Abstract

Reference scattering curves for polarization and intensity produced by aggregates and agglomerates of ethylene and kerosene soot are obtained for scattering angles in the 10–170° range. The polarization measurements were obtained with the Propriétés Optiques des Grains Astronomiques et Atmosphériques instrument for particles that levitate in microgravity during parabolic flights and on the ground by an air draught technique. The intensity measurements were obtained also on the ground with a Laboratoire de Metéorologie Physique nephelometer. The maximum polarization is of the order of 80% at a scattering angle of 80° at λ = 632.8 nm and approximately 75% at an angle of 90° at λ = 543.5 nm. The polarization increases by approximately 10% when the size of the agglomerate increases from 10 μm to a few hundred micrometers. The intensity curve exhibits a strong increase at small scattering angles. These reference curves will be used in the near future for the detection of stratospheric soot by remote-sensing measurement techniques.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. F. Blake, K. Kato, “Latitudinal distribution of black carbon soot in the upper troposphere and the lower stratosphere,” J. Geophys. Res. 100, 7195–7202 (1995).
    [CrossRef]
  2. J.-B. Renard, G. Berthet, C. Robert, M. Chartier, M. Pirre, C. Brogniez, M. Herman, C. Verwaerde, J.-Y. Balois, J. Ovarlez, H. Ovarlez, J. Crespin, T. Deshler, “Optical and physical properties of stratospheric aerosols from balloon measurements in the visible and near-infrared domains. II. Comparison of extinction, reflectance, polarization and counting measurements,” Appl. Opt. 41, 7540–7549 (2002).
    [CrossRef]
  3. C. Klusek, S. Manickavasagam, M. Pinar Mengüç, “Compendium of scattering matrix element profiles for soot agglomerates,” J. Quant. Spectrosc. Radiat. Transfer 79–80, 839–859 (2003).
    [CrossRef]
  4. J.-B. Renard, E. Hadamcik, C. Brogniez, G. Berthet, J.-C. Worms, M. Chartier, M. Pirre, J. Ovarlez, H. Ovarlez, “Ultraviolet–visible bulk optical properties of randomly distributed soot,” Appl. Opt. 40, 6575–6580 (2001).
    [CrossRef]
  5. J.-B. Renard, J.-C. Worms, T. Lemaire, E. Hadamcik, N. Huret, “Light scattering by dust particles in microgravity: polarization and brightness imaging with the new version of the PROGRA2 instrument,” Appl. Opt. 41, 609–618 (2002).
    [CrossRef] [PubMed]
  6. J.-B. Renard, E. Hadamcik, T. Lemaire, J.-C. Worms, A.-C. Levasseur-Regourd, “Polarization imaging of dust cloud particles: improvements and application of the PROGRA2 instrument,” Adv. Space Res. 31, 2511–2518 (2003).
    [CrossRef]
  7. J.-M. André, Etude expérimentale de l’indicatrice de diffusion des particules non sphériques,” Thesis (Blaise Pascal University, Clermont-Ferrand, France, 2002).
  8. D. Daugeron, “Réalisation d’un néphélomètre de laboratoire pour l’étudedes propriétés radiatives de la lumière diffusée par les aérosols,” Engineering certificate (Conservatoire National des Arts et Métiers, Saint-Etienne, France, 2001).
  9. G. Legros, P. Joulain, J.-P. Vantelon, C. Breillat, J.-L. Torero, “Estimation of a soot layer optical thickness produced by a diffusion flame established in microgravity,” in Proceedings of the Third Mediterranean Combustion Symposium, F. Beretta, A. Bouhafid, eds. (n.p., 2003), pp. 557–568.
  10. E. Hadamcik, J.-B. Renard, J.-C. Worms, A.-C. Levasseur-Regourd, M. Masson, “Polarization of light scattered by fluffy particles (PROGRA2 experiment),” Icarus 155, 497–508 (2002).
    [CrossRef]
  11. E. Hadamcik, J.-B. Renard, A.-C. Levasseur-Regourd, J.-C. Worms, “Laboratory light scattering measurements on natural particles with the PROGRA2 experiment: an overview,” J. Quant. Spectrosc. Radiat. Transfer 79–80, 679–693 (2003).
    [CrossRef]
  12. M. Herman, J.-Y. Balois, L. Gonzalez, P. Lecomte, J. Lenoble, R. Santer, C. Verwaerde, “Stratospheric aerosol observations from a balloon-borne polarimetric experiment,” Appl. Opt. 25, 3573–3584 (1986).
    [CrossRef] [PubMed]
  13. C. Brogniez, N. Huret, S. Eckermann, E. D. Rivière, M. Pirre, M. Herman, J.-Y. Balois, C. Verwaerde, N. Larsen, B. Knudsen, “Polar stratospheric cloud microphysical properties measured by the microRADIBAL instrument on 25 January 2000 above Esrange and modeling interpretation,” J. Geophys. Res. 108 (D6), 8332, doi:, 2003.
    [CrossRef]

2003 (4)

C. Klusek, S. Manickavasagam, M. Pinar Mengüç, “Compendium of scattering matrix element profiles for soot agglomerates,” J. Quant. Spectrosc. Radiat. Transfer 79–80, 839–859 (2003).
[CrossRef]

J.-B. Renard, E. Hadamcik, T. Lemaire, J.-C. Worms, A.-C. Levasseur-Regourd, “Polarization imaging of dust cloud particles: improvements and application of the PROGRA2 instrument,” Adv. Space Res. 31, 2511–2518 (2003).
[CrossRef]

E. Hadamcik, J.-B. Renard, A.-C. Levasseur-Regourd, J.-C. Worms, “Laboratory light scattering measurements on natural particles with the PROGRA2 experiment: an overview,” J. Quant. Spectrosc. Radiat. Transfer 79–80, 679–693 (2003).
[CrossRef]

C. Brogniez, N. Huret, S. Eckermann, E. D. Rivière, M. Pirre, M. Herman, J.-Y. Balois, C. Verwaerde, N. Larsen, B. Knudsen, “Polar stratospheric cloud microphysical properties measured by the microRADIBAL instrument on 25 January 2000 above Esrange and modeling interpretation,” J. Geophys. Res. 108 (D6), 8332, doi:, 2003.
[CrossRef]

2002 (3)

2001 (1)

1995 (1)

D. F. Blake, K. Kato, “Latitudinal distribution of black carbon soot in the upper troposphere and the lower stratosphere,” J. Geophys. Res. 100, 7195–7202 (1995).
[CrossRef]

1986 (1)

André, J.-M.

J.-M. André, Etude expérimentale de l’indicatrice de diffusion des particules non sphériques,” Thesis (Blaise Pascal University, Clermont-Ferrand, France, 2002).

Balois, J.-Y.

Berthet, G.

Blake, D. F.

D. F. Blake, K. Kato, “Latitudinal distribution of black carbon soot in the upper troposphere and the lower stratosphere,” J. Geophys. Res. 100, 7195–7202 (1995).
[CrossRef]

Breillat, C.

G. Legros, P. Joulain, J.-P. Vantelon, C. Breillat, J.-L. Torero, “Estimation of a soot layer optical thickness produced by a diffusion flame established in microgravity,” in Proceedings of the Third Mediterranean Combustion Symposium, F. Beretta, A. Bouhafid, eds. (n.p., 2003), pp. 557–568.

Brogniez, C.

Chartier, M.

Crespin, J.

Daugeron, D.

D. Daugeron, “Réalisation d’un néphélomètre de laboratoire pour l’étudedes propriétés radiatives de la lumière diffusée par les aérosols,” Engineering certificate (Conservatoire National des Arts et Métiers, Saint-Etienne, France, 2001).

Deshler, T.

Eckermann, S.

C. Brogniez, N. Huret, S. Eckermann, E. D. Rivière, M. Pirre, M. Herman, J.-Y. Balois, C. Verwaerde, N. Larsen, B. Knudsen, “Polar stratospheric cloud microphysical properties measured by the microRADIBAL instrument on 25 January 2000 above Esrange and modeling interpretation,” J. Geophys. Res. 108 (D6), 8332, doi:, 2003.
[CrossRef]

Gonzalez, L.

Hadamcik, E.

E. Hadamcik, J.-B. Renard, A.-C. Levasseur-Regourd, J.-C. Worms, “Laboratory light scattering measurements on natural particles with the PROGRA2 experiment: an overview,” J. Quant. Spectrosc. Radiat. Transfer 79–80, 679–693 (2003).
[CrossRef]

J.-B. Renard, E. Hadamcik, T. Lemaire, J.-C. Worms, A.-C. Levasseur-Regourd, “Polarization imaging of dust cloud particles: improvements and application of the PROGRA2 instrument,” Adv. Space Res. 31, 2511–2518 (2003).
[CrossRef]

E. Hadamcik, J.-B. Renard, J.-C. Worms, A.-C. Levasseur-Regourd, M. Masson, “Polarization of light scattered by fluffy particles (PROGRA2 experiment),” Icarus 155, 497–508 (2002).
[CrossRef]

J.-B. Renard, J.-C. Worms, T. Lemaire, E. Hadamcik, N. Huret, “Light scattering by dust particles in microgravity: polarization and brightness imaging with the new version of the PROGRA2 instrument,” Appl. Opt. 41, 609–618 (2002).
[CrossRef] [PubMed]

J.-B. Renard, E. Hadamcik, C. Brogniez, G. Berthet, J.-C. Worms, M. Chartier, M. Pirre, J. Ovarlez, H. Ovarlez, “Ultraviolet–visible bulk optical properties of randomly distributed soot,” Appl. Opt. 40, 6575–6580 (2001).
[CrossRef]

Herman, M.

Huret, N.

C. Brogniez, N. Huret, S. Eckermann, E. D. Rivière, M. Pirre, M. Herman, J.-Y. Balois, C. Verwaerde, N. Larsen, B. Knudsen, “Polar stratospheric cloud microphysical properties measured by the microRADIBAL instrument on 25 January 2000 above Esrange and modeling interpretation,” J. Geophys. Res. 108 (D6), 8332, doi:, 2003.
[CrossRef]

J.-B. Renard, J.-C. Worms, T. Lemaire, E. Hadamcik, N. Huret, “Light scattering by dust particles in microgravity: polarization and brightness imaging with the new version of the PROGRA2 instrument,” Appl. Opt. 41, 609–618 (2002).
[CrossRef] [PubMed]

Joulain, P.

G. Legros, P. Joulain, J.-P. Vantelon, C. Breillat, J.-L. Torero, “Estimation of a soot layer optical thickness produced by a diffusion flame established in microgravity,” in Proceedings of the Third Mediterranean Combustion Symposium, F. Beretta, A. Bouhafid, eds. (n.p., 2003), pp. 557–568.

Kato, K.

D. F. Blake, K. Kato, “Latitudinal distribution of black carbon soot in the upper troposphere and the lower stratosphere,” J. Geophys. Res. 100, 7195–7202 (1995).
[CrossRef]

Klusek, C.

C. Klusek, S. Manickavasagam, M. Pinar Mengüç, “Compendium of scattering matrix element profiles for soot agglomerates,” J. Quant. Spectrosc. Radiat. Transfer 79–80, 839–859 (2003).
[CrossRef]

Knudsen, B.

C. Brogniez, N. Huret, S. Eckermann, E. D. Rivière, M. Pirre, M. Herman, J.-Y. Balois, C. Verwaerde, N. Larsen, B. Knudsen, “Polar stratospheric cloud microphysical properties measured by the microRADIBAL instrument on 25 January 2000 above Esrange and modeling interpretation,” J. Geophys. Res. 108 (D6), 8332, doi:, 2003.
[CrossRef]

Larsen, N.

C. Brogniez, N. Huret, S. Eckermann, E. D. Rivière, M. Pirre, M. Herman, J.-Y. Balois, C. Verwaerde, N. Larsen, B. Knudsen, “Polar stratospheric cloud microphysical properties measured by the microRADIBAL instrument on 25 January 2000 above Esrange and modeling interpretation,” J. Geophys. Res. 108 (D6), 8332, doi:, 2003.
[CrossRef]

Lecomte, P.

Legros, G.

G. Legros, P. Joulain, J.-P. Vantelon, C. Breillat, J.-L. Torero, “Estimation of a soot layer optical thickness produced by a diffusion flame established in microgravity,” in Proceedings of the Third Mediterranean Combustion Symposium, F. Beretta, A. Bouhafid, eds. (n.p., 2003), pp. 557–568.

Lemaire, T.

J.-B. Renard, E. Hadamcik, T. Lemaire, J.-C. Worms, A.-C. Levasseur-Regourd, “Polarization imaging of dust cloud particles: improvements and application of the PROGRA2 instrument,” Adv. Space Res. 31, 2511–2518 (2003).
[CrossRef]

J.-B. Renard, J.-C. Worms, T. Lemaire, E. Hadamcik, N. Huret, “Light scattering by dust particles in microgravity: polarization and brightness imaging with the new version of the PROGRA2 instrument,” Appl. Opt. 41, 609–618 (2002).
[CrossRef] [PubMed]

Lenoble, J.

Levasseur-Regourd, A.-C.

E. Hadamcik, J.-B. Renard, A.-C. Levasseur-Regourd, J.-C. Worms, “Laboratory light scattering measurements on natural particles with the PROGRA2 experiment: an overview,” J. Quant. Spectrosc. Radiat. Transfer 79–80, 679–693 (2003).
[CrossRef]

J.-B. Renard, E. Hadamcik, T. Lemaire, J.-C. Worms, A.-C. Levasseur-Regourd, “Polarization imaging of dust cloud particles: improvements and application of the PROGRA2 instrument,” Adv. Space Res. 31, 2511–2518 (2003).
[CrossRef]

E. Hadamcik, J.-B. Renard, J.-C. Worms, A.-C. Levasseur-Regourd, M. Masson, “Polarization of light scattered by fluffy particles (PROGRA2 experiment),” Icarus 155, 497–508 (2002).
[CrossRef]

Manickavasagam, S.

C. Klusek, S. Manickavasagam, M. Pinar Mengüç, “Compendium of scattering matrix element profiles for soot agglomerates,” J. Quant. Spectrosc. Radiat. Transfer 79–80, 839–859 (2003).
[CrossRef]

Masson, M.

E. Hadamcik, J.-B. Renard, J.-C. Worms, A.-C. Levasseur-Regourd, M. Masson, “Polarization of light scattered by fluffy particles (PROGRA2 experiment),” Icarus 155, 497–508 (2002).
[CrossRef]

Ovarlez, H.

Ovarlez, J.

Pinar Mengüç, M.

C. Klusek, S. Manickavasagam, M. Pinar Mengüç, “Compendium of scattering matrix element profiles for soot agglomerates,” J. Quant. Spectrosc. Radiat. Transfer 79–80, 839–859 (2003).
[CrossRef]

Pirre, M.

Renard, J.-B.

E. Hadamcik, J.-B. Renard, A.-C. Levasseur-Regourd, J.-C. Worms, “Laboratory light scattering measurements on natural particles with the PROGRA2 experiment: an overview,” J. Quant. Spectrosc. Radiat. Transfer 79–80, 679–693 (2003).
[CrossRef]

J.-B. Renard, E. Hadamcik, T. Lemaire, J.-C. Worms, A.-C. Levasseur-Regourd, “Polarization imaging of dust cloud particles: improvements and application of the PROGRA2 instrument,” Adv. Space Res. 31, 2511–2518 (2003).
[CrossRef]

E. Hadamcik, J.-B. Renard, J.-C. Worms, A.-C. Levasseur-Regourd, M. Masson, “Polarization of light scattered by fluffy particles (PROGRA2 experiment),” Icarus 155, 497–508 (2002).
[CrossRef]

J.-B. Renard, J.-C. Worms, T. Lemaire, E. Hadamcik, N. Huret, “Light scattering by dust particles in microgravity: polarization and brightness imaging with the new version of the PROGRA2 instrument,” Appl. Opt. 41, 609–618 (2002).
[CrossRef] [PubMed]

J.-B. Renard, G. Berthet, C. Robert, M. Chartier, M. Pirre, C. Brogniez, M. Herman, C. Verwaerde, J.-Y. Balois, J. Ovarlez, H. Ovarlez, J. Crespin, T. Deshler, “Optical and physical properties of stratospheric aerosols from balloon measurements in the visible and near-infrared domains. II. Comparison of extinction, reflectance, polarization and counting measurements,” Appl. Opt. 41, 7540–7549 (2002).
[CrossRef]

J.-B. Renard, E. Hadamcik, C. Brogniez, G. Berthet, J.-C. Worms, M. Chartier, M. Pirre, J. Ovarlez, H. Ovarlez, “Ultraviolet–visible bulk optical properties of randomly distributed soot,” Appl. Opt. 40, 6575–6580 (2001).
[CrossRef]

Rivière, E. D.

C. Brogniez, N. Huret, S. Eckermann, E. D. Rivière, M. Pirre, M. Herman, J.-Y. Balois, C. Verwaerde, N. Larsen, B. Knudsen, “Polar stratospheric cloud microphysical properties measured by the microRADIBAL instrument on 25 January 2000 above Esrange and modeling interpretation,” J. Geophys. Res. 108 (D6), 8332, doi:, 2003.
[CrossRef]

Robert, C.

Santer, R.

Torero, J.-L.

G. Legros, P. Joulain, J.-P. Vantelon, C. Breillat, J.-L. Torero, “Estimation of a soot layer optical thickness produced by a diffusion flame established in microgravity,” in Proceedings of the Third Mediterranean Combustion Symposium, F. Beretta, A. Bouhafid, eds. (n.p., 2003), pp. 557–568.

Vantelon, J.-P.

G. Legros, P. Joulain, J.-P. Vantelon, C. Breillat, J.-L. Torero, “Estimation of a soot layer optical thickness produced by a diffusion flame established in microgravity,” in Proceedings of the Third Mediterranean Combustion Symposium, F. Beretta, A. Bouhafid, eds. (n.p., 2003), pp. 557–568.

Verwaerde, C.

Worms, J.-C.

E. Hadamcik, J.-B. Renard, A.-C. Levasseur-Regourd, J.-C. Worms, “Laboratory light scattering measurements on natural particles with the PROGRA2 experiment: an overview,” J. Quant. Spectrosc. Radiat. Transfer 79–80, 679–693 (2003).
[CrossRef]

J.-B. Renard, E. Hadamcik, T. Lemaire, J.-C. Worms, A.-C. Levasseur-Regourd, “Polarization imaging of dust cloud particles: improvements and application of the PROGRA2 instrument,” Adv. Space Res. 31, 2511–2518 (2003).
[CrossRef]

E. Hadamcik, J.-B. Renard, J.-C. Worms, A.-C. Levasseur-Regourd, M. Masson, “Polarization of light scattered by fluffy particles (PROGRA2 experiment),” Icarus 155, 497–508 (2002).
[CrossRef]

J.-B. Renard, J.-C. Worms, T. Lemaire, E. Hadamcik, N. Huret, “Light scattering by dust particles in microgravity: polarization and brightness imaging with the new version of the PROGRA2 instrument,” Appl. Opt. 41, 609–618 (2002).
[CrossRef] [PubMed]

J.-B. Renard, E. Hadamcik, C. Brogniez, G. Berthet, J.-C. Worms, M. Chartier, M. Pirre, J. Ovarlez, H. Ovarlez, “Ultraviolet–visible bulk optical properties of randomly distributed soot,” Appl. Opt. 40, 6575–6580 (2001).
[CrossRef]

Adv. Space Res. (1)

J.-B. Renard, E. Hadamcik, T. Lemaire, J.-C. Worms, A.-C. Levasseur-Regourd, “Polarization imaging of dust cloud particles: improvements and application of the PROGRA2 instrument,” Adv. Space Res. 31, 2511–2518 (2003).
[CrossRef]

Appl. Opt. (4)

Icarus (1)

E. Hadamcik, J.-B. Renard, J.-C. Worms, A.-C. Levasseur-Regourd, M. Masson, “Polarization of light scattered by fluffy particles (PROGRA2 experiment),” Icarus 155, 497–508 (2002).
[CrossRef]

J. Geophys. Res. (2)

D. F. Blake, K. Kato, “Latitudinal distribution of black carbon soot in the upper troposphere and the lower stratosphere,” J. Geophys. Res. 100, 7195–7202 (1995).
[CrossRef]

C. Brogniez, N. Huret, S. Eckermann, E. D. Rivière, M. Pirre, M. Herman, J.-Y. Balois, C. Verwaerde, N. Larsen, B. Knudsen, “Polar stratospheric cloud microphysical properties measured by the microRADIBAL instrument on 25 January 2000 above Esrange and modeling interpretation,” J. Geophys. Res. 108 (D6), 8332, doi:, 2003.
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (2)

C. Klusek, S. Manickavasagam, M. Pinar Mengüç, “Compendium of scattering matrix element profiles for soot agglomerates,” J. Quant. Spectrosc. Radiat. Transfer 79–80, 839–859 (2003).
[CrossRef]

E. Hadamcik, J.-B. Renard, A.-C. Levasseur-Regourd, J.-C. Worms, “Laboratory light scattering measurements on natural particles with the PROGRA2 experiment: an overview,” J. Quant. Spectrosc. Radiat. Transfer 79–80, 679–693 (2003).
[CrossRef]

Other (3)

J.-M. André, Etude expérimentale de l’indicatrice de diffusion des particules non sphériques,” Thesis (Blaise Pascal University, Clermont-Ferrand, France, 2002).

D. Daugeron, “Réalisation d’un néphélomètre de laboratoire pour l’étudedes propriétés radiatives de la lumière diffusée par les aérosols,” Engineering certificate (Conservatoire National des Arts et Métiers, Saint-Etienne, France, 2001).

G. Legros, P. Joulain, J.-P. Vantelon, C. Breillat, J.-L. Torero, “Estimation of a soot layer optical thickness produced by a diffusion flame established in microgravity,” in Proceedings of the Third Mediterranean Combustion Symposium, F. Beretta, A. Bouhafid, eds. (n.p., 2003), pp. 557–568.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Electron-microscope image of ethylene soot produced in microgravity. The individual grains that comprise the aggregates and the agglomerates are of the order of 100-nm diameter.

Fig. 2
Fig. 2

Size distribution of the three soot samples studied on the ground by the air draught method with the PROGRA2 instrument (solid curve), fitted by a second-order polynomial (dotted curve). The spatial resolution does not allow the size to be determined for particles smaller than 10 μm.

Fig. 3
Fig. 3

Polarization curve obtained in microgravity at λ = 632.8 nm for agglomerates of kerosene soot.

Fig. 4
Fig. 4

Polarization curve obtained on the ground at λ = 632.8 nm for kerosene soot produced in a laboratory.

Fig. 5
Fig. 5

Polarization curve obtained on the ground at λ = 632.8 nm for ethylene soot produced in a laboratory.

Fig. 6
Fig. 6

Polarization curve obtained on the ground at λ = 632.8 nm for ethylene soot produced in microgravity.

Fig. 7
Fig. 7

Polarization curve obtained on the ground at λ = 543.5 nm for ethylene soot produced in a laboratory.

Fig. 8
Fig. 8

Polarization curve obtained on the ground at λ = 543.5 nm for ethylene soot produced in microgravity.

Fig. 9
Fig. 9

Synthetic polarization curve for soot at green (λ = 543.5 nm) and red (λ = 632.8 nm) wavelengths. The error bars are included within the thickness of the curves.

Fig. 10
Fig. 10

Dependence of polarization on size after averaging the data at a size interval of 50 μm following a linear fit. The measurements are in the red domain at a scattering angle of 110°. The error bars are of the order of ±2%.

Fig. 11
Fig. 11

Synthetic curve showing the dependence of polarization on the size of soot agglomerates by use of three different soot samples. The error bars are of the order of ±2%.

Fig. 12
Fig. 12

Synthetic intensity curves (in relative units) from the LaMP nephelometer measurements. The error bars are approximately ±10%.

Metrics