Abstract

A wide-viewing-angle integral three-dimensional imaging system made by curving a screen and a lens array is described. A flexible screen and a curved lens array are incorporated into an integral imaging system in place of a conventional flat display panel and a flat lens array. One can effectively eliminate flipped images by adopting barriers. As a result, the implemented system permits the limitation of viewing angle to be overcome and the viewing angle to be expanded remarkably. Using the proposed method, we were able to achieve a viewing angle of 33° (one side) for real integral imaging and 40° (one side) for virtual integral imaging, which is four times wider than that of the currently used conventional techniques. The principle of the implemented system is explained, and some experimental results are presented.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Lippmann, “La -photographie integrale,” C. R. Acad. Sci. 146, 446–451 (1908).
  2. N. Davies, M. McCormick, M. Brewin, “Design and analysis of an image transfer system using microlens arrays,” Opt. Eng. 33, 3624–3633 (1994).
    [CrossRef]
  3. M. McCormick, N. Davies, “Full natural colour 3D optical models by integral imaging,” in Fourth International Conference on Holographic Systems, Components and Applications (Institute of Electrical Engineers, London, 1993), pp. 237–242.
  4. S. Manolache, A. Aggoun, M. McCormick, N. Davies, S.-Y. Kung, “Analytical model of a three-dimensional integral image recording system that uses circular- and hexagonal-based spherical surface microlenses,” J. Opt. Soc. Am. A 18, 1814–1821 (2001).
    [CrossRef]
  5. M. C. Forman, N. Davies, M. McCormick, “Continuous parallax in discrete pixelated integral three-dimensional displays,” J. Opt. Soc. Am. A 20, 411–420 (2003).
    [CrossRef]
  6. J. Arai, F. Okano, H. Isono, I. Yuyama, “Gradient-index lens-array method based on real-time integral photography for three-dimensional images,” Appl. Opt. 37, 2034–2045 (1998).
    [CrossRef]
  7. S.-W. Min, S. Jung, J.-H. Park, B. Lee, “Three-dimensional display system based on computer-generated integral photography,” in Stereoscopic Displays and Virtual Reality Systems VIII, A. J. Woods, J. O. Merritt, S. A. Benton, eds., Proc. SPIE4297, 187–195 (2001).
    [CrossRef]
  8. S.-W. Min, S. Jung, J.-H. Park, B. Lee, “Study for wide-viewing integral photography using an aspheric Fresnel-lens array,” Opt. Eng. 41, 2572–2576 (2002).
    [CrossRef]
  9. B. Lee, S. Jung, J.-H. Park, “Viewing-angle-enhanced integral imaging by lens switching,” Opt. Lett. 27, 818–820 (2002).
    [CrossRef]
  10. S. Jung, J.-H. Park, H. Choi, B. Lee, “Wide-viewing integral three-dimensional imaging by use of orthogonal polarization switching,” Appl. Opt. 42, 2513–2520 (2003).
    [CrossRef] [PubMed]
  11. S.-H. Shin, B. Javidi, “Viewing-angle enhancement of speckle-reduced volume holographic three-dimensional display by use of integral imaging,” Appl. Opt. 41, 5562–5567 (2002).
    [CrossRef] [PubMed]
  12. H. Choi, S.-W. Min, S. Jung, J.-H. Park, B. Lee, “Multiple-viewing-zone integral imaging using a dynamic barrier array for three-dimensional displays,” Opt. Express11, 927–932 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-927 .
    [CrossRef] [PubMed]
  13. S.-W. Min, B. Javidi, B. Lee, “Enhanced three-dimensional integral imaging system by use of double display devices,” Appl. Opt. 42, 4186–4195 (2003).
    [CrossRef] [PubMed]
  14. Y. Kim, J.-H. Park, H. Choi, S. Jung, S.-W. Min, B. Lee, “Viewing-angle-enhanced integral imaging system using a curved lens array,” Opt. Express12, 421–429 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-421 .
    [CrossRef] [PubMed]
  15. H. Liao, M. Iwahara, N. Hata, T. Dohi, “High-quality integral videography using a multiprojector,” Opt. Express12, 1067–1076 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1067 .
    [CrossRef] [PubMed]
  16. J.-H. Park, S.-W. Min, S. Jung, B. Lee, “Analysis of viewing parameters for two display methods based on integral photography,” Appl. Opt. 40, 5217–5232 (2001).
    [CrossRef]

2003 (3)

2002 (3)

2001 (2)

1998 (1)

1994 (1)

N. Davies, M. McCormick, M. Brewin, “Design and analysis of an image transfer system using microlens arrays,” Opt. Eng. 33, 3624–3633 (1994).
[CrossRef]

1908 (1)

G. Lippmann, “La -photographie integrale,” C. R. Acad. Sci. 146, 446–451 (1908).

Aggoun, A.

Arai, J.

Brewin, M.

N. Davies, M. McCormick, M. Brewin, “Design and analysis of an image transfer system using microlens arrays,” Opt. Eng. 33, 3624–3633 (1994).
[CrossRef]

Choi, H.

Davies, N.

M. C. Forman, N. Davies, M. McCormick, “Continuous parallax in discrete pixelated integral three-dimensional displays,” J. Opt. Soc. Am. A 20, 411–420 (2003).
[CrossRef]

S. Manolache, A. Aggoun, M. McCormick, N. Davies, S.-Y. Kung, “Analytical model of a three-dimensional integral image recording system that uses circular- and hexagonal-based spherical surface microlenses,” J. Opt. Soc. Am. A 18, 1814–1821 (2001).
[CrossRef]

N. Davies, M. McCormick, M. Brewin, “Design and analysis of an image transfer system using microlens arrays,” Opt. Eng. 33, 3624–3633 (1994).
[CrossRef]

M. McCormick, N. Davies, “Full natural colour 3D optical models by integral imaging,” in Fourth International Conference on Holographic Systems, Components and Applications (Institute of Electrical Engineers, London, 1993), pp. 237–242.

Forman, M. C.

Isono, H.

Javidi, B.

Jung, S.

S. Jung, J.-H. Park, H. Choi, B. Lee, “Wide-viewing integral three-dimensional imaging by use of orthogonal polarization switching,” Appl. Opt. 42, 2513–2520 (2003).
[CrossRef] [PubMed]

B. Lee, S. Jung, J.-H. Park, “Viewing-angle-enhanced integral imaging by lens switching,” Opt. Lett. 27, 818–820 (2002).
[CrossRef]

S.-W. Min, S. Jung, J.-H. Park, B. Lee, “Study for wide-viewing integral photography using an aspheric Fresnel-lens array,” Opt. Eng. 41, 2572–2576 (2002).
[CrossRef]

J.-H. Park, S.-W. Min, S. Jung, B. Lee, “Analysis of viewing parameters for two display methods based on integral photography,” Appl. Opt. 40, 5217–5232 (2001).
[CrossRef]

S.-W. Min, S. Jung, J.-H. Park, B. Lee, “Three-dimensional display system based on computer-generated integral photography,” in Stereoscopic Displays and Virtual Reality Systems VIII, A. J. Woods, J. O. Merritt, S. A. Benton, eds., Proc. SPIE4297, 187–195 (2001).
[CrossRef]

Kung, S.-Y.

Lee, B.

Lippmann, G.

G. Lippmann, “La -photographie integrale,” C. R. Acad. Sci. 146, 446–451 (1908).

Manolache, S.

McCormick, M.

M. C. Forman, N. Davies, M. McCormick, “Continuous parallax in discrete pixelated integral three-dimensional displays,” J. Opt. Soc. Am. A 20, 411–420 (2003).
[CrossRef]

S. Manolache, A. Aggoun, M. McCormick, N. Davies, S.-Y. Kung, “Analytical model of a three-dimensional integral image recording system that uses circular- and hexagonal-based spherical surface microlenses,” J. Opt. Soc. Am. A 18, 1814–1821 (2001).
[CrossRef]

N. Davies, M. McCormick, M. Brewin, “Design and analysis of an image transfer system using microlens arrays,” Opt. Eng. 33, 3624–3633 (1994).
[CrossRef]

M. McCormick, N. Davies, “Full natural colour 3D optical models by integral imaging,” in Fourth International Conference on Holographic Systems, Components and Applications (Institute of Electrical Engineers, London, 1993), pp. 237–242.

Min, S.-W.

S.-W. Min, B. Javidi, B. Lee, “Enhanced three-dimensional integral imaging system by use of double display devices,” Appl. Opt. 42, 4186–4195 (2003).
[CrossRef] [PubMed]

S.-W. Min, S. Jung, J.-H. Park, B. Lee, “Study for wide-viewing integral photography using an aspheric Fresnel-lens array,” Opt. Eng. 41, 2572–2576 (2002).
[CrossRef]

J.-H. Park, S.-W. Min, S. Jung, B. Lee, “Analysis of viewing parameters for two display methods based on integral photography,” Appl. Opt. 40, 5217–5232 (2001).
[CrossRef]

S.-W. Min, S. Jung, J.-H. Park, B. Lee, “Three-dimensional display system based on computer-generated integral photography,” in Stereoscopic Displays and Virtual Reality Systems VIII, A. J. Woods, J. O. Merritt, S. A. Benton, eds., Proc. SPIE4297, 187–195 (2001).
[CrossRef]

Okano, F.

Park, J.-H.

S. Jung, J.-H. Park, H. Choi, B. Lee, “Wide-viewing integral three-dimensional imaging by use of orthogonal polarization switching,” Appl. Opt. 42, 2513–2520 (2003).
[CrossRef] [PubMed]

B. Lee, S. Jung, J.-H. Park, “Viewing-angle-enhanced integral imaging by lens switching,” Opt. Lett. 27, 818–820 (2002).
[CrossRef]

S.-W. Min, S. Jung, J.-H. Park, B. Lee, “Study for wide-viewing integral photography using an aspheric Fresnel-lens array,” Opt. Eng. 41, 2572–2576 (2002).
[CrossRef]

J.-H. Park, S.-W. Min, S. Jung, B. Lee, “Analysis of viewing parameters for two display methods based on integral photography,” Appl. Opt. 40, 5217–5232 (2001).
[CrossRef]

S.-W. Min, S. Jung, J.-H. Park, B. Lee, “Three-dimensional display system based on computer-generated integral photography,” in Stereoscopic Displays and Virtual Reality Systems VIII, A. J. Woods, J. O. Merritt, S. A. Benton, eds., Proc. SPIE4297, 187–195 (2001).
[CrossRef]

Shin, S.-H.

Yuyama, I.

Appl. Opt. (5)

C. R. Acad. Sci. (1)

G. Lippmann, “La -photographie integrale,” C. R. Acad. Sci. 146, 446–451 (1908).

J. Opt. Soc. Am. A (2)

Opt. Eng. (2)

N. Davies, M. McCormick, M. Brewin, “Design and analysis of an image transfer system using microlens arrays,” Opt. Eng. 33, 3624–3633 (1994).
[CrossRef]

S.-W. Min, S. Jung, J.-H. Park, B. Lee, “Study for wide-viewing integral photography using an aspheric Fresnel-lens array,” Opt. Eng. 41, 2572–2576 (2002).
[CrossRef]

Opt. Lett. (1)

Other (5)

S.-W. Min, S. Jung, J.-H. Park, B. Lee, “Three-dimensional display system based on computer-generated integral photography,” in Stereoscopic Displays and Virtual Reality Systems VIII, A. J. Woods, J. O. Merritt, S. A. Benton, eds., Proc. SPIE4297, 187–195 (2001).
[CrossRef]

M. McCormick, N. Davies, “Full natural colour 3D optical models by integral imaging,” in Fourth International Conference on Holographic Systems, Components and Applications (Institute of Electrical Engineers, London, 1993), pp. 237–242.

Y. Kim, J.-H. Park, H. Choi, S. Jung, S.-W. Min, B. Lee, “Viewing-angle-enhanced integral imaging system using a curved lens array,” Opt. Express12, 421–429 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-421 .
[CrossRef] [PubMed]

H. Liao, M. Iwahara, N. Hata, T. Dohi, “High-quality integral videography using a multiprojector,” Opt. Express12, 1067–1076 (2004), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1067 .
[CrossRef] [PubMed]

H. Choi, S.-W. Min, S. Jung, J.-H. Park, B. Lee, “Multiple-viewing-zone integral imaging using a dynamic barrier array for three-dimensional displays,” Opt. Express11, 927–932 (2003), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-927 .
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Configuration of the advanced system that uses a curved screen for displaying (a) a real image and (b) a virtual image.

Fig. 2
Fig. 2

(a) Location of the images, (b) computer-generated elemental images of the conventional method, (c) elemental images for the curved lens array method with a flat display panel, and (d) elemental images on the projector in the proposed method.

Fig. 3
Fig. 3

(a) Diagram for deriving relative resolution, (b) relative resolution R(n) versus the elemental image designation number n, and (c) the depth region and the limitation in image size for a real image and (d) for a virtual image.

Fig. 4
Fig. 4

Experimental setup: curved lens array and curved screen.

Fig. 5
Fig. 5

Correction for distortion. (a) The image is distorted in the curved screen because the lights from the projector are not parallel. (b) Corrected elemental images on the projector.

Fig. 6
Fig. 6

Integrated images observed from the center (a) without barriers and (b) with barriers.

Fig. 7
Fig. 7

Integrated images observed from different viewing points (a) by the conventional method, (b) by the curved lens array method with a flat display panel, and (c) real images and (d) virtual images by the proposed method, in which both the screen and the lens array are curved.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

Ω = 2 arctan ( ϕ / 2 g ) ,
R ( n ) = sin [ ( 2 n + 1 ) θ ] - sin [ ( 2 n - 1 ) θ ] 2 sin θ = cos ( 2 n θ )             ( 0 n θ < π / 2 ) ,
θ = arctan ( ϕ / 2 r ) ,
Ω = 2 × 2 n max θ = 4 n max arctan ( ϕ / 2 r ) .

Metrics