Abstract

Green laser pulses at a wavelength of 532 nm from a Q-switched Nd:YAG laser were employed as irradiation sources for photoacoustic tomography (PAT). The vascular structure of the brain was imaged clearly, with optimal contrast, because blood has strong absorption near this wavelength. The photoacoustic images of rat brain tumors in this study clearly reveal the angiogenesis that is associated with tumors. Brain tumors can be identified based on the distorted vascular architecture of brain tumorigenesis and related vascular changes, such as hemorrhage. This research demonstrates that PAT can potentially provide a powerful tool for small-animal biological research.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. L. Jacques, S. A. Prahl, “Absorption spectra for biological tissues,” (Oregon Medical Laser Center, Portland, Oreg., 2004), http://omlc.ogi.edu/classroom/ece532/class3/muaspectra.html .
  2. H. Maeda, “The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting,” Adv. Enzyme Regul. 41, 189–207 (2001).
    [CrossRef] [PubMed]
  3. A. A. Karabutov, E. V. Savateeva, N. B. Podymova, A. A. Oraevsky, “Backward mode detection of laser-induced wideband ultrasonic transients with optoacoustic transducer,” J. Appl. Phys. 87, 2003–2014 (2000).
    [CrossRef]
  4. A. A. Karabutov, E. V. Savateeva, A. A. Oraevsky, “Imaging of layered structures in biological tissues with optoacoustic front surface transducer,” in Laser-Tissue Interaction X: Photochemical, Photothermal, and Photomechanical, S. L. Jacques, G. J. Mueller, A. Roggan, D. H. Sliney, eds., Proc SPIE3601, 284–295 (1999).
  5. C. G. A. Hoelen, F. F. M. de Mul, “Image reconstruction for photoacoustic scanning of tissue structures,” Appl. Opt. 39, 5872–5883 (2000).
    [CrossRef]
  6. G. Ku, L.-H. V. Wang, “Scanning thermoacoustic tomography in biological tissue,” Med. Phys. 27, 1195–1202 (2000).
    [CrossRef] [PubMed]
  7. G. Ku, L.-H. V. Wang, “Scanning microwave-induced thermoacoustic tomography: signal, resolution, and contrast,” Med. Phys. 28, 4–10 (2001).
    [CrossRef] [PubMed]
  8. R. G. M. Kolkman, J. H. G. M. Klaessens, E. Hondebrink, J. C. W. Hopman, F. F. M. de Mul, W. Steenbergen, J. M. Thijssen, T. G. van Leeuwen, “Photoacoustic determination of blood vessel diameter,” Phys. Med. Biol. 49, 4745–4756 (2004).
    [CrossRef] [PubMed]
  9. R. O. Esenaliev, A. A. Karabutov, A. A. Oraevsky, “Sensitivity of laser optoacoustic imaging in detection of small deeply embedded tumors,” IEEE J. Sel. Top. Quantum Electron. 5, 981–988 (1999).
    [CrossRef]
  10. A. A. Oraevsky, E. V. Savateeva, S. V. Solomatin, A. A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, P. M. Henrichs, “Optoacoustic imaging of blood for visualization and diagnostics of breast cancer,” in Biomedical Optoacoustics III, A. A. Oraevsky, ed., Proc. SPIE4618, 81–92 (2002).
    [CrossRef]
  11. X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, L.-H. V. Wang, “Non-invasive laser-induced photoacoustic tomography for structural and functional imaging of the brain in vivo,” Nat. Biotechnol. 21, 803–806 (2003).
    [CrossRef] [PubMed]
  12. X. Wang, G. Ku, M. A. Wegiel, D. J. Bornhop, G. Stoica, L.-H. V. Wang, “Noninvasive photoacoustic angiography of animal brains in vivo with near-infrared light and an optical contrast agent,” Opt. Lett. 29, 730–732 (2004).
    [CrossRef] [PubMed]
  13. G. Ku, X. Wang, X. Xie, G. Stoica, L.-H. V. Wang, “Multiple-bandwidth photoacoustic tomography,” Phys. Med. Biol. 49, 1329–1338 (2004).
    [CrossRef] [PubMed]
  14. F. Judah, “Angiogenesis in cancer, vascular, rheumatoid and other disease,” Nat. Med. (N.Y.) 1, 27–31 (1995).
    [CrossRef]
  15. P. Carmeliet, K. Rakesh, R. K. Jain, “Angiogenesis in cancer and other diseases,” Nature 407, 249–257 (2000).
    [CrossRef] [PubMed]
  16. F. Judah, “Role of angiogenesis in tumor growth and metastasis,” Semin. Oncol. 29, 15–18 (2002).
  17. American National Standards Institute, American National Standard for the Safe Use of Lasers ANSI Z136.1-2000 (American National Standards Institute, New York, 2000).
  18. G. D. Hall, G. Stoica, “Characterization of brain and bone-metastasizing clones selected from an ethylnitrosourea-induced rat mammary carcinoma,” Clin. Exp. Metast. 12, 283–295 (1994).
    [CrossRef]
  19. H. Maeda, “The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting,” Adv. Enzyme Regul. 41, 189–207 (2001).
    [CrossRef] [PubMed]
  20. H. Maeda, J. Fang, T. Inutsuka, Y. Kitamoto, “Vascular permeability enhancement in solid tumor: various factors, mechanisms involved and its implications,” Int. Immunopharmacol. 3, 319–328 (2003).
    [CrossRef] [PubMed]

2004 (3)

R. G. M. Kolkman, J. H. G. M. Klaessens, E. Hondebrink, J. C. W. Hopman, F. F. M. de Mul, W. Steenbergen, J. M. Thijssen, T. G. van Leeuwen, “Photoacoustic determination of blood vessel diameter,” Phys. Med. Biol. 49, 4745–4756 (2004).
[CrossRef] [PubMed]

X. Wang, G. Ku, M. A. Wegiel, D. J. Bornhop, G. Stoica, L.-H. V. Wang, “Noninvasive photoacoustic angiography of animal brains in vivo with near-infrared light and an optical contrast agent,” Opt. Lett. 29, 730–732 (2004).
[CrossRef] [PubMed]

G. Ku, X. Wang, X. Xie, G. Stoica, L.-H. V. Wang, “Multiple-bandwidth photoacoustic tomography,” Phys. Med. Biol. 49, 1329–1338 (2004).
[CrossRef] [PubMed]

2003 (2)

H. Maeda, J. Fang, T. Inutsuka, Y. Kitamoto, “Vascular permeability enhancement in solid tumor: various factors, mechanisms involved and its implications,” Int. Immunopharmacol. 3, 319–328 (2003).
[CrossRef] [PubMed]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, L.-H. V. Wang, “Non-invasive laser-induced photoacoustic tomography for structural and functional imaging of the brain in vivo,” Nat. Biotechnol. 21, 803–806 (2003).
[CrossRef] [PubMed]

2002 (1)

F. Judah, “Role of angiogenesis in tumor growth and metastasis,” Semin. Oncol. 29, 15–18 (2002).

2001 (3)

H. Maeda, “The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting,” Adv. Enzyme Regul. 41, 189–207 (2001).
[CrossRef] [PubMed]

G. Ku, L.-H. V. Wang, “Scanning microwave-induced thermoacoustic tomography: signal, resolution, and contrast,” Med. Phys. 28, 4–10 (2001).
[CrossRef] [PubMed]

H. Maeda, “The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting,” Adv. Enzyme Regul. 41, 189–207 (2001).
[CrossRef] [PubMed]

2000 (4)

A. A. Karabutov, E. V. Savateeva, N. B. Podymova, A. A. Oraevsky, “Backward mode detection of laser-induced wideband ultrasonic transients with optoacoustic transducer,” J. Appl. Phys. 87, 2003–2014 (2000).
[CrossRef]

C. G. A. Hoelen, F. F. M. de Mul, “Image reconstruction for photoacoustic scanning of tissue structures,” Appl. Opt. 39, 5872–5883 (2000).
[CrossRef]

G. Ku, L.-H. V. Wang, “Scanning thermoacoustic tomography in biological tissue,” Med. Phys. 27, 1195–1202 (2000).
[CrossRef] [PubMed]

P. Carmeliet, K. Rakesh, R. K. Jain, “Angiogenesis in cancer and other diseases,” Nature 407, 249–257 (2000).
[CrossRef] [PubMed]

1999 (1)

R. O. Esenaliev, A. A. Karabutov, A. A. Oraevsky, “Sensitivity of laser optoacoustic imaging in detection of small deeply embedded tumors,” IEEE J. Sel. Top. Quantum Electron. 5, 981–988 (1999).
[CrossRef]

1995 (1)

F. Judah, “Angiogenesis in cancer, vascular, rheumatoid and other disease,” Nat. Med. (N.Y.) 1, 27–31 (1995).
[CrossRef]

1994 (1)

G. D. Hall, G. Stoica, “Characterization of brain and bone-metastasizing clones selected from an ethylnitrosourea-induced rat mammary carcinoma,” Clin. Exp. Metast. 12, 283–295 (1994).
[CrossRef]

Andreev, V. G.

A. A. Oraevsky, E. V. Savateeva, S. V. Solomatin, A. A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, P. M. Henrichs, “Optoacoustic imaging of blood for visualization and diagnostics of breast cancer,” in Biomedical Optoacoustics III, A. A. Oraevsky, ed., Proc. SPIE4618, 81–92 (2002).
[CrossRef]

Bornhop, D. J.

Carmeliet, P.

P. Carmeliet, K. Rakesh, R. K. Jain, “Angiogenesis in cancer and other diseases,” Nature 407, 249–257 (2000).
[CrossRef] [PubMed]

de Mul, F. F. M.

R. G. M. Kolkman, J. H. G. M. Klaessens, E. Hondebrink, J. C. W. Hopman, F. F. M. de Mul, W. Steenbergen, J. M. Thijssen, T. G. van Leeuwen, “Photoacoustic determination of blood vessel diameter,” Phys. Med. Biol. 49, 4745–4756 (2004).
[CrossRef] [PubMed]

C. G. A. Hoelen, F. F. M. de Mul, “Image reconstruction for photoacoustic scanning of tissue structures,” Appl. Opt. 39, 5872–5883 (2000).
[CrossRef]

Esenaliev, R. O.

R. O. Esenaliev, A. A. Karabutov, A. A. Oraevsky, “Sensitivity of laser optoacoustic imaging in detection of small deeply embedded tumors,” IEEE J. Sel. Top. Quantum Electron. 5, 981–988 (1999).
[CrossRef]

Fang, J.

H. Maeda, J. Fang, T. Inutsuka, Y. Kitamoto, “Vascular permeability enhancement in solid tumor: various factors, mechanisms involved and its implications,” Int. Immunopharmacol. 3, 319–328 (2003).
[CrossRef] [PubMed]

Gatalica, Z.

A. A. Oraevsky, E. V. Savateeva, S. V. Solomatin, A. A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, P. M. Henrichs, “Optoacoustic imaging of blood for visualization and diagnostics of breast cancer,” in Biomedical Optoacoustics III, A. A. Oraevsky, ed., Proc. SPIE4618, 81–92 (2002).
[CrossRef]

Hall, G. D.

G. D. Hall, G. Stoica, “Characterization of brain and bone-metastasizing clones selected from an ethylnitrosourea-induced rat mammary carcinoma,” Clin. Exp. Metast. 12, 283–295 (1994).
[CrossRef]

Henrichs, P. M.

A. A. Oraevsky, E. V. Savateeva, S. V. Solomatin, A. A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, P. M. Henrichs, “Optoacoustic imaging of blood for visualization and diagnostics of breast cancer,” in Biomedical Optoacoustics III, A. A. Oraevsky, ed., Proc. SPIE4618, 81–92 (2002).
[CrossRef]

Hoelen, C. G. A.

Hondebrink, E.

R. G. M. Kolkman, J. H. G. M. Klaessens, E. Hondebrink, J. C. W. Hopman, F. F. M. de Mul, W. Steenbergen, J. M. Thijssen, T. G. van Leeuwen, “Photoacoustic determination of blood vessel diameter,” Phys. Med. Biol. 49, 4745–4756 (2004).
[CrossRef] [PubMed]

Hopman, J. C. W.

R. G. M. Kolkman, J. H. G. M. Klaessens, E. Hondebrink, J. C. W. Hopman, F. F. M. de Mul, W. Steenbergen, J. M. Thijssen, T. G. van Leeuwen, “Photoacoustic determination of blood vessel diameter,” Phys. Med. Biol. 49, 4745–4756 (2004).
[CrossRef] [PubMed]

Inutsuka, T.

H. Maeda, J. Fang, T. Inutsuka, Y. Kitamoto, “Vascular permeability enhancement in solid tumor: various factors, mechanisms involved and its implications,” Int. Immunopharmacol. 3, 319–328 (2003).
[CrossRef] [PubMed]

Jain, R. K.

P. Carmeliet, K. Rakesh, R. K. Jain, “Angiogenesis in cancer and other diseases,” Nature 407, 249–257 (2000).
[CrossRef] [PubMed]

Judah, F.

F. Judah, “Role of angiogenesis in tumor growth and metastasis,” Semin. Oncol. 29, 15–18 (2002).

F. Judah, “Angiogenesis in cancer, vascular, rheumatoid and other disease,” Nat. Med. (N.Y.) 1, 27–31 (1995).
[CrossRef]

Karabutov, A. A.

A. A. Karabutov, E. V. Savateeva, N. B. Podymova, A. A. Oraevsky, “Backward mode detection of laser-induced wideband ultrasonic transients with optoacoustic transducer,” J. Appl. Phys. 87, 2003–2014 (2000).
[CrossRef]

R. O. Esenaliev, A. A. Karabutov, A. A. Oraevsky, “Sensitivity of laser optoacoustic imaging in detection of small deeply embedded tumors,” IEEE J. Sel. Top. Quantum Electron. 5, 981–988 (1999).
[CrossRef]

A. A. Oraevsky, E. V. Savateeva, S. V. Solomatin, A. A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, P. M. Henrichs, “Optoacoustic imaging of blood for visualization and diagnostics of breast cancer,” in Biomedical Optoacoustics III, A. A. Oraevsky, ed., Proc. SPIE4618, 81–92 (2002).
[CrossRef]

A. A. Karabutov, E. V. Savateeva, A. A. Oraevsky, “Imaging of layered structures in biological tissues with optoacoustic front surface transducer,” in Laser-Tissue Interaction X: Photochemical, Photothermal, and Photomechanical, S. L. Jacques, G. J. Mueller, A. Roggan, D. H. Sliney, eds., Proc SPIE3601, 284–295 (1999).

Khamapirad, T.

A. A. Oraevsky, E. V. Savateeva, S. V. Solomatin, A. A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, P. M. Henrichs, “Optoacoustic imaging of blood for visualization and diagnostics of breast cancer,” in Biomedical Optoacoustics III, A. A. Oraevsky, ed., Proc. SPIE4618, 81–92 (2002).
[CrossRef]

Kitamoto, Y.

H. Maeda, J. Fang, T. Inutsuka, Y. Kitamoto, “Vascular permeability enhancement in solid tumor: various factors, mechanisms involved and its implications,” Int. Immunopharmacol. 3, 319–328 (2003).
[CrossRef] [PubMed]

Klaessens, J. H. G. M.

R. G. M. Kolkman, J. H. G. M. Klaessens, E. Hondebrink, J. C. W. Hopman, F. F. M. de Mul, W. Steenbergen, J. M. Thijssen, T. G. van Leeuwen, “Photoacoustic determination of blood vessel diameter,” Phys. Med. Biol. 49, 4745–4756 (2004).
[CrossRef] [PubMed]

Kolkman, R. G. M.

R. G. M. Kolkman, J. H. G. M. Klaessens, E. Hondebrink, J. C. W. Hopman, F. F. M. de Mul, W. Steenbergen, J. M. Thijssen, T. G. van Leeuwen, “Photoacoustic determination of blood vessel diameter,” Phys. Med. Biol. 49, 4745–4756 (2004).
[CrossRef] [PubMed]

Ku, G.

G. Ku, X. Wang, X. Xie, G. Stoica, L.-H. V. Wang, “Multiple-bandwidth photoacoustic tomography,” Phys. Med. Biol. 49, 1329–1338 (2004).
[CrossRef] [PubMed]

X. Wang, G. Ku, M. A. Wegiel, D. J. Bornhop, G. Stoica, L.-H. V. Wang, “Noninvasive photoacoustic angiography of animal brains in vivo with near-infrared light and an optical contrast agent,” Opt. Lett. 29, 730–732 (2004).
[CrossRef] [PubMed]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, L.-H. V. Wang, “Non-invasive laser-induced photoacoustic tomography for structural and functional imaging of the brain in vivo,” Nat. Biotechnol. 21, 803–806 (2003).
[CrossRef] [PubMed]

G. Ku, L.-H. V. Wang, “Scanning microwave-induced thermoacoustic tomography: signal, resolution, and contrast,” Med. Phys. 28, 4–10 (2001).
[CrossRef] [PubMed]

G. Ku, L.-H. V. Wang, “Scanning thermoacoustic tomography in biological tissue,” Med. Phys. 27, 1195–1202 (2000).
[CrossRef] [PubMed]

Maeda, H.

H. Maeda, J. Fang, T. Inutsuka, Y. Kitamoto, “Vascular permeability enhancement in solid tumor: various factors, mechanisms involved and its implications,” Int. Immunopharmacol. 3, 319–328 (2003).
[CrossRef] [PubMed]

H. Maeda, “The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting,” Adv. Enzyme Regul. 41, 189–207 (2001).
[CrossRef] [PubMed]

H. Maeda, “The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting,” Adv. Enzyme Regul. 41, 189–207 (2001).
[CrossRef] [PubMed]

Oraevsky, A. A.

A. A. Karabutov, E. V. Savateeva, N. B. Podymova, A. A. Oraevsky, “Backward mode detection of laser-induced wideband ultrasonic transients with optoacoustic transducer,” J. Appl. Phys. 87, 2003–2014 (2000).
[CrossRef]

R. O. Esenaliev, A. A. Karabutov, A. A. Oraevsky, “Sensitivity of laser optoacoustic imaging in detection of small deeply embedded tumors,” IEEE J. Sel. Top. Quantum Electron. 5, 981–988 (1999).
[CrossRef]

A. A. Oraevsky, E. V. Savateeva, S. V. Solomatin, A. A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, P. M. Henrichs, “Optoacoustic imaging of blood for visualization and diagnostics of breast cancer,” in Biomedical Optoacoustics III, A. A. Oraevsky, ed., Proc. SPIE4618, 81–92 (2002).
[CrossRef]

A. A. Karabutov, E. V. Savateeva, A. A. Oraevsky, “Imaging of layered structures in biological tissues with optoacoustic front surface transducer,” in Laser-Tissue Interaction X: Photochemical, Photothermal, and Photomechanical, S. L. Jacques, G. J. Mueller, A. Roggan, D. H. Sliney, eds., Proc SPIE3601, 284–295 (1999).

Pang, Y.

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, L.-H. V. Wang, “Non-invasive laser-induced photoacoustic tomography for structural and functional imaging of the brain in vivo,” Nat. Biotechnol. 21, 803–806 (2003).
[CrossRef] [PubMed]

Podymova, N. B.

A. A. Karabutov, E. V. Savateeva, N. B. Podymova, A. A. Oraevsky, “Backward mode detection of laser-induced wideband ultrasonic transients with optoacoustic transducer,” J. Appl. Phys. 87, 2003–2014 (2000).
[CrossRef]

Rakesh, K.

P. Carmeliet, K. Rakesh, R. K. Jain, “Angiogenesis in cancer and other diseases,” Nature 407, 249–257 (2000).
[CrossRef] [PubMed]

Savateeva, E. V.

A. A. Karabutov, E. V. Savateeva, N. B. Podymova, A. A. Oraevsky, “Backward mode detection of laser-induced wideband ultrasonic transients with optoacoustic transducer,” J. Appl. Phys. 87, 2003–2014 (2000).
[CrossRef]

A. A. Karabutov, E. V. Savateeva, A. A. Oraevsky, “Imaging of layered structures in biological tissues with optoacoustic front surface transducer,” in Laser-Tissue Interaction X: Photochemical, Photothermal, and Photomechanical, S. L. Jacques, G. J. Mueller, A. Roggan, D. H. Sliney, eds., Proc SPIE3601, 284–295 (1999).

A. A. Oraevsky, E. V. Savateeva, S. V. Solomatin, A. A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, P. M. Henrichs, “Optoacoustic imaging of blood for visualization and diagnostics of breast cancer,” in Biomedical Optoacoustics III, A. A. Oraevsky, ed., Proc. SPIE4618, 81–92 (2002).
[CrossRef]

Solomatin, S. V.

A. A. Oraevsky, E. V. Savateeva, S. V. Solomatin, A. A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, P. M. Henrichs, “Optoacoustic imaging of blood for visualization and diagnostics of breast cancer,” in Biomedical Optoacoustics III, A. A. Oraevsky, ed., Proc. SPIE4618, 81–92 (2002).
[CrossRef]

Steenbergen, W.

R. G. M. Kolkman, J. H. G. M. Klaessens, E. Hondebrink, J. C. W. Hopman, F. F. M. de Mul, W. Steenbergen, J. M. Thijssen, T. G. van Leeuwen, “Photoacoustic determination of blood vessel diameter,” Phys. Med. Biol. 49, 4745–4756 (2004).
[CrossRef] [PubMed]

Stoica, G.

G. Ku, X. Wang, X. Xie, G. Stoica, L.-H. V. Wang, “Multiple-bandwidth photoacoustic tomography,” Phys. Med. Biol. 49, 1329–1338 (2004).
[CrossRef] [PubMed]

X. Wang, G. Ku, M. A. Wegiel, D. J. Bornhop, G. Stoica, L.-H. V. Wang, “Noninvasive photoacoustic angiography of animal brains in vivo with near-infrared light and an optical contrast agent,” Opt. Lett. 29, 730–732 (2004).
[CrossRef] [PubMed]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, L.-H. V. Wang, “Non-invasive laser-induced photoacoustic tomography for structural and functional imaging of the brain in vivo,” Nat. Biotechnol. 21, 803–806 (2003).
[CrossRef] [PubMed]

G. D. Hall, G. Stoica, “Characterization of brain and bone-metastasizing clones selected from an ethylnitrosourea-induced rat mammary carcinoma,” Clin. Exp. Metast. 12, 283–295 (1994).
[CrossRef]

Thijssen, J. M.

R. G. M. Kolkman, J. H. G. M. Klaessens, E. Hondebrink, J. C. W. Hopman, F. F. M. de Mul, W. Steenbergen, J. M. Thijssen, T. G. van Leeuwen, “Photoacoustic determination of blood vessel diameter,” Phys. Med. Biol. 49, 4745–4756 (2004).
[CrossRef] [PubMed]

van Leeuwen, T. G.

R. G. M. Kolkman, J. H. G. M. Klaessens, E. Hondebrink, J. C. W. Hopman, F. F. M. de Mul, W. Steenbergen, J. M. Thijssen, T. G. van Leeuwen, “Photoacoustic determination of blood vessel diameter,” Phys. Med. Biol. 49, 4745–4756 (2004).
[CrossRef] [PubMed]

Wang, L.-H. V.

X. Wang, G. Ku, M. A. Wegiel, D. J. Bornhop, G. Stoica, L.-H. V. Wang, “Noninvasive photoacoustic angiography of animal brains in vivo with near-infrared light and an optical contrast agent,” Opt. Lett. 29, 730–732 (2004).
[CrossRef] [PubMed]

G. Ku, X. Wang, X. Xie, G. Stoica, L.-H. V. Wang, “Multiple-bandwidth photoacoustic tomography,” Phys. Med. Biol. 49, 1329–1338 (2004).
[CrossRef] [PubMed]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, L.-H. V. Wang, “Non-invasive laser-induced photoacoustic tomography for structural and functional imaging of the brain in vivo,” Nat. Biotechnol. 21, 803–806 (2003).
[CrossRef] [PubMed]

G. Ku, L.-H. V. Wang, “Scanning microwave-induced thermoacoustic tomography: signal, resolution, and contrast,” Med. Phys. 28, 4–10 (2001).
[CrossRef] [PubMed]

G. Ku, L.-H. V. Wang, “Scanning thermoacoustic tomography in biological tissue,” Med. Phys. 27, 1195–1202 (2000).
[CrossRef] [PubMed]

Wang, X.

X. Wang, G. Ku, M. A. Wegiel, D. J. Bornhop, G. Stoica, L.-H. V. Wang, “Noninvasive photoacoustic angiography of animal brains in vivo with near-infrared light and an optical contrast agent,” Opt. Lett. 29, 730–732 (2004).
[CrossRef] [PubMed]

G. Ku, X. Wang, X. Xie, G. Stoica, L.-H. V. Wang, “Multiple-bandwidth photoacoustic tomography,” Phys. Med. Biol. 49, 1329–1338 (2004).
[CrossRef] [PubMed]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, L.-H. V. Wang, “Non-invasive laser-induced photoacoustic tomography for structural and functional imaging of the brain in vivo,” Nat. Biotechnol. 21, 803–806 (2003).
[CrossRef] [PubMed]

Wegiel, M. A.

Xie, X.

G. Ku, X. Wang, X. Xie, G. Stoica, L.-H. V. Wang, “Multiple-bandwidth photoacoustic tomography,” Phys. Med. Biol. 49, 1329–1338 (2004).
[CrossRef] [PubMed]

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, L.-H. V. Wang, “Non-invasive laser-induced photoacoustic tomography for structural and functional imaging of the brain in vivo,” Nat. Biotechnol. 21, 803–806 (2003).
[CrossRef] [PubMed]

Adv. Enzyme Regul. (2)

H. Maeda, “The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting,” Adv. Enzyme Regul. 41, 189–207 (2001).
[CrossRef] [PubMed]

H. Maeda, “The enhanced permeability and retention (EPR) effect in tumor vasculature: the key role of tumor-selective macromolecular drug targeting,” Adv. Enzyme Regul. 41, 189–207 (2001).
[CrossRef] [PubMed]

Appl. Opt. (1)

Clin. Exp. Metast. (1)

G. D. Hall, G. Stoica, “Characterization of brain and bone-metastasizing clones selected from an ethylnitrosourea-induced rat mammary carcinoma,” Clin. Exp. Metast. 12, 283–295 (1994).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

R. O. Esenaliev, A. A. Karabutov, A. A. Oraevsky, “Sensitivity of laser optoacoustic imaging in detection of small deeply embedded tumors,” IEEE J. Sel. Top. Quantum Electron. 5, 981–988 (1999).
[CrossRef]

Int. Immunopharmacol. (1)

H. Maeda, J. Fang, T. Inutsuka, Y. Kitamoto, “Vascular permeability enhancement in solid tumor: various factors, mechanisms involved and its implications,” Int. Immunopharmacol. 3, 319–328 (2003).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

A. A. Karabutov, E. V. Savateeva, N. B. Podymova, A. A. Oraevsky, “Backward mode detection of laser-induced wideband ultrasonic transients with optoacoustic transducer,” J. Appl. Phys. 87, 2003–2014 (2000).
[CrossRef]

Med. Phys. (2)

G. Ku, L.-H. V. Wang, “Scanning thermoacoustic tomography in biological tissue,” Med. Phys. 27, 1195–1202 (2000).
[CrossRef] [PubMed]

G. Ku, L.-H. V. Wang, “Scanning microwave-induced thermoacoustic tomography: signal, resolution, and contrast,” Med. Phys. 28, 4–10 (2001).
[CrossRef] [PubMed]

Nat. Biotechnol. (1)

X. Wang, Y. Pang, G. Ku, X. Xie, G. Stoica, L.-H. V. Wang, “Non-invasive laser-induced photoacoustic tomography for structural and functional imaging of the brain in vivo,” Nat. Biotechnol. 21, 803–806 (2003).
[CrossRef] [PubMed]

Nat. Med. (N.Y.) (1)

F. Judah, “Angiogenesis in cancer, vascular, rheumatoid and other disease,” Nat. Med. (N.Y.) 1, 27–31 (1995).
[CrossRef]

Nature (1)

P. Carmeliet, K. Rakesh, R. K. Jain, “Angiogenesis in cancer and other diseases,” Nature 407, 249–257 (2000).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Med. Biol. (2)

G. Ku, X. Wang, X. Xie, G. Stoica, L.-H. V. Wang, “Multiple-bandwidth photoacoustic tomography,” Phys. Med. Biol. 49, 1329–1338 (2004).
[CrossRef] [PubMed]

R. G. M. Kolkman, J. H. G. M. Klaessens, E. Hondebrink, J. C. W. Hopman, F. F. M. de Mul, W. Steenbergen, J. M. Thijssen, T. G. van Leeuwen, “Photoacoustic determination of blood vessel diameter,” Phys. Med. Biol. 49, 4745–4756 (2004).
[CrossRef] [PubMed]

Semin. Oncol. (1)

F. Judah, “Role of angiogenesis in tumor growth and metastasis,” Semin. Oncol. 29, 15–18 (2002).

Other (4)

American National Standards Institute, American National Standard for the Safe Use of Lasers ANSI Z136.1-2000 (American National Standards Institute, New York, 2000).

S. L. Jacques, S. A. Prahl, “Absorption spectra for biological tissues,” (Oregon Medical Laser Center, Portland, Oreg., 2004), http://omlc.ogi.edu/classroom/ece532/class3/muaspectra.html .

A. A. Karabutov, E. V. Savateeva, A. A. Oraevsky, “Imaging of layered structures in biological tissues with optoacoustic front surface transducer,” in Laser-Tissue Interaction X: Photochemical, Photothermal, and Photomechanical, S. L. Jacques, G. J. Mueller, A. Roggan, D. H. Sliney, eds., Proc SPIE3601, 284–295 (1999).

A. A. Oraevsky, E. V. Savateeva, S. V. Solomatin, A. A. Karabutov, V. G. Andreev, Z. Gatalica, T. Khamapirad, P. M. Henrichs, “Optoacoustic imaging of blood for visualization and diagnostics of breast cancer,” in Biomedical Optoacoustics III, A. A. Oraevsky, ed., Proc. SPIE4618, 81–92 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup of PAT for rat tumor imaging.

Fig. 2
Fig. 2

Comparison of a photograph of a tumor-bearing rat brain and several photoacoustic images. (a) Bottom, photograph of the open-skull rat brain, showing a tumor in its cerebrum; top, histology of the cerebellar tumor. T, tumor; FT, fissure transversa; C, cerebellum; V, blood vessels; H, partial view of the cerebral hemisphere. Photoacoustic images of the rat brain and close-up images of the tumor acquired with (b) a 3.5-MHz ultrasonic transducer and (c) a 10-MHz ultrasonic transducer.

Fig. 3
Fig. 3

Left, in vivo photoacoustic image of a rat brain containing a tumor in its left cerebral hemisphere cortex acquired with a 10-MHz ultrasonic transducer. Bottom right, close-up photoacoustic image of the tumor. Top right, photograph of the rat brain through the skull where the scalp was stripped after photoacoustic imaging. MF, median fissure; V, blood vessels; T, tumor; E, eyes.

Fig. 4
Fig. 4

In vivo photoacoustic images and close-ups of a rat brain with tumors in the left cerebral hemisphere acquired with (a) a 3.5-MHz ultrasonic transducer and (b) a 20-MHz ultrasonic transducer. (c) Photograph of the rat brain through the skull where the scalp was stripped after photoacoustic imaging. LH, left cerebral hemisphere; V, blood vessels; E, eyes; T, tumor.

Metrics