, H. Tsuchiya, “FDM optical switching of 16 channels at 5 Gbit/s data rate using an SSG-DBR laser and arrayed-waveguide grating,” Electron. Lett. 30, 1300–1302 (1994).
    [CrossRef]
  19. H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, Y. Yoshikuni, “Quasicontinuous wavelength tuning in superstructure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32, 433–441 (1996).
    [CrossRef]
  20. H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, Y. Yoshikuni, “Broad-range wavelength coverage (62.4 nm) with superstructure-grating DBR laser,” Electron. Lett. 32, 454–455 (1996).
    [CrossRef]
  21. H. Ishii, F. Kano, Y. Yoshikuni, H. Yasaka, “Mode stabilization method for superstructure-grating DBR lasers,” J. Lightwave Technol. 16, 433–442 (1998).
    [CrossRef]
  22. F. Kano, Y. Yoshikuni, H. Ishii, “Frequency control and stabilization of broadly tunable SSG-DBR lasers,” in Optical Fiber Communication Conference (OFC), Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 538–540.
    [CrossRef]
  23. A. M. Rollins, J. A. Izatt, “Optimal interferometer designs for optical coherence tomography,” Opt. Lett. 24, 1484–1486 (1999).
    [CrossRef]
  24. W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C (Cambridge U. Press, Cambridge, UK, 1988), Fig. 12.7.2.

2003 (2)

1999 (2)

1998 (3)

1997 (2)

1996 (2)

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, Y. Yoshikuni, “Quasicontinuous wavelength tuning in superstructure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32, 433–441 (1996).
[CrossRef]

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, Y. Yoshikuni, “Broad-range wavelength coverage (62.4 nm) with superstructure-grating DBR laser,” Electron. Lett. 32, 454–455 (1996).
[CrossRef]

1994 (1)

Y. Sakai, Y. Yoshikuni, Y. Tachikawa, H. Ishii, S. Suzuki, H. Tsuchiya, “FDM optical switching of 16 channels at 5 Gbit/s data rate using an SSG-DBR laser and arrayed-waveguide grating,” Electron. Lett. 30, 1300–1302 (1994).
[CrossRef]

1993 (2)

Y. Tohmori, Y. Yoshikuni, H. Ishii, F. Kano, T. Tamamura, Y. Kondo, M. Yamamoto, “Broad-range wavelength-tunable superstructure grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 29, 1817–1823 (1993).
[CrossRef]

F. Kano, H. Ishii, Y. Tohmori, M. Yamamoto, Y. Yoshikuni, “Broad range wavelength switching in superstructured grating distributed Bragg reflector lasers,” Electron. Lett. 29, 1091–1092 (1993).
[CrossRef]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Baumgartner, A.

C. K. Hitzenberger, M. Kulhavy, F. Lexer, A. Baumgartner, A. F. Fercher, “In vivo intraocular ranging by wavelength tuning interferometry,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications II, V. V. Tuchin, J. A. Izatt, eds., Proc. SPIE3251, 47–51 (1998).
[CrossRef]

Blazek, V.

U. Haberland, V. Blazek, H. J. Schmitt, “Chirp optical coherence tomography of layered scattering media,” J. Biomed. Opt. 3, 259–266 (1998).
[CrossRef] [PubMed]

U. Haberland, P. Jansen, V. Blazek, H. Schmitt, “Optical coherence tomography of scattering media using frequency modulated continuous wave techniques with tunable near-infrared laser,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications, V. V. Tuchin, H. Podbielska, B. Ovryn, eds., Proc. SPIE2981, 20–28 (1997).
[CrossRef]

Boudoux, C.

Bouma, B. E.

Cense, B.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Chinn, S. R.

de Boer, J. F.

Fercher, A. F.

C. K. Hitzenberger, A. F. Fercher, “Alternative OCT technique,” in Handbook of Optical Coherence Tomography, B. E. Bouma, G. J. Tearney, eds. (Marcel Dekker, New York, 2002), pp. 359–383.

C. K. Hitzenberger, M. Kulhavy, F. Lexer, A. Baumgartner, A. F. Fercher, “In vivo intraocular ranging by wavelength tuning interferometry,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications II, V. V. Tuchin, J. A. Izatt, eds., Proc. SPIE3251, 47–51 (1998).
[CrossRef]

Flannery, B. P.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C (Cambridge U. Press, Cambridge, UK, 1988), Fig. 12.7.2.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

Golubovic, B.

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Haberland, U.

U. Haberland, V. Blazek, H. J. Schmitt, “Chirp optical coherence tomography of layered scattering media,” J. Biomed. Opt. 3, 259–266 (1998).
[CrossRef] [PubMed]

U. Haberland, P. Jansen, V. Blazek, H. Schmitt, “Optical coherence tomography of scattering media using frequency modulated continuous wave techniques with tunable near-infrared laser,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications, V. V. Tuchin, H. Podbielska, B. Ovryn, eds., Proc. SPIE2981, 20–28 (1997).
[CrossRef]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hiratsuka, H.

Hitzenberger, C. K.

C. K. Hitzenberger, M. Kulhavy, F. Lexer, A. Baumgartner, A. F. Fercher, “In vivo intraocular ranging by wavelength tuning interferometry,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications II, V. V. Tuchin, J. A. Izatt, eds., Proc. SPIE3251, 47–51 (1998).
[CrossRef]

C. K. Hitzenberger, A. F. Fercher, “Alternative OCT technique,” in Handbook of Optical Coherence Tomography, B. E. Bouma, G. J. Tearney, eds. (Marcel Dekker, New York, 2002), pp. 359–383.

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Ishii, H.

H. Ishii, F. Kano, Y. Yoshikuni, H. Yasaka, “Mode stabilization method for superstructure-grating DBR lasers,” J. Lightwave Technol. 16, 433–442 (1998).
[CrossRef]

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, Y. Yoshikuni, “Broad-range wavelength coverage (62.4 nm) with superstructure-grating DBR laser,” Electron. Lett. 32, 454–455 (1996).
[CrossRef]

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, Y. Yoshikuni, “Quasicontinuous wavelength tuning in superstructure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32, 433–441 (1996).
[CrossRef]

Y. Sakai, Y. Yoshikuni, Y. Tachikawa, H. Ishii, S. Suzuki, H. Tsuchiya, “FDM optical switching of 16 channels at 5 Gbit/s data rate using an SSG-DBR laser and arrayed-waveguide grating,” Electron. Lett. 30, 1300–1302 (1994).
[CrossRef]

F. Kano, H. Ishii, Y. Tohmori, M. Yamamoto, Y. Yoshikuni, “Broad range wavelength switching in superstructured grating distributed Bragg reflector lasers,” Electron. Lett. 29, 1091–1092 (1993).
[CrossRef]

Y. Tohmori, Y. Yoshikuni, H. Ishii, F. Kano, T. Tamamura, Y. Kondo, M. Yamamoto, “Broad-range wavelength-tunable superstructure grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 29, 1817–1823 (1993).
[CrossRef]

F. Kano, Y. Yoshikuni, H. Ishii, “Frequency control and stabilization of broadly tunable SSG-DBR lasers,” in Optical Fiber Communication Conference (OFC), Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 538–540.
[CrossRef]

Izatt, J. A.

Jansen, P.

U. Haberland, P. Jansen, V. Blazek, H. Schmitt, “Optical coherence tomography of scattering media using frequency modulated continuous wave techniques with tunable near-infrared laser,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications, V. V. Tuchin, H. Podbielska, B. Ovryn, eds., Proc. SPIE2981, 20–28 (1997).
[CrossRef]

Kano, F.

H. Ishii, F. Kano, Y. Yoshikuni, H. Yasaka, “Mode stabilization method for superstructure-grating DBR lasers,” J. Lightwave Technol. 16, 433–442 (1998).
[CrossRef]

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, Y. Yoshikuni, “Broad-range wavelength coverage (62.4 nm) with superstructure-grating DBR laser,” Electron. Lett. 32, 454–455 (1996).
[CrossRef]

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, Y. Yoshikuni, “Quasicontinuous wavelength tuning in superstructure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32, 433–441 (1996).
[CrossRef]

Y. Tohmori, Y. Yoshikuni, H. Ishii, F. Kano, T. Tamamura, Y. Kondo, M. Yamamoto, “Broad-range wavelength-tunable superstructure grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 29, 1817–1823 (1993).
[CrossRef]

F. Kano, H. Ishii, Y. Tohmori, M. Yamamoto, Y. Yoshikuni, “Broad range wavelength switching in superstructured grating distributed Bragg reflector lasers,” Electron. Lett. 29, 1091–1092 (1993).
[CrossRef]

F. Kano, Y. Yoshikuni, H. Ishii, “Frequency control and stabilization of broadly tunable SSG-DBR lasers,” in Optical Fiber Communication Conference (OFC), Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 538–540.
[CrossRef]

Kifo, E.

Kinoshita, M.

Kondo, Y.

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, Y. Yoshikuni, “Broad-range wavelength coverage (62.4 nm) with superstructure-grating DBR laser,” Electron. Lett. 32, 454–455 (1996).
[CrossRef]

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, Y. Yoshikuni, “Quasicontinuous wavelength tuning in superstructure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32, 433–441 (1996).
[CrossRef]

Y. Tohmori, Y. Yoshikuni, H. Ishii, F. Kano, T. Tamamura, Y. Kondo, M. Yamamoto, “Broad-range wavelength-tunable superstructure grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 29, 1817–1823 (1993).
[CrossRef]

Kulhavy, M.

C. K. Hitzenberger, M. Kulhavy, F. Lexer, A. Baumgartner, A. F. Fercher, “In vivo intraocular ranging by wavelength tuning interferometry,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications II, V. V. Tuchin, J. A. Izatt, eds., Proc. SPIE3251, 47–51 (1998).
[CrossRef]

Kurokawa, T.

Lexer, F.

C. K. Hitzenberger, M. Kulhavy, F. Lexer, A. Baumgartner, A. F. Fercher, “In vivo intraocular ranging by wavelength tuning interferometry,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications II, V. V. Tuchin, J. A. Izatt, eds., Proc. SPIE3251, 47–51 (1998).
[CrossRef]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Park, B. H.

Pierce, M. C.

Press, W. H.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C (Cambridge U. Press, Cambridge, UK, 1988), Fig. 12.7.2.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Rollins, A. M.

Sakai, Y.

Y. Sakai, Y. Yoshikuni, Y. Tachikawa, H. Ishii, S. Suzuki, H. Tsuchiya, “FDM optical switching of 16 channels at 5 Gbit/s data rate using an SSG-DBR laser and arrayed-waveguide grating,” Electron. Lett. 30, 1300–1302 (1994).
[CrossRef]

Schmitt, H.

U. Haberland, P. Jansen, V. Blazek, H. Schmitt, “Optical coherence tomography of scattering media using frequency modulated continuous wave techniques with tunable near-infrared laser,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications, V. V. Tuchin, H. Podbielska, B. Ovryn, eds., Proc. SPIE2981, 20–28 (1997).
[CrossRef]

Schmitt, H. J.

U. Haberland, V. Blazek, H. J. Schmitt, “Chirp optical coherence tomography of layered scattering media,” J. Biomed. Opt. 3, 259–266 (1998).
[CrossRef] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Suzuki, S.

Y. Sakai, Y. Yoshikuni, Y. Tachikawa, H. Ishii, S. Suzuki, H. Tsuchiya, “FDM optical switching of 16 channels at 5 Gbit/s data rate using an SSG-DBR laser and arrayed-waveguide grating,” Electron. Lett. 30, 1300–1302 (1994).
[CrossRef]

Swanson, E. A.

S. R. Chinn, E. A. Swanson, J. G. Fujimoto, “Optical coherence tomography using a frequency-tunable optical source,” Opt. Lett. 22, 340–342 (1997).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Tachikawa, Y.

Y. Sakai, Y. Yoshikuni, Y. Tachikawa, H. Ishii, S. Suzuki, H. Tsuchiya, “FDM optical switching of 16 channels at 5 Gbit/s data rate using an SSG-DBR laser and arrayed-waveguide grating,” Electron. Lett. 30, 1300–1302 (1994).
[CrossRef]

Takeda, M.

Tamamura, T.

Y. Tohmori, Y. Yoshikuni, H. Ishii, F. Kano, T. Tamamura, Y. Kondo, M. Yamamoto, “Broad-range wavelength-tunable superstructure grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 29, 1817–1823 (1993).
[CrossRef]

Tanobe, H.

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, Y. Yoshikuni, “Broad-range wavelength coverage (62.4 nm) with superstructure-grating DBR laser,” Electron. Lett. 32, 454–455 (1996).
[CrossRef]

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, Y. Yoshikuni, “Quasicontinuous wavelength tuning in superstructure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32, 433–441 (1996).
[CrossRef]

Tearney, G. H.

Tearney, G. J.

Teukolsky, S. A.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C (Cambridge U. Press, Cambridge, UK, 1988), Fig. 12.7.2.

Tohmori, Y.

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, Y. Yoshikuni, “Quasicontinuous wavelength tuning in superstructure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32, 433–441 (1996).
[CrossRef]

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, Y. Yoshikuni, “Broad-range wavelength coverage (62.4 nm) with superstructure-grating DBR laser,” Electron. Lett. 32, 454–455 (1996).
[CrossRef]

Y. Tohmori, Y. Yoshikuni, H. Ishii, F. Kano, T. Tamamura, Y. Kondo, M. Yamamoto, “Broad-range wavelength-tunable superstructure grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 29, 1817–1823 (1993).
[CrossRef]

F. Kano, H. Ishii, Y. Tohmori, M. Yamamoto, Y. Yoshikuni, “Broad range wavelength switching in superstructured grating distributed Bragg reflector lasers,” Electron. Lett. 29, 1091–1092 (1993).
[CrossRef]

Tsuchiya, H.

Y. Sakai, Y. Yoshikuni, Y. Tachikawa, H. Ishii, S. Suzuki, H. Tsuchiya, “FDM optical switching of 16 channels at 5 Gbit/s data rate using an SSG-DBR laser and arrayed-waveguide grating,” Electron. Lett. 30, 1300–1302 (1994).
[CrossRef]

Vetterling, W. T.

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C (Cambridge U. Press, Cambridge, UK, 1988), Fig. 12.7.2.

Watanabe, Y.

Yago, H.

Yamamoto, M.

F. Kano, H. Ishii, Y. Tohmori, M. Yamamoto, Y. Yoshikuni, “Broad range wavelength switching in superstructured grating distributed Bragg reflector lasers,” Electron. Lett. 29, 1091–1092 (1993).
[CrossRef]

Y. Tohmori, Y. Yoshikuni, H. Ishii, F. Kano, T. Tamamura, Y. Kondo, M. Yamamoto, “Broad-range wavelength-tunable superstructure grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 29, 1817–1823 (1993).
[CrossRef]

Yasaka, H.

Yoshikuni, Y.

H. Ishii, F. Kano, Y. Yoshikuni, H. Yasaka, “Mode stabilization method for superstructure-grating DBR lasers,” J. Lightwave Technol. 16, 433–442 (1998).
[CrossRef]

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, Y. Yoshikuni, “Broad-range wavelength coverage (62.4 nm) with superstructure-grating DBR laser,” Electron. Lett. 32, 454–455 (1996).
[CrossRef]

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, Y. Yoshikuni, “Quasicontinuous wavelength tuning in superstructure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32, 433–441 (1996).
[CrossRef]

Y. Sakai, Y. Yoshikuni, Y. Tachikawa, H. Ishii, S. Suzuki, H. Tsuchiya, “FDM optical switching of 16 channels at 5 Gbit/s data rate using an SSG-DBR laser and arrayed-waveguide grating,” Electron. Lett. 30, 1300–1302 (1994).
[CrossRef]

F. Kano, H. Ishii, Y. Tohmori, M. Yamamoto, Y. Yoshikuni, “Broad range wavelength switching in superstructured grating distributed Bragg reflector lasers,” Electron. Lett. 29, 1091–1092 (1993).
[CrossRef]

Y. Tohmori, Y. Yoshikuni, H. Ishii, F. Kano, T. Tamamura, Y. Kondo, M. Yamamoto, “Broad-range wavelength-tunable superstructure grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 29, 1817–1823 (1993).
[CrossRef]

F. Kano, Y. Yoshikuni, H. Ishii, “Frequency control and stabilization of broadly tunable SSG-DBR lasers,” in Optical Fiber Communication Conference (OFC), Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 538–540.
[CrossRef]

Yoshimura, T.

Yun, S. H.

Appl. Opt. (1)

Electron. Lett. (3)

F. Kano, H. Ishii, Y. Tohmori, M. Yamamoto, Y. Yoshikuni, “Broad range wavelength switching in superstructured grating distributed Bragg reflector lasers,” Electron. Lett. 29, 1091–1092 (1993).
[CrossRef]

Y. Sakai, Y. Yoshikuni, Y. Tachikawa, H. Ishii, S. Suzuki, H. Tsuchiya, “FDM optical switching of 16 channels at 5 Gbit/s data rate using an SSG-DBR laser and arrayed-waveguide grating,” Electron. Lett. 30, 1300–1302 (1994).
[CrossRef]

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, Y. Yoshikuni, “Broad-range wavelength coverage (62.4 nm) with superstructure-grating DBR laser,” Electron. Lett. 32, 454–455 (1996).
[CrossRef]

IEEE J. Quantum Electron. (2)

H. Ishii, H. Tanobe, F. Kano, Y. Tohmori, Y. Kondo, Y. Yoshikuni, “Quasicontinuous wavelength tuning in superstructure-grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 32, 433–441 (1996).
[CrossRef]

Y. Tohmori, Y. Yoshikuni, H. Ishii, F. Kano, T. Tamamura, Y. Kondo, M. Yamamoto, “Broad-range wavelength-tunable superstructure grating (SSG) DBR lasers,” IEEE J. Quantum Electron. 29, 1817–1823 (1993).
[CrossRef]

J. Biomed. Opt. (1)

U. Haberland, V. Blazek, H. J. Schmitt, “Chirp optical coherence tomography of layered scattering media,” J. Biomed. Opt. 3, 259–266 (1998).
[CrossRef] [PubMed]

J. Lightwave Technol. (1)

Opt. Lett. (6)

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Other (9)

C. K. Hitzenberger, A. F. Fercher, “Alternative OCT technique,” in Handbook of Optical Coherence Tomography, B. E. Bouma, G. J. Tearney, eds. (Marcel Dekker, New York, 2002), pp. 359–383.

U. Haberland, P. Jansen, V. Blazek, H. Schmitt, “Optical coherence tomography of scattering media using frequency modulated continuous wave techniques with tunable near-infrared laser,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications, V. V. Tuchin, H. Podbielska, B. Ovryn, eds., Proc. SPIE2981, 20–28 (1997).
[CrossRef]

R. Leitgeb, C. K. Hitzenberger, A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Express11, 889–894 (2003), http://www.opticsexpress.org .
[CrossRef]

M. A. Choma, M. V. Sarunic, C. Yang, J. A. Izatt, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Express11, 2183–2189 (2003), http://www.opticsexpress.org .
[CrossRef]

S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express11, 2953–2963 (2003), http://www.opticsexpress.org .
[CrossRef]

C. K. Hitzenberger, M. Kulhavy, F. Lexer, A. Baumgartner, A. F. Fercher, “In vivo intraocular ranging by wavelength tuning interferometry,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications II, V. V. Tuchin, J. A. Izatt, eds., Proc. SPIE3251, 47–51 (1998).
[CrossRef]

A. W. Rollins, M. D. Kulkarni, S. Yazdanfar, R. Ungarunyawee, J. A. Izatt, “In vivo video rate optical coherence tomography,” Opt. Express3, 219–229 (1998), http://www.opticsexpress.org .
[CrossRef]

F. Kano, Y. Yoshikuni, H. Ishii, “Frequency control and stabilization of broadly tunable SSG-DBR lasers,” in Optical Fiber Communication Conference (OFC), Vol. 70 of OSA Trends in Optics and Photonics Series (Optical Society of America, Washington, D.C., 2002), pp. 538–540.
[CrossRef]

W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes in C (Cambridge U. Press, Cambridge, UK, 1988), Fig. 12.7.2.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup: A/D, analog-to-digital; Sig., signal; Ref., reference.

Fig. 2
Fig. 2

Intensity of the SSG-DBR laser output as a function of wavelength. Dashed curve, the Hanning window function used for FFT analysis.

Fig. 3
Fig. 3

Left, interferograms for 575-μm (top) and 958-μm (bottom) differences in the lengths of the arms of the Mach–Zehndar interferometer. Right, corresponding FFT signals.

Fig. 4
Fig. 4

The tail of the peak depends on the analysis: (a) Fourier transform for 400 data points without the Hanning window; (b) FFT for 512 data points with the Hanning window, where 64 data points of zero value are added to both sides of the real data; (c) Fourier transform for 400 data points with the Hanning window.

Fig. 5
Fig. 5

Plot with which to estimate the measurement’s dynamic range: (a) mean noise level of the detector with no signal input, (b) shot-noise level, (c) system noise when the laser is scanned with no sample signal, (d) FFT of an ideal sinusoidal signal.

Fig. 6
Fig. 6

OFDR measurement of layered transparency sheets sandwiched by glass plates.

Fig. 7
Fig. 7

Reconstructed surface image of part of a Japanese 100-yen coin.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

I d , i = η q h ν { P r + P o r 2 ( z ) d z + 2 P r P o r ( z ) Γ ( z ) cos [ 2 k i z + ϕ ( z ) ] d z } ,
I s , i = η q h ν 2 P r P s cos ( 2 k i z 0 ) ,
F c ( z ) = η q h ν 2 P r P s i = 1 N cos ( 2 k i z 0 ) cos ( 2 k i z ) ,
F s ( z ) = η q h ν 2 P r P s i = 1 N cos ( 2 k i z 0 ) sin ( 2 k i z ) .
i = 1 N cos ( 2 k i z 0 ) cos ( 2 k i z ) = 1 2 i = 1 N { cos [ 2 k i ( z - z 0 ) ] + cos [ 2 k i ( z + z 0 ) ] } = 1 4 i = 1 N { exp [ 2 j k i ( z - z 0 ) ] + exp [ - 2 j k i ( z - z 0 ) ] + exp [ 2 j k i ( z + z 0 ) ] + exp [ - 2 j k i ( z + z 0 ) ] } = 1 2 ( cos { [ 2 k 0 + ( N + 1 ) δ k ] × ( z - z 0 ) } sin [ Δ k ( z - z 0 ) ] sin [ δ k ( z - z 0 ) ] + cos { [ 2 k 0 + ( N + 1 ) δ k ] × ( z + z 0 ) } sin [ Δ k ( z + z 0 ) ] sin [ δ k ( z + z 0 ) ] ) ,
Δ k = N δ k .
i = 1 N cos ( 2 k i z 0 ) sin ( 2 k i z ) = 1 2 i = 1 N { sin [ 2 k i ( z - z 0 ) ] + sin [ 2 k i ( z + z 0 ) ] } = 1 4 j i = 1 N { exp [ 2 j k i ( z - z 0 ) ] - exp [ - 2 j k i ( z - z 0 ) ] + exp [ 2 j k i ( z + z 0 ) ] - exp [ - 2 j k i ( z + z 0 ) ] } = 1 2 ( sin { [ 2 k 0 + ( N + 1 ) δ k ] × ( z - z 0 ) } sin [ Δ k ( z - z 0 ) ] sin [ δ k ( z - z 0 ) ] + sin { [ 2 k 0 + ( N + 1 ) δ k ] × ( z + z 0 ) } sin [ Δ k ( z + z 0 ) ] sin [ δ k ( z + z 0 ) ] ) .
F t ( z ) 2 = F c ( z ) 2 + F s ( z ) 2 ,
F t ( z ) 2 = r 2 ( η q h ν ) 2 P r P o ( { sin [ Δ k ( z - z 0 ) ] sin [ δ k ( z - z 0 ) ] } 2 + { sin [ Δ k ( z + z 0 ) ] sin [ δ k ( z + z 0 ) ] } 2 + B ( z ) ) .
B ( z ) = 2 cos { [ 4 k 0 + 2 ( N + 1 ) δ k ] z 0 } × sin [ Δ k ( z - z 0 ) ] sin [ δ k ( z - z 0 ) ] sin [ Δ k ( z + z 0 ) ] sin [ δ k ( z + z 0 ) ] .
Δ z = π / 2 δ k .
δ z = 2.78 / Δ k .
( Sensitivity ) sn [ dB ] = - 10 log ( η P 0 h ν f A ) ,

Metrics