Abstract

We show that a speckle-modulation technique can improve the parallelism and the recognition accuracy of volume holographic correlators. The object patterns are modulated by a speckle pattern generated by a diffuser. These modulated patterns are stored as Fourier holograms by use of angular-fractal multiplexing. With the speckle modulation the sidelobes are completely suppressed, the cross talk is negligible, and the correlation peak becomes a bright sharp spot. Thus higher recognition accuracy is achieved. The angular separation between adjacent patterns in the multiplexing could be much smaller, resulting in larger capacity and higher parallelism of the correlator. Also, this technique can be combined with other methods such as wavelet filtering to achieve a large invariant tolerance range. Theoretical analysis, numerical evaluation, and experimental results are presented to confirm that sidelobes and cross talk are sharply suppressed by the speckle modulation.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. O. White, A. Yariv, “Real-time pattern processing via four-wave mixing in a photorefractive medium,” Appl. Phys. Lett. 37, 5–7 (1980).
    [CrossRef]
  2. H.-Y. S. Li, Y. Qiao, D. Psaltis, “Optical network for real-time face recognition,” Appl. Opt. 32, 5026–5035 (1993).
    [CrossRef] [PubMed]
  3. C. Gu, H. Fu, J.-R. Lien, “Correlation patterns and crosstalk noise in volume holographic optical correlators,” J. Opt. Soc. Am. A 12, 861–868 (1995).
    [CrossRef]
  4. M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M. Gorkani, J. Hafner, D. Lee, D. Petkovic, D. Steele, P. Yanker, “Query by image and video content: the QBIC system,” IEEE Comput. Sci. Eng. 28, 23–32 (1995).
  5. S. H. Shin, B. Javidi, “Three-dimensional object recognition by use of a photorefractive volume holographic processor,” Opt. Lett. 26, 1161–1163 (2001).
    [CrossRef]
  6. T. H. Chao, H. Y. Zhou, G. Reyes, “High-speed optical object recognition processor with massive holographic memory,” in Optical Information Processing Technology, M. Guoguang, F. T. Yu, S. Jutamulia, eds., Proc. SPIE4929, 237–243 (2002).
    [CrossRef]
  7. W. Su, Y. Chen, Y. Ouyang, C. Sun, B. Wang, “Optical identification using a random phase mask,” Opt. Commun. 219, 117–123 (2003).
    [CrossRef]
  8. C. Gu, “Holographic memory for high density data storage and high speed pattern recognition,” in Optical Information Processing Technology, M. Guoguang, F. T. S. Yu, S. Jutamulia, eds., Proc. SPIE4929, 198–207 (2002).
    [CrossRef]
  9. P. A. Mitkas, G. W. Burr, “Volume holographic optical correlators,” in Holographic Data Storage, H. J. Coufal, D. Psaltis, G. T. Sicebox, eds. (Springer-Verlag, Berlin, 2000), pp. 429–446.
    [CrossRef]
  10. W. Feng, Y. Yan, G. Jin, M. Wu, Q. He, “Volume holographic wavelet correlation processor,” Opt. Eng. 39, 2444–2450 (2000).
    [CrossRef]
  11. W. Feng, Y. Yan, G. Jin, M. Wu, Q. He, “Invariant performance of a volume holographic wavelet correlation processor,” Opt. Commun. 177, 141–148 (2000).
    [CrossRef]
  12. C. B. Uurckhardt, “Use of a random phase mask for the recording of Fourier transform holograms of data masks,” Appl. Opt. 9, 695–700 (1970).
    [CrossRef]
  13. Q. Gao, R. K. Kostuk, “Improvement to holographic datastorage systems with random and pseudorandom phase masks,” Appl. Opt. 36, 4853–4861 (1997).
    [CrossRef] [PubMed]
  14. J. Yang, S.-I. Jin, Y.-S. Bae, S.-Y. Lee, “Optimized phase mask for uniformizing a Fourier spectrum,” Opt. Commun. 155, 12–16 (1998).
    [CrossRef]
  15. P. Refregier, B. Javidi, “Optical-pattern encryption based on input plane and Fourier plane random encoding,” Opt. Lett. 20, 767–769 (1995).
    [CrossRef] [PubMed]
  16. B. Javidi, A. Sergent, E. Ahouzi, “Performance of double phase encoding encryption technique using binarized encrypted patterns,” Opt. Eng. 37, 565–569 (1998).
    [CrossRef]
  17. C. C. Sun, W. C. Su, B. Wang, Y. Ouyang, “Diffraction selectivity of holograms with random phase encoding,” Opt. Commun. 175, 67–74 (2000).
    [CrossRef]
  18. B. Wang, C. C. Sun, “Enhancement of signal-to-noise ratio of a double random phase encoding encryption system,” Opt. Eng. 40, 1502–1506 (2001).
    [CrossRef]
  19. C. Ouyang, L. Cao, Q. He, Y. Liao, M. Wu, G. Jin, “Sidelobe suppression in volume holographic optical correlators by use of speckle modulation,” Opt. Lett. 28, 1972–1974 (2003).
    [CrossRef] [PubMed]
  20. J. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, Berlin, 1975), pp. 9–76.
  21. C. Gu, J. Hong, S. Campbell, “2-D shift-invariant volume holographic correlator,” Opt. Commun. 88, 309–314 (1992).
    [CrossRef]
  22. Q. He, P. Yeh, L. Hu, S. Lin, T. Yeh, T. Tu, S. Yang, K. Hsu, “Shift invariant photorefractive joint transform correlator using Fe:LiNbO3 crystal plates,” Appl. Opt. 32, 3113–3115 (1993).
    [CrossRef] [PubMed]
  23. Z. Wen, X. Yang, “Multichannel photorefractive correlator for rotation-invariant optical pattern recognition,” Opt. Commun. 135, 212–216 (1997).
    [CrossRef]
  24. C. Chang, H. Yau, Y. Tong, N. Puh, “Rotational invariant pattern recognition with the method of circular harmonics using a BaTiO3 crystal,” Opt. Commun. 87, 219–222 (1992).
    [CrossRef]
  25. J. Rodolfo, H. Rajbenbach, J.-P. Huignard, “Performance of a photorefractive joint transform correlator for fingerprint identification,” Opt. Eng. 34, 1166–1171 (1995).
    [CrossRef]
  26. C.-C. Sun, W.-C. Su, “Three-dimensional shifting selectivity phase encoding in volume holograms,” Appl. Opt. 40, 1253–1260 (2001).
    [CrossRef]
  27. W.-C. Su, C.-C. Sun, “Optical pattern interconnections using random phase encoding in volume holograms,” Opt. Commun. 213, 259–265 (2002).
    [CrossRef]
  28. Q. He, G. Liu, X. Li, J. Wang, M. Wu, G. Jin, “Suppression of the influence of a photovoltaic dc field on volume holograms in Fe:LiNbO3,” Appl. Opt. 41, 4104–4107 (2002).
    [CrossRef] [PubMed]
  29. G. Jin, L. Cao, Q. He, H. Wei, M. Wu, “Random modulation in high density holographic data storage and correlation recognition system,” in Photorefractive Fiber and Crystal Deveices: Materials, Optical Properties, and Applications, F. T. S. Yu, R. Guo, S. Yin, eds., Proc. SPIE5206, 125–134 (2003).

2003

2002

Q. He, G. Liu, X. Li, J. Wang, M. Wu, G. Jin, “Suppression of the influence of a photovoltaic dc field on volume holograms in Fe:LiNbO3,” Appl. Opt. 41, 4104–4107 (2002).
[CrossRef] [PubMed]

W.-C. Su, C.-C. Sun, “Optical pattern interconnections using random phase encoding in volume holograms,” Opt. Commun. 213, 259–265 (2002).
[CrossRef]

2001

2000

W. Feng, Y. Yan, G. Jin, M. Wu, Q. He, “Volume holographic wavelet correlation processor,” Opt. Eng. 39, 2444–2450 (2000).
[CrossRef]

W. Feng, Y. Yan, G. Jin, M. Wu, Q. He, “Invariant performance of a volume holographic wavelet correlation processor,” Opt. Commun. 177, 141–148 (2000).
[CrossRef]

C. C. Sun, W. C. Su, B. Wang, Y. Ouyang, “Diffraction selectivity of holograms with random phase encoding,” Opt. Commun. 175, 67–74 (2000).
[CrossRef]

1998

B. Javidi, A. Sergent, E. Ahouzi, “Performance of double phase encoding encryption technique using binarized encrypted patterns,” Opt. Eng. 37, 565–569 (1998).
[CrossRef]

J. Yang, S.-I. Jin, Y.-S. Bae, S.-Y. Lee, “Optimized phase mask for uniformizing a Fourier spectrum,” Opt. Commun. 155, 12–16 (1998).
[CrossRef]

1997

Z. Wen, X. Yang, “Multichannel photorefractive correlator for rotation-invariant optical pattern recognition,” Opt. Commun. 135, 212–216 (1997).
[CrossRef]

Q. Gao, R. K. Kostuk, “Improvement to holographic datastorage systems with random and pseudorandom phase masks,” Appl. Opt. 36, 4853–4861 (1997).
[CrossRef] [PubMed]

1995

J. Rodolfo, H. Rajbenbach, J.-P. Huignard, “Performance of a photorefractive joint transform correlator for fingerprint identification,” Opt. Eng. 34, 1166–1171 (1995).
[CrossRef]

C. Gu, H. Fu, J.-R. Lien, “Correlation patterns and crosstalk noise in volume holographic optical correlators,” J. Opt. Soc. Am. A 12, 861–868 (1995).
[CrossRef]

P. Refregier, B. Javidi, “Optical-pattern encryption based on input plane and Fourier plane random encoding,” Opt. Lett. 20, 767–769 (1995).
[CrossRef] [PubMed]

M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M. Gorkani, J. Hafner, D. Lee, D. Petkovic, D. Steele, P. Yanker, “Query by image and video content: the QBIC system,” IEEE Comput. Sci. Eng. 28, 23–32 (1995).

1993

1992

C. Chang, H. Yau, Y. Tong, N. Puh, “Rotational invariant pattern recognition with the method of circular harmonics using a BaTiO3 crystal,” Opt. Commun. 87, 219–222 (1992).
[CrossRef]

C. Gu, J. Hong, S. Campbell, “2-D shift-invariant volume holographic correlator,” Opt. Commun. 88, 309–314 (1992).
[CrossRef]

1980

J. O. White, A. Yariv, “Real-time pattern processing via four-wave mixing in a photorefractive medium,” Appl. Phys. Lett. 37, 5–7 (1980).
[CrossRef]

1970

Ahouzi, E.

B. Javidi, A. Sergent, E. Ahouzi, “Performance of double phase encoding encryption technique using binarized encrypted patterns,” Opt. Eng. 37, 565–569 (1998).
[CrossRef]

Ashley, J.

M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M. Gorkani, J. Hafner, D. Lee, D. Petkovic, D. Steele, P. Yanker, “Query by image and video content: the QBIC system,” IEEE Comput. Sci. Eng. 28, 23–32 (1995).

Bae, Y.-S.

J. Yang, S.-I. Jin, Y.-S. Bae, S.-Y. Lee, “Optimized phase mask for uniformizing a Fourier spectrum,” Opt. Commun. 155, 12–16 (1998).
[CrossRef]

Burr, G. W.

P. A. Mitkas, G. W. Burr, “Volume holographic optical correlators,” in Holographic Data Storage, H. J. Coufal, D. Psaltis, G. T. Sicebox, eds. (Springer-Verlag, Berlin, 2000), pp. 429–446.
[CrossRef]

Campbell, S.

C. Gu, J. Hong, S. Campbell, “2-D shift-invariant volume holographic correlator,” Opt. Commun. 88, 309–314 (1992).
[CrossRef]

Cao, L.

C. Ouyang, L. Cao, Q. He, Y. Liao, M. Wu, G. Jin, “Sidelobe suppression in volume holographic optical correlators by use of speckle modulation,” Opt. Lett. 28, 1972–1974 (2003).
[CrossRef] [PubMed]

G. Jin, L. Cao, Q. He, H. Wei, M. Wu, “Random modulation in high density holographic data storage and correlation recognition system,” in Photorefractive Fiber and Crystal Deveices: Materials, Optical Properties, and Applications, F. T. S. Yu, R. Guo, S. Yin, eds., Proc. SPIE5206, 125–134 (2003).

Chang, C.

C. Chang, H. Yau, Y. Tong, N. Puh, “Rotational invariant pattern recognition with the method of circular harmonics using a BaTiO3 crystal,” Opt. Commun. 87, 219–222 (1992).
[CrossRef]

Chao, T. H.

T. H. Chao, H. Y. Zhou, G. Reyes, “High-speed optical object recognition processor with massive holographic memory,” in Optical Information Processing Technology, M. Guoguang, F. T. Yu, S. Jutamulia, eds., Proc. SPIE4929, 237–243 (2002).
[CrossRef]

Chen, Y.

W. Su, Y. Chen, Y. Ouyang, C. Sun, B. Wang, “Optical identification using a random phase mask,” Opt. Commun. 219, 117–123 (2003).
[CrossRef]

Dom, B.

M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M. Gorkani, J. Hafner, D. Lee, D. Petkovic, D. Steele, P. Yanker, “Query by image and video content: the QBIC system,” IEEE Comput. Sci. Eng. 28, 23–32 (1995).

Feng, W.

W. Feng, Y. Yan, G. Jin, M. Wu, Q. He, “Volume holographic wavelet correlation processor,” Opt. Eng. 39, 2444–2450 (2000).
[CrossRef]

W. Feng, Y. Yan, G. Jin, M. Wu, Q. He, “Invariant performance of a volume holographic wavelet correlation processor,” Opt. Commun. 177, 141–148 (2000).
[CrossRef]

Flickner, M.

M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M. Gorkani, J. Hafner, D. Lee, D. Petkovic, D. Steele, P. Yanker, “Query by image and video content: the QBIC system,” IEEE Comput. Sci. Eng. 28, 23–32 (1995).

Fu, H.

Gao, Q.

Goodman, J.

J. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, Berlin, 1975), pp. 9–76.

Gorkani, M.

M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M. Gorkani, J. Hafner, D. Lee, D. Petkovic, D. Steele, P. Yanker, “Query by image and video content: the QBIC system,” IEEE Comput. Sci. Eng. 28, 23–32 (1995).

Gu, C.

C. Gu, H. Fu, J.-R. Lien, “Correlation patterns and crosstalk noise in volume holographic optical correlators,” J. Opt. Soc. Am. A 12, 861–868 (1995).
[CrossRef]

C. Gu, J. Hong, S. Campbell, “2-D shift-invariant volume holographic correlator,” Opt. Commun. 88, 309–314 (1992).
[CrossRef]

C. Gu, “Holographic memory for high density data storage and high speed pattern recognition,” in Optical Information Processing Technology, M. Guoguang, F. T. S. Yu, S. Jutamulia, eds., Proc. SPIE4929, 198–207 (2002).
[CrossRef]

Hafner, J.

M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M. Gorkani, J. Hafner, D. Lee, D. Petkovic, D. Steele, P. Yanker, “Query by image and video content: the QBIC system,” IEEE Comput. Sci. Eng. 28, 23–32 (1995).

He, Q.

C. Ouyang, L. Cao, Q. He, Y. Liao, M. Wu, G. Jin, “Sidelobe suppression in volume holographic optical correlators by use of speckle modulation,” Opt. Lett. 28, 1972–1974 (2003).
[CrossRef] [PubMed]

Q. He, G. Liu, X. Li, J. Wang, M. Wu, G. Jin, “Suppression of the influence of a photovoltaic dc field on volume holograms in Fe:LiNbO3,” Appl. Opt. 41, 4104–4107 (2002).
[CrossRef] [PubMed]

W. Feng, Y. Yan, G. Jin, M. Wu, Q. He, “Volume holographic wavelet correlation processor,” Opt. Eng. 39, 2444–2450 (2000).
[CrossRef]

W. Feng, Y. Yan, G. Jin, M. Wu, Q. He, “Invariant performance of a volume holographic wavelet correlation processor,” Opt. Commun. 177, 141–148 (2000).
[CrossRef]

Q. He, P. Yeh, L. Hu, S. Lin, T. Yeh, T. Tu, S. Yang, K. Hsu, “Shift invariant photorefractive joint transform correlator using Fe:LiNbO3 crystal plates,” Appl. Opt. 32, 3113–3115 (1993).
[CrossRef] [PubMed]

G. Jin, L. Cao, Q. He, H. Wei, M. Wu, “Random modulation in high density holographic data storage and correlation recognition system,” in Photorefractive Fiber and Crystal Deveices: Materials, Optical Properties, and Applications, F. T. S. Yu, R. Guo, S. Yin, eds., Proc. SPIE5206, 125–134 (2003).

Hong, J.

C. Gu, J. Hong, S. Campbell, “2-D shift-invariant volume holographic correlator,” Opt. Commun. 88, 309–314 (1992).
[CrossRef]

Hsu, K.

Hu, L.

Huang, Q.

M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M. Gorkani, J. Hafner, D. Lee, D. Petkovic, D. Steele, P. Yanker, “Query by image and video content: the QBIC system,” IEEE Comput. Sci. Eng. 28, 23–32 (1995).

Huignard, J.-P.

J. Rodolfo, H. Rajbenbach, J.-P. Huignard, “Performance of a photorefractive joint transform correlator for fingerprint identification,” Opt. Eng. 34, 1166–1171 (1995).
[CrossRef]

Javidi, B.

Jin, G.

C. Ouyang, L. Cao, Q. He, Y. Liao, M. Wu, G. Jin, “Sidelobe suppression in volume holographic optical correlators by use of speckle modulation,” Opt. Lett. 28, 1972–1974 (2003).
[CrossRef] [PubMed]

Q. He, G. Liu, X. Li, J. Wang, M. Wu, G. Jin, “Suppression of the influence of a photovoltaic dc field on volume holograms in Fe:LiNbO3,” Appl. Opt. 41, 4104–4107 (2002).
[CrossRef] [PubMed]

W. Feng, Y. Yan, G. Jin, M. Wu, Q. He, “Invariant performance of a volume holographic wavelet correlation processor,” Opt. Commun. 177, 141–148 (2000).
[CrossRef]

W. Feng, Y. Yan, G. Jin, M. Wu, Q. He, “Volume holographic wavelet correlation processor,” Opt. Eng. 39, 2444–2450 (2000).
[CrossRef]

G. Jin, L. Cao, Q. He, H. Wei, M. Wu, “Random modulation in high density holographic data storage and correlation recognition system,” in Photorefractive Fiber and Crystal Deveices: Materials, Optical Properties, and Applications, F. T. S. Yu, R. Guo, S. Yin, eds., Proc. SPIE5206, 125–134 (2003).

Jin, S.-I.

J. Yang, S.-I. Jin, Y.-S. Bae, S.-Y. Lee, “Optimized phase mask for uniformizing a Fourier spectrum,” Opt. Commun. 155, 12–16 (1998).
[CrossRef]

Kostuk, R. K.

Lee, D.

M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M. Gorkani, J. Hafner, D. Lee, D. Petkovic, D. Steele, P. Yanker, “Query by image and video content: the QBIC system,” IEEE Comput. Sci. Eng. 28, 23–32 (1995).

Lee, S.-Y.

J. Yang, S.-I. Jin, Y.-S. Bae, S.-Y. Lee, “Optimized phase mask for uniformizing a Fourier spectrum,” Opt. Commun. 155, 12–16 (1998).
[CrossRef]

Li, H.-Y. S.

Li, X.

Liao, Y.

Lien, J.-R.

Lin, S.

Liu, G.

Mitkas, P. A.

P. A. Mitkas, G. W. Burr, “Volume holographic optical correlators,” in Holographic Data Storage, H. J. Coufal, D. Psaltis, G. T. Sicebox, eds. (Springer-Verlag, Berlin, 2000), pp. 429–446.
[CrossRef]

Niblack, W.

M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M. Gorkani, J. Hafner, D. Lee, D. Petkovic, D. Steele, P. Yanker, “Query by image and video content: the QBIC system,” IEEE Comput. Sci. Eng. 28, 23–32 (1995).

Ouyang, C.

Ouyang, Y.

W. Su, Y. Chen, Y. Ouyang, C. Sun, B. Wang, “Optical identification using a random phase mask,” Opt. Commun. 219, 117–123 (2003).
[CrossRef]

C. C. Sun, W. C. Su, B. Wang, Y. Ouyang, “Diffraction selectivity of holograms with random phase encoding,” Opt. Commun. 175, 67–74 (2000).
[CrossRef]

Petkovic, D.

M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M. Gorkani, J. Hafner, D. Lee, D. Petkovic, D. Steele, P. Yanker, “Query by image and video content: the QBIC system,” IEEE Comput. Sci. Eng. 28, 23–32 (1995).

Psaltis, D.

Puh, N.

C. Chang, H. Yau, Y. Tong, N. Puh, “Rotational invariant pattern recognition with the method of circular harmonics using a BaTiO3 crystal,” Opt. Commun. 87, 219–222 (1992).
[CrossRef]

Qiao, Y.

Rajbenbach, H.

J. Rodolfo, H. Rajbenbach, J.-P. Huignard, “Performance of a photorefractive joint transform correlator for fingerprint identification,” Opt. Eng. 34, 1166–1171 (1995).
[CrossRef]

Refregier, P.

Reyes, G.

T. H. Chao, H. Y. Zhou, G. Reyes, “High-speed optical object recognition processor with massive holographic memory,” in Optical Information Processing Technology, M. Guoguang, F. T. Yu, S. Jutamulia, eds., Proc. SPIE4929, 237–243 (2002).
[CrossRef]

Rodolfo, J.

J. Rodolfo, H. Rajbenbach, J.-P. Huignard, “Performance of a photorefractive joint transform correlator for fingerprint identification,” Opt. Eng. 34, 1166–1171 (1995).
[CrossRef]

Sawhney, H.

M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M. Gorkani, J. Hafner, D. Lee, D. Petkovic, D. Steele, P. Yanker, “Query by image and video content: the QBIC system,” IEEE Comput. Sci. Eng. 28, 23–32 (1995).

Sergent, A.

B. Javidi, A. Sergent, E. Ahouzi, “Performance of double phase encoding encryption technique using binarized encrypted patterns,” Opt. Eng. 37, 565–569 (1998).
[CrossRef]

Shin, S. H.

Steele, D.

M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M. Gorkani, J. Hafner, D. Lee, D. Petkovic, D. Steele, P. Yanker, “Query by image and video content: the QBIC system,” IEEE Comput. Sci. Eng. 28, 23–32 (1995).

Su, W.

W. Su, Y. Chen, Y. Ouyang, C. Sun, B. Wang, “Optical identification using a random phase mask,” Opt. Commun. 219, 117–123 (2003).
[CrossRef]

Su, W. C.

C. C. Sun, W. C. Su, B. Wang, Y. Ouyang, “Diffraction selectivity of holograms with random phase encoding,” Opt. Commun. 175, 67–74 (2000).
[CrossRef]

Su, W.-C.

W.-C. Su, C.-C. Sun, “Optical pattern interconnections using random phase encoding in volume holograms,” Opt. Commun. 213, 259–265 (2002).
[CrossRef]

C.-C. Sun, W.-C. Su, “Three-dimensional shifting selectivity phase encoding in volume holograms,” Appl. Opt. 40, 1253–1260 (2001).
[CrossRef]

Sun, C.

W. Su, Y. Chen, Y. Ouyang, C. Sun, B. Wang, “Optical identification using a random phase mask,” Opt. Commun. 219, 117–123 (2003).
[CrossRef]

Sun, C. C.

B. Wang, C. C. Sun, “Enhancement of signal-to-noise ratio of a double random phase encoding encryption system,” Opt. Eng. 40, 1502–1506 (2001).
[CrossRef]

C. C. Sun, W. C. Su, B. Wang, Y. Ouyang, “Diffraction selectivity of holograms with random phase encoding,” Opt. Commun. 175, 67–74 (2000).
[CrossRef]

Sun, C.-C.

W.-C. Su, C.-C. Sun, “Optical pattern interconnections using random phase encoding in volume holograms,” Opt. Commun. 213, 259–265 (2002).
[CrossRef]

C.-C. Sun, W.-C. Su, “Three-dimensional shifting selectivity phase encoding in volume holograms,” Appl. Opt. 40, 1253–1260 (2001).
[CrossRef]

Tong, Y.

C. Chang, H. Yau, Y. Tong, N. Puh, “Rotational invariant pattern recognition with the method of circular harmonics using a BaTiO3 crystal,” Opt. Commun. 87, 219–222 (1992).
[CrossRef]

Tu, T.

Uurckhardt, C. B.

Wang, B.

W. Su, Y. Chen, Y. Ouyang, C. Sun, B. Wang, “Optical identification using a random phase mask,” Opt. Commun. 219, 117–123 (2003).
[CrossRef]

B. Wang, C. C. Sun, “Enhancement of signal-to-noise ratio of a double random phase encoding encryption system,” Opt. Eng. 40, 1502–1506 (2001).
[CrossRef]

C. C. Sun, W. C. Su, B. Wang, Y. Ouyang, “Diffraction selectivity of holograms with random phase encoding,” Opt. Commun. 175, 67–74 (2000).
[CrossRef]

Wang, J.

Wei, H.

G. Jin, L. Cao, Q. He, H. Wei, M. Wu, “Random modulation in high density holographic data storage and correlation recognition system,” in Photorefractive Fiber and Crystal Deveices: Materials, Optical Properties, and Applications, F. T. S. Yu, R. Guo, S. Yin, eds., Proc. SPIE5206, 125–134 (2003).

Wen, Z.

Z. Wen, X. Yang, “Multichannel photorefractive correlator for rotation-invariant optical pattern recognition,” Opt. Commun. 135, 212–216 (1997).
[CrossRef]

White, J. O.

J. O. White, A. Yariv, “Real-time pattern processing via four-wave mixing in a photorefractive medium,” Appl. Phys. Lett. 37, 5–7 (1980).
[CrossRef]

Wu, M.

C. Ouyang, L. Cao, Q. He, Y. Liao, M. Wu, G. Jin, “Sidelobe suppression in volume holographic optical correlators by use of speckle modulation,” Opt. Lett. 28, 1972–1974 (2003).
[CrossRef] [PubMed]

Q. He, G. Liu, X. Li, J. Wang, M. Wu, G. Jin, “Suppression of the influence of a photovoltaic dc field on volume holograms in Fe:LiNbO3,” Appl. Opt. 41, 4104–4107 (2002).
[CrossRef] [PubMed]

W. Feng, Y. Yan, G. Jin, M. Wu, Q. He, “Invariant performance of a volume holographic wavelet correlation processor,” Opt. Commun. 177, 141–148 (2000).
[CrossRef]

W. Feng, Y. Yan, G. Jin, M. Wu, Q. He, “Volume holographic wavelet correlation processor,” Opt. Eng. 39, 2444–2450 (2000).
[CrossRef]

G. Jin, L. Cao, Q. He, H. Wei, M. Wu, “Random modulation in high density holographic data storage and correlation recognition system,” in Photorefractive Fiber and Crystal Deveices: Materials, Optical Properties, and Applications, F. T. S. Yu, R. Guo, S. Yin, eds., Proc. SPIE5206, 125–134 (2003).

Yan, Y.

W. Feng, Y. Yan, G. Jin, M. Wu, Q. He, “Invariant performance of a volume holographic wavelet correlation processor,” Opt. Commun. 177, 141–148 (2000).
[CrossRef]

W. Feng, Y. Yan, G. Jin, M. Wu, Q. He, “Volume holographic wavelet correlation processor,” Opt. Eng. 39, 2444–2450 (2000).
[CrossRef]

Yang, J.

J. Yang, S.-I. Jin, Y.-S. Bae, S.-Y. Lee, “Optimized phase mask for uniformizing a Fourier spectrum,” Opt. Commun. 155, 12–16 (1998).
[CrossRef]

Yang, S.

Yang, X.

Z. Wen, X. Yang, “Multichannel photorefractive correlator for rotation-invariant optical pattern recognition,” Opt. Commun. 135, 212–216 (1997).
[CrossRef]

Yanker, P.

M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M. Gorkani, J. Hafner, D. Lee, D. Petkovic, D. Steele, P. Yanker, “Query by image and video content: the QBIC system,” IEEE Comput. Sci. Eng. 28, 23–32 (1995).

Yariv, A.

J. O. White, A. Yariv, “Real-time pattern processing via four-wave mixing in a photorefractive medium,” Appl. Phys. Lett. 37, 5–7 (1980).
[CrossRef]

Yau, H.

C. Chang, H. Yau, Y. Tong, N. Puh, “Rotational invariant pattern recognition with the method of circular harmonics using a BaTiO3 crystal,” Opt. Commun. 87, 219–222 (1992).
[CrossRef]

Yeh, P.

Yeh, T.

Zhou, H. Y.

T. H. Chao, H. Y. Zhou, G. Reyes, “High-speed optical object recognition processor with massive holographic memory,” in Optical Information Processing Technology, M. Guoguang, F. T. Yu, S. Jutamulia, eds., Proc. SPIE4929, 237–243 (2002).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

J. O. White, A. Yariv, “Real-time pattern processing via four-wave mixing in a photorefractive medium,” Appl. Phys. Lett. 37, 5–7 (1980).
[CrossRef]

IEEE Comput. Sci. Eng.

M. Flickner, H. Sawhney, W. Niblack, J. Ashley, Q. Huang, B. Dom, M. Gorkani, J. Hafner, D. Lee, D. Petkovic, D. Steele, P. Yanker, “Query by image and video content: the QBIC system,” IEEE Comput. Sci. Eng. 28, 23–32 (1995).

J. Opt. Soc. Am. A

Opt. Commun.

W. Feng, Y. Yan, G. Jin, M. Wu, Q. He, “Invariant performance of a volume holographic wavelet correlation processor,” Opt. Commun. 177, 141–148 (2000).
[CrossRef]

C. C. Sun, W. C. Su, B. Wang, Y. Ouyang, “Diffraction selectivity of holograms with random phase encoding,” Opt. Commun. 175, 67–74 (2000).
[CrossRef]

W. Su, Y. Chen, Y. Ouyang, C. Sun, B. Wang, “Optical identification using a random phase mask,” Opt. Commun. 219, 117–123 (2003).
[CrossRef]

C. Gu, J. Hong, S. Campbell, “2-D shift-invariant volume holographic correlator,” Opt. Commun. 88, 309–314 (1992).
[CrossRef]

Z. Wen, X. Yang, “Multichannel photorefractive correlator for rotation-invariant optical pattern recognition,” Opt. Commun. 135, 212–216 (1997).
[CrossRef]

C. Chang, H. Yau, Y. Tong, N. Puh, “Rotational invariant pattern recognition with the method of circular harmonics using a BaTiO3 crystal,” Opt. Commun. 87, 219–222 (1992).
[CrossRef]

J. Yang, S.-I. Jin, Y.-S. Bae, S.-Y. Lee, “Optimized phase mask for uniformizing a Fourier spectrum,” Opt. Commun. 155, 12–16 (1998).
[CrossRef]

W.-C. Su, C.-C. Sun, “Optical pattern interconnections using random phase encoding in volume holograms,” Opt. Commun. 213, 259–265 (2002).
[CrossRef]

Opt. Eng.

J. Rodolfo, H. Rajbenbach, J.-P. Huignard, “Performance of a photorefractive joint transform correlator for fingerprint identification,” Opt. Eng. 34, 1166–1171 (1995).
[CrossRef]

W. Feng, Y. Yan, G. Jin, M. Wu, Q. He, “Volume holographic wavelet correlation processor,” Opt. Eng. 39, 2444–2450 (2000).
[CrossRef]

B. Wang, C. C. Sun, “Enhancement of signal-to-noise ratio of a double random phase encoding encryption system,” Opt. Eng. 40, 1502–1506 (2001).
[CrossRef]

B. Javidi, A. Sergent, E. Ahouzi, “Performance of double phase encoding encryption technique using binarized encrypted patterns,” Opt. Eng. 37, 565–569 (1998).
[CrossRef]

Opt. Lett.

Other

T. H. Chao, H. Y. Zhou, G. Reyes, “High-speed optical object recognition processor with massive holographic memory,” in Optical Information Processing Technology, M. Guoguang, F. T. Yu, S. Jutamulia, eds., Proc. SPIE4929, 237–243 (2002).
[CrossRef]

C. Gu, “Holographic memory for high density data storage and high speed pattern recognition,” in Optical Information Processing Technology, M. Guoguang, F. T. S. Yu, S. Jutamulia, eds., Proc. SPIE4929, 198–207 (2002).
[CrossRef]

P. A. Mitkas, G. W. Burr, “Volume holographic optical correlators,” in Holographic Data Storage, H. J. Coufal, D. Psaltis, G. T. Sicebox, eds. (Springer-Verlag, Berlin, 2000), pp. 429–446.
[CrossRef]

G. Jin, L. Cao, Q. He, H. Wei, M. Wu, “Random modulation in high density holographic data storage and correlation recognition system,” in Photorefractive Fiber and Crystal Deveices: Materials, Optical Properties, and Applications, F. T. S. Yu, R. Guo, S. Yin, eds., Proc. SPIE5206, 125–134 (2003).

J. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, Berlin, 1975), pp. 9–76.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagram of an optical correlator system in which a diffuser is placed near the object plane to modulate the object pattern.

Fig. 2
Fig. 2

(a) Object pattern; (b) random pattern.

Fig. 3
Fig. 3

Correlation pattern calculated when (a) t = 0, (b) t = 0.5 mm, (c) t = 0 with random modulation, (d) t = 0.5 mm with random modulation.

Fig. 4
Fig. 4

Correlation intensity along the vertical (xc) direction when the size of a speckle grain varies from 1×1 to 512×512 pixels.

Fig. 5
Fig. 5

(a) Correlation intensity along the vertical (xc) direction when the original pattern is used; (b) correlation intensity along the vertical (xc) direction when a rotated pattern with a 5° angle is used.

Fig. 6
Fig. 6

Optical setup of the compact holographic memory and correlation system: M1–M3, mirrors; P1–P2, half-wave plates; L1–L4, lenses; FL1–FL2, Fourier lenses; PBS, polarized beam splitter.

Fig. 7
Fig. 7

Pretreatment of the human face: (a) original face pattern, (b) binary edge character extracted with a wavelet transform.

Fig. 8
Fig. 8

Correlation spot array read out by a white pattern (all the pixels of the SLM are set ON): (a) without speckle modulation, (b) with speckle modulation.

Fig. 9
Fig. 9

First three human faces that are searched when the 528th page is input.

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

g ( x c , y c ) m = - M M d x 0 d y 0 f ( x 0 , y 0 ) f m * ( x 0 + ξ , y 0 + η ) × t sinc { t 2 π [ k m z - k d z + π λ × ξ ( 2 x 0 + ξ ) + η ( 2 y 0 + η ) f 2 ] } ,
ξ = λ f 2 π ( k d x - k m x ) ,
ξ = λ f 2 π ( k d x - k m x ) ,
a ( x , y ) = A ( x , y ) exp [ i 2 π ϕ ( x , y ) ] ,
g ( x c , y c ) m = - M M d x 0 d y 0 s ( x 0 , y 0 ) s m * ( x 0 + ξ , y 0 + η ) × t sinc { t 2 π [ k m z - k d z + π λ ξ ( 2 x 0 + ξ ) + η ( 2 y 0 + η ) f 2 ] } ,
s ( x 0 , y 0 ) = f ( x 0 , y 0 ) a ( x 0 , y 0 ) ,
s m * ( x 0 + ξ , y 0 + η ) = f m * ( x 0 + ξ , y 0 + η ) a * ( x 0 + ξ , y 0 + η ) .
< a ( x 0 , y 0 ) a * ( x 0 + ξ , y 0 + η ) ] > = δ ( ξ , η ) ,
g ( x c , y c ) m = - M M d x 0 d y 0 f ( x 0 , y 0 ) f m * ( x 0 + ξ , y 0 + η ) δ ( ξ , η ) × t sinc { t 2 π [ k m z - k d z + π λ ξ ( 2 x 0 + ξ ) + η ( 2 y 0 + η ) f 2 ] } .
λ f 2 π ( k d z - k m x ) = 0 ,             λ f 2 π ( k d y - k m y ) = 0.
x c = - x m , y c = - cos θ ± ( 2 y m 2 sin 2 θ - 2 y m sin θ cos θ + cos 2 θ ) 1 / 2 sin θ .
x c = - x m ,             y c = ± y m .
g ( x c = - x m , y c = - y m ) t m = - M M d x 0 d y 0 f ( x 0 , y 0 ) f m * ( x 0 , y 0 ) ,
g ( x c = - x m , y c = y m ) t sinc ( - 2 t y m λ f ) × m = - M M d x 0 d y 0 f ( x 0 , y 0 ) f m * ( x 0 , y 0 ) .
H ( u , v ) = 4 π 2 ( u 2 + v 2 ) exp [ - 2 π ( u 2 + v 2 ) ]

Metrics