Abstract

Novel devices consisting of uniform-waist tapered optical fibers with asymmetric double-layer (metal plus dielectric) depositions have been recently proposed as refractive-index sensors. We study the properties of light transmission by use of this kind of devices, and we specifically perform a detailed study of the generation of surface-plasma waves in the structures. We show that multiple surface plasmons are excited for specific combinations of the constructive parameters of the devices and for specific ranges of the refractive index of the surrounding medium. The behavior also depends on the wavelength and the state of polarization of the incident light. The use of uniform-waist tapers allows for control of constructive parameters and an increase in the interaction length with the outer medium. We show how the plasmons are excited in the region of the taper waist by a coupling with the cladding modes guided in that area. This characterization shows the importance of the presence of a dielectric layer for selection of the operating range of the device. The results are useful for the design of new sensors.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Homola, S. S. Yee, G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
    [CrossRef]
  2. R. Alonso, J. Subias, J. Pelayo, F. Villuendas, J. Tornos, “Single-mode optical-fiber sensors and tunable wavelength filters based on the resonant excitation of metal-clad modes,” Appl. Opt. 33, 5197–5201 (1994).
    [CrossRef] [PubMed]
  3. R. Alonso, F. Villuendas, J. Tornos, J. Pelayo, “New in-line optical-fiber sensor based on surface plasmon excitation,” Sens. Actuators A 37–38, 187–192 (1993).
    [CrossRef]
  4. Ó. Esteban, M. Cruz-Navarrete, A. González-Cano, E. Bernabeu, “Measurement of the degree of salinity of water with a fiber-optic sensor,” Appl. Opt. 38, 5267–5271 (1999).
    [CrossRef]
  5. A. Álvarez-Herrero, H. Guerrero, T. Belenguer, D. Levy, “High-sensitivity temperature sensor based on overlay on side-polished fibers,” IEEE Photon. Technol. Lett. 12, 1043–1045 (2000).
    [CrossRef]
  6. R. J. Black, F. Gonthier, S. Lacroix, J. Lapierre, J. Bures, “Tapered fibers: an overview,” in Fiber Optics and Optoelectronics, V. J. Tekippe, ed., Proc. SPIE839, 2–19 (1987).
  7. R. J. Black, S. Lacroix, F. Gonthier, J. D. Love, “Tapered single-mode fibers and devices. Part 2. Experimental and theoretical quantification,” IEE Proc. J 138, 355–364 (1991).
  8. J. D. Love, W. J. Stewart, W. M. Henry, R. J. Black, S. Lacroix, F. Gonthier, “Tapered single-mode fibers and devices. Part 1. Adiabaticity criteria,” IEE Proc. J 138, 343–354 (1991).
  9. S. Lacroix, R. Bourbonnais, F. Gonthier, J. Bures, “Tapered monomode optical fibers: understanding large power transfer,” Appl. Opt. 25, 4421–4425 (1986).
    [CrossRef] [PubMed]
  10. A. Díez, M. V. Andrés, J. L. Cruz, “Hybrid surface plasma modes in circular metal-coated tapered fibers,” J. Opt. Soc. Am. A 16, 2978–2982 (1999).
    [CrossRef]
  11. A. Díez, M. V. Andrés, J. L. Cruz, “In-line fiber-optic sensors based on the excitation of surface plasma modes in metal-coated tapered fibers,” Sens. Actuators B 73, 95–99 (2001).
    [CrossRef]
  12. J. Villatoro, A. Díez, J. L. Cruz, M. V. Andrés, “In-line highly sensitive hydrogen sensor based on palladium-coated single-mode tapered fibers,” IEEE Sensors J. 3, 533–537 (2003).
    [CrossRef]
  13. J. Villatoro, D. Monzón-Hernández, D. Talavera, “High resolution refractive index sensing with cladded multimode tapered optical fiber,” Electron. Lett. 40, 106–107 (2004).
    [CrossRef]
  14. D. Monzón-Hernández, J. Villatoro, D. Talavera, D. Luna-Moreno, “Optical-fiber surface-plasmon resonance sensor with multiple resonance peaks,” Appl. Opt. 43, 1216–1220 (2004).
    [CrossRef] [PubMed]
  15. F.-J. Bueno, Ó. Esteban, N. Díaz-Herrera, M.-C. Navarrete, A. González-Cano, “Sensing properties of asymmetric double-layer-covered tapered fibers,” Appl. Opt. 43, 1615–1620 (2004).
    [CrossRef] [PubMed]
  16. J. Villatoro, D. Monzón-Hernández, E. Mejía, “Fabrication and modeling of uniform-waist single-mode tapered optical fiber sensors,” Appl. Opt. 42, 2278–2283 (2003).
    [CrossRef] [PubMed]
  17. R. P. Kenny, T. A. Birks, K. P. Oakley, “Control of optical fiber taper shape,” Electron. Lett. 77, 1654–1656 (1991).
    [CrossRef]
  18. T. A. Birks, Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992).
    [CrossRef]
  19. B. S. Kawasaki, K. O. Hill, R. G. Lamont, “Biconical-taper single-mode fiber coupler,” Opt. Lett. 6, 327–328 (1991).
    [CrossRef]
  20. L. C. Bobb, P. M. Shankar, H. D. Krumboltz, “Bending effects in biconically tapered single-mode fibers,” J. Lightwave Technol. 8, 1084–1090 (1990).
    [CrossRef]
  21. P. M. Shankar, L. C. Bobb, H. D. Krumboltz, “Coupling of modes in bent biconically tapered single-mode fibers,” J. Lightwave Technol. 9, 832–837 (1991).
    [CrossRef]
  22. A. Romolini, R. Falciai, A. Schena, “Biconically tapered optical fiber probes for the measurement of esophageal pressure,” Sens. Actuators A 70, 205–210 (1998).
    [CrossRef]
  23. F. J. Arregui, I. R. Matías, M. López-Amo, “Optical fiber strain gauge based on a tapered single-mode fiber,” Sens. Actuators A 79, 90–96 (2000).
    [CrossRef]
  24. F. P. Payne, A. J. C. Tubb, R. B. Millington, C. R. Lowe, “Single-mode optical fibre surface plasma wave chemical sensor,” Sens. Actuators B 41, 71–79 (1997).
    [CrossRef]

2004

2003

J. Villatoro, D. Monzón-Hernández, E. Mejía, “Fabrication and modeling of uniform-waist single-mode tapered optical fiber sensors,” Appl. Opt. 42, 2278–2283 (2003).
[CrossRef] [PubMed]

J. Villatoro, A. Díez, J. L. Cruz, M. V. Andrés, “In-line highly sensitive hydrogen sensor based on palladium-coated single-mode tapered fibers,” IEEE Sensors J. 3, 533–537 (2003).
[CrossRef]

2001

A. Díez, M. V. Andrés, J. L. Cruz, “In-line fiber-optic sensors based on the excitation of surface plasma modes in metal-coated tapered fibers,” Sens. Actuators B 73, 95–99 (2001).
[CrossRef]

2000

A. Álvarez-Herrero, H. Guerrero, T. Belenguer, D. Levy, “High-sensitivity temperature sensor based on overlay on side-polished fibers,” IEEE Photon. Technol. Lett. 12, 1043–1045 (2000).
[CrossRef]

F. J. Arregui, I. R. Matías, M. López-Amo, “Optical fiber strain gauge based on a tapered single-mode fiber,” Sens. Actuators A 79, 90–96 (2000).
[CrossRef]

1999

1998

A. Romolini, R. Falciai, A. Schena, “Biconically tapered optical fiber probes for the measurement of esophageal pressure,” Sens. Actuators A 70, 205–210 (1998).
[CrossRef]

1997

F. P. Payne, A. J. C. Tubb, R. B. Millington, C. R. Lowe, “Single-mode optical fibre surface plasma wave chemical sensor,” Sens. Actuators B 41, 71–79 (1997).
[CrossRef]

1994

1993

R. Alonso, F. Villuendas, J. Tornos, J. Pelayo, “New in-line optical-fiber sensor based on surface plasmon excitation,” Sens. Actuators A 37–38, 187–192 (1993).
[CrossRef]

1992

T. A. Birks, Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992).
[CrossRef]

1991

P. M. Shankar, L. C. Bobb, H. D. Krumboltz, “Coupling of modes in bent biconically tapered single-mode fibers,” J. Lightwave Technol. 9, 832–837 (1991).
[CrossRef]

B. S. Kawasaki, K. O. Hill, R. G. Lamont, “Biconical-taper single-mode fiber coupler,” Opt. Lett. 6, 327–328 (1991).
[CrossRef]

R. J. Black, S. Lacroix, F. Gonthier, J. D. Love, “Tapered single-mode fibers and devices. Part 2. Experimental and theoretical quantification,” IEE Proc. J 138, 355–364 (1991).

J. D. Love, W. J. Stewart, W. M. Henry, R. J. Black, S. Lacroix, F. Gonthier, “Tapered single-mode fibers and devices. Part 1. Adiabaticity criteria,” IEE Proc. J 138, 343–354 (1991).

R. P. Kenny, T. A. Birks, K. P. Oakley, “Control of optical fiber taper shape,” Electron. Lett. 77, 1654–1656 (1991).
[CrossRef]

1990

L. C. Bobb, P. M. Shankar, H. D. Krumboltz, “Bending effects in biconically tapered single-mode fibers,” J. Lightwave Technol. 8, 1084–1090 (1990).
[CrossRef]

1986

Alonso, R.

R. Alonso, J. Subias, J. Pelayo, F. Villuendas, J. Tornos, “Single-mode optical-fiber sensors and tunable wavelength filters based on the resonant excitation of metal-clad modes,” Appl. Opt. 33, 5197–5201 (1994).
[CrossRef] [PubMed]

R. Alonso, F. Villuendas, J. Tornos, J. Pelayo, “New in-line optical-fiber sensor based on surface plasmon excitation,” Sens. Actuators A 37–38, 187–192 (1993).
[CrossRef]

Álvarez-Herrero, A.

A. Álvarez-Herrero, H. Guerrero, T. Belenguer, D. Levy, “High-sensitivity temperature sensor based on overlay on side-polished fibers,” IEEE Photon. Technol. Lett. 12, 1043–1045 (2000).
[CrossRef]

Andrés, M. V.

J. Villatoro, A. Díez, J. L. Cruz, M. V. Andrés, “In-line highly sensitive hydrogen sensor based on palladium-coated single-mode tapered fibers,” IEEE Sensors J. 3, 533–537 (2003).
[CrossRef]

A. Díez, M. V. Andrés, J. L. Cruz, “In-line fiber-optic sensors based on the excitation of surface plasma modes in metal-coated tapered fibers,” Sens. Actuators B 73, 95–99 (2001).
[CrossRef]

A. Díez, M. V. Andrés, J. L. Cruz, “Hybrid surface plasma modes in circular metal-coated tapered fibers,” J. Opt. Soc. Am. A 16, 2978–2982 (1999).
[CrossRef]

Arregui, F. J.

F. J. Arregui, I. R. Matías, M. López-Amo, “Optical fiber strain gauge based on a tapered single-mode fiber,” Sens. Actuators A 79, 90–96 (2000).
[CrossRef]

Belenguer, T.

A. Álvarez-Herrero, H. Guerrero, T. Belenguer, D. Levy, “High-sensitivity temperature sensor based on overlay on side-polished fibers,” IEEE Photon. Technol. Lett. 12, 1043–1045 (2000).
[CrossRef]

Bernabeu, E.

Birks, T. A.

T. A. Birks, Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992).
[CrossRef]

R. P. Kenny, T. A. Birks, K. P. Oakley, “Control of optical fiber taper shape,” Electron. Lett. 77, 1654–1656 (1991).
[CrossRef]

Black, R. J.

R. J. Black, S. Lacroix, F. Gonthier, J. D. Love, “Tapered single-mode fibers and devices. Part 2. Experimental and theoretical quantification,” IEE Proc. J 138, 355–364 (1991).

J. D. Love, W. J. Stewart, W. M. Henry, R. J. Black, S. Lacroix, F. Gonthier, “Tapered single-mode fibers and devices. Part 1. Adiabaticity criteria,” IEE Proc. J 138, 343–354 (1991).

R. J. Black, F. Gonthier, S. Lacroix, J. Lapierre, J. Bures, “Tapered fibers: an overview,” in Fiber Optics and Optoelectronics, V. J. Tekippe, ed., Proc. SPIE839, 2–19 (1987).

Bobb, L. C.

P. M. Shankar, L. C. Bobb, H. D. Krumboltz, “Coupling of modes in bent biconically tapered single-mode fibers,” J. Lightwave Technol. 9, 832–837 (1991).
[CrossRef]

L. C. Bobb, P. M. Shankar, H. D. Krumboltz, “Bending effects in biconically tapered single-mode fibers,” J. Lightwave Technol. 8, 1084–1090 (1990).
[CrossRef]

Bourbonnais, R.

Bueno, F.-J.

Bures, J.

S. Lacroix, R. Bourbonnais, F. Gonthier, J. Bures, “Tapered monomode optical fibers: understanding large power transfer,” Appl. Opt. 25, 4421–4425 (1986).
[CrossRef] [PubMed]

R. J. Black, F. Gonthier, S. Lacroix, J. Lapierre, J. Bures, “Tapered fibers: an overview,” in Fiber Optics and Optoelectronics, V. J. Tekippe, ed., Proc. SPIE839, 2–19 (1987).

Cruz, J. L.

J. Villatoro, A. Díez, J. L. Cruz, M. V. Andrés, “In-line highly sensitive hydrogen sensor based on palladium-coated single-mode tapered fibers,” IEEE Sensors J. 3, 533–537 (2003).
[CrossRef]

A. Díez, M. V. Andrés, J. L. Cruz, “In-line fiber-optic sensors based on the excitation of surface plasma modes in metal-coated tapered fibers,” Sens. Actuators B 73, 95–99 (2001).
[CrossRef]

A. Díez, M. V. Andrés, J. L. Cruz, “Hybrid surface plasma modes in circular metal-coated tapered fibers,” J. Opt. Soc. Am. A 16, 2978–2982 (1999).
[CrossRef]

Cruz-Navarrete, M.

Díaz-Herrera, N.

Díez, A.

J. Villatoro, A. Díez, J. L. Cruz, M. V. Andrés, “In-line highly sensitive hydrogen sensor based on palladium-coated single-mode tapered fibers,” IEEE Sensors J. 3, 533–537 (2003).
[CrossRef]

A. Díez, M. V. Andrés, J. L. Cruz, “In-line fiber-optic sensors based on the excitation of surface plasma modes in metal-coated tapered fibers,” Sens. Actuators B 73, 95–99 (2001).
[CrossRef]

A. Díez, M. V. Andrés, J. L. Cruz, “Hybrid surface plasma modes in circular metal-coated tapered fibers,” J. Opt. Soc. Am. A 16, 2978–2982 (1999).
[CrossRef]

Esteban, Ó.

Falciai, R.

A. Romolini, R. Falciai, A. Schena, “Biconically tapered optical fiber probes for the measurement of esophageal pressure,” Sens. Actuators A 70, 205–210 (1998).
[CrossRef]

Gauglitz, G.

J. Homola, S. S. Yee, G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
[CrossRef]

Gonthier, F.

J. D. Love, W. J. Stewart, W. M. Henry, R. J. Black, S. Lacroix, F. Gonthier, “Tapered single-mode fibers and devices. Part 1. Adiabaticity criteria,” IEE Proc. J 138, 343–354 (1991).

R. J. Black, S. Lacroix, F. Gonthier, J. D. Love, “Tapered single-mode fibers and devices. Part 2. Experimental and theoretical quantification,” IEE Proc. J 138, 355–364 (1991).

S. Lacroix, R. Bourbonnais, F. Gonthier, J. Bures, “Tapered monomode optical fibers: understanding large power transfer,” Appl. Opt. 25, 4421–4425 (1986).
[CrossRef] [PubMed]

R. J. Black, F. Gonthier, S. Lacroix, J. Lapierre, J. Bures, “Tapered fibers: an overview,” in Fiber Optics and Optoelectronics, V. J. Tekippe, ed., Proc. SPIE839, 2–19 (1987).

González-Cano, A.

Guerrero, H.

A. Álvarez-Herrero, H. Guerrero, T. Belenguer, D. Levy, “High-sensitivity temperature sensor based on overlay on side-polished fibers,” IEEE Photon. Technol. Lett. 12, 1043–1045 (2000).
[CrossRef]

Henry, W. M.

J. D. Love, W. J. Stewart, W. M. Henry, R. J. Black, S. Lacroix, F. Gonthier, “Tapered single-mode fibers and devices. Part 1. Adiabaticity criteria,” IEE Proc. J 138, 343–354 (1991).

Hill, K. O.

Homola, J.

J. Homola, S. S. Yee, G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
[CrossRef]

Kawasaki, B. S.

Kenny, R. P.

R. P. Kenny, T. A. Birks, K. P. Oakley, “Control of optical fiber taper shape,” Electron. Lett. 77, 1654–1656 (1991).
[CrossRef]

Krumboltz, H. D.

P. M. Shankar, L. C. Bobb, H. D. Krumboltz, “Coupling of modes in bent biconically tapered single-mode fibers,” J. Lightwave Technol. 9, 832–837 (1991).
[CrossRef]

L. C. Bobb, P. M. Shankar, H. D. Krumboltz, “Bending effects in biconically tapered single-mode fibers,” J. Lightwave Technol. 8, 1084–1090 (1990).
[CrossRef]

Lacroix, S.

J. D. Love, W. J. Stewart, W. M. Henry, R. J. Black, S. Lacroix, F. Gonthier, “Tapered single-mode fibers and devices. Part 1. Adiabaticity criteria,” IEE Proc. J 138, 343–354 (1991).

R. J. Black, S. Lacroix, F. Gonthier, J. D. Love, “Tapered single-mode fibers and devices. Part 2. Experimental and theoretical quantification,” IEE Proc. J 138, 355–364 (1991).

S. Lacroix, R. Bourbonnais, F. Gonthier, J. Bures, “Tapered monomode optical fibers: understanding large power transfer,” Appl. Opt. 25, 4421–4425 (1986).
[CrossRef] [PubMed]

R. J. Black, F. Gonthier, S. Lacroix, J. Lapierre, J. Bures, “Tapered fibers: an overview,” in Fiber Optics and Optoelectronics, V. J. Tekippe, ed., Proc. SPIE839, 2–19 (1987).

Lamont, R. G.

Lapierre, J.

R. J. Black, F. Gonthier, S. Lacroix, J. Lapierre, J. Bures, “Tapered fibers: an overview,” in Fiber Optics and Optoelectronics, V. J. Tekippe, ed., Proc. SPIE839, 2–19 (1987).

Levy, D.

A. Álvarez-Herrero, H. Guerrero, T. Belenguer, D. Levy, “High-sensitivity temperature sensor based on overlay on side-polished fibers,” IEEE Photon. Technol. Lett. 12, 1043–1045 (2000).
[CrossRef]

Li, Y. W.

T. A. Birks, Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992).
[CrossRef]

López-Amo, M.

F. J. Arregui, I. R. Matías, M. López-Amo, “Optical fiber strain gauge based on a tapered single-mode fiber,” Sens. Actuators A 79, 90–96 (2000).
[CrossRef]

Love, J. D.

R. J. Black, S. Lacroix, F. Gonthier, J. D. Love, “Tapered single-mode fibers and devices. Part 2. Experimental and theoretical quantification,” IEE Proc. J 138, 355–364 (1991).

J. D. Love, W. J. Stewart, W. M. Henry, R. J. Black, S. Lacroix, F. Gonthier, “Tapered single-mode fibers and devices. Part 1. Adiabaticity criteria,” IEE Proc. J 138, 343–354 (1991).

Lowe, C. R.

F. P. Payne, A. J. C. Tubb, R. B. Millington, C. R. Lowe, “Single-mode optical fibre surface plasma wave chemical sensor,” Sens. Actuators B 41, 71–79 (1997).
[CrossRef]

Luna-Moreno, D.

Matías, I. R.

F. J. Arregui, I. R. Matías, M. López-Amo, “Optical fiber strain gauge based on a tapered single-mode fiber,” Sens. Actuators A 79, 90–96 (2000).
[CrossRef]

Mejía, E.

Millington, R. B.

F. P. Payne, A. J. C. Tubb, R. B. Millington, C. R. Lowe, “Single-mode optical fibre surface plasma wave chemical sensor,” Sens. Actuators B 41, 71–79 (1997).
[CrossRef]

Monzón-Hernández, D.

Navarrete, M.-C.

Oakley, K. P.

R. P. Kenny, T. A. Birks, K. P. Oakley, “Control of optical fiber taper shape,” Electron. Lett. 77, 1654–1656 (1991).
[CrossRef]

Payne, F. P.

F. P. Payne, A. J. C. Tubb, R. B. Millington, C. R. Lowe, “Single-mode optical fibre surface plasma wave chemical sensor,” Sens. Actuators B 41, 71–79 (1997).
[CrossRef]

Pelayo, J.

R. Alonso, J. Subias, J. Pelayo, F. Villuendas, J. Tornos, “Single-mode optical-fiber sensors and tunable wavelength filters based on the resonant excitation of metal-clad modes,” Appl. Opt. 33, 5197–5201 (1994).
[CrossRef] [PubMed]

R. Alonso, F. Villuendas, J. Tornos, J. Pelayo, “New in-line optical-fiber sensor based on surface plasmon excitation,” Sens. Actuators A 37–38, 187–192 (1993).
[CrossRef]

Romolini, A.

A. Romolini, R. Falciai, A. Schena, “Biconically tapered optical fiber probes for the measurement of esophageal pressure,” Sens. Actuators A 70, 205–210 (1998).
[CrossRef]

Schena, A.

A. Romolini, R. Falciai, A. Schena, “Biconically tapered optical fiber probes for the measurement of esophageal pressure,” Sens. Actuators A 70, 205–210 (1998).
[CrossRef]

Shankar, P. M.

P. M. Shankar, L. C. Bobb, H. D. Krumboltz, “Coupling of modes in bent biconically tapered single-mode fibers,” J. Lightwave Technol. 9, 832–837 (1991).
[CrossRef]

L. C. Bobb, P. M. Shankar, H. D. Krumboltz, “Bending effects in biconically tapered single-mode fibers,” J. Lightwave Technol. 8, 1084–1090 (1990).
[CrossRef]

Stewart, W. J.

J. D. Love, W. J. Stewart, W. M. Henry, R. J. Black, S. Lacroix, F. Gonthier, “Tapered single-mode fibers and devices. Part 1. Adiabaticity criteria,” IEE Proc. J 138, 343–354 (1991).

Subias, J.

Talavera, D.

J. Villatoro, D. Monzón-Hernández, D. Talavera, “High resolution refractive index sensing with cladded multimode tapered optical fiber,” Electron. Lett. 40, 106–107 (2004).
[CrossRef]

D. Monzón-Hernández, J. Villatoro, D. Talavera, D. Luna-Moreno, “Optical-fiber surface-plasmon resonance sensor with multiple resonance peaks,” Appl. Opt. 43, 1216–1220 (2004).
[CrossRef] [PubMed]

Tornos, J.

R. Alonso, J. Subias, J. Pelayo, F. Villuendas, J. Tornos, “Single-mode optical-fiber sensors and tunable wavelength filters based on the resonant excitation of metal-clad modes,” Appl. Opt. 33, 5197–5201 (1994).
[CrossRef] [PubMed]

R. Alonso, F. Villuendas, J. Tornos, J. Pelayo, “New in-line optical-fiber sensor based on surface plasmon excitation,” Sens. Actuators A 37–38, 187–192 (1993).
[CrossRef]

Tubb, A. J. C.

F. P. Payne, A. J. C. Tubb, R. B. Millington, C. R. Lowe, “Single-mode optical fibre surface plasma wave chemical sensor,” Sens. Actuators B 41, 71–79 (1997).
[CrossRef]

Villatoro, J.

J. Villatoro, D. Monzón-Hernández, D. Talavera, “High resolution refractive index sensing with cladded multimode tapered optical fiber,” Electron. Lett. 40, 106–107 (2004).
[CrossRef]

D. Monzón-Hernández, J. Villatoro, D. Talavera, D. Luna-Moreno, “Optical-fiber surface-plasmon resonance sensor with multiple resonance peaks,” Appl. Opt. 43, 1216–1220 (2004).
[CrossRef] [PubMed]

J. Villatoro, D. Monzón-Hernández, E. Mejía, “Fabrication and modeling of uniform-waist single-mode tapered optical fiber sensors,” Appl. Opt. 42, 2278–2283 (2003).
[CrossRef] [PubMed]

J. Villatoro, A. Díez, J. L. Cruz, M. V. Andrés, “In-line highly sensitive hydrogen sensor based on palladium-coated single-mode tapered fibers,” IEEE Sensors J. 3, 533–537 (2003).
[CrossRef]

Villuendas, F.

R. Alonso, J. Subias, J. Pelayo, F. Villuendas, J. Tornos, “Single-mode optical-fiber sensors and tunable wavelength filters based on the resonant excitation of metal-clad modes,” Appl. Opt. 33, 5197–5201 (1994).
[CrossRef] [PubMed]

R. Alonso, F. Villuendas, J. Tornos, J. Pelayo, “New in-line optical-fiber sensor based on surface plasmon excitation,” Sens. Actuators A 37–38, 187–192 (1993).
[CrossRef]

Yee, S. S.

J. Homola, S. S. Yee, G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
[CrossRef]

Appl. Opt.

Electron. Lett.

J. Villatoro, D. Monzón-Hernández, D. Talavera, “High resolution refractive index sensing with cladded multimode tapered optical fiber,” Electron. Lett. 40, 106–107 (2004).
[CrossRef]

R. P. Kenny, T. A. Birks, K. P. Oakley, “Control of optical fiber taper shape,” Electron. Lett. 77, 1654–1656 (1991).
[CrossRef]

IEE Proc. J

R. J. Black, S. Lacroix, F. Gonthier, J. D. Love, “Tapered single-mode fibers and devices. Part 2. Experimental and theoretical quantification,” IEE Proc. J 138, 355–364 (1991).

J. D. Love, W. J. Stewart, W. M. Henry, R. J. Black, S. Lacroix, F. Gonthier, “Tapered single-mode fibers and devices. Part 1. Adiabaticity criteria,” IEE Proc. J 138, 343–354 (1991).

IEEE Photon. Technol. Lett.

A. Álvarez-Herrero, H. Guerrero, T. Belenguer, D. Levy, “High-sensitivity temperature sensor based on overlay on side-polished fibers,” IEEE Photon. Technol. Lett. 12, 1043–1045 (2000).
[CrossRef]

IEEE Sensors J.

J. Villatoro, A. Díez, J. L. Cruz, M. V. Andrés, “In-line highly sensitive hydrogen sensor based on palladium-coated single-mode tapered fibers,” IEEE Sensors J. 3, 533–537 (2003).
[CrossRef]

J. Lightwave Technol.

T. A. Birks, Y. W. Li, “The shape of fiber tapers,” J. Lightwave Technol. 10, 432–438 (1992).
[CrossRef]

L. C. Bobb, P. M. Shankar, H. D. Krumboltz, “Bending effects in biconically tapered single-mode fibers,” J. Lightwave Technol. 8, 1084–1090 (1990).
[CrossRef]

P. M. Shankar, L. C. Bobb, H. D. Krumboltz, “Coupling of modes in bent biconically tapered single-mode fibers,” J. Lightwave Technol. 9, 832–837 (1991).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Lett.

Sens. Actuators A

R. Alonso, F. Villuendas, J. Tornos, J. Pelayo, “New in-line optical-fiber sensor based on surface plasmon excitation,” Sens. Actuators A 37–38, 187–192 (1993).
[CrossRef]

A. Romolini, R. Falciai, A. Schena, “Biconically tapered optical fiber probes for the measurement of esophageal pressure,” Sens. Actuators A 70, 205–210 (1998).
[CrossRef]

F. J. Arregui, I. R. Matías, M. López-Amo, “Optical fiber strain gauge based on a tapered single-mode fiber,” Sens. Actuators A 79, 90–96 (2000).
[CrossRef]

Sens. Actuators B

F. P. Payne, A. J. C. Tubb, R. B. Millington, C. R. Lowe, “Single-mode optical fibre surface plasma wave chemical sensor,” Sens. Actuators B 41, 71–79 (1997).
[CrossRef]

J. Homola, S. S. Yee, G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens. Actuators B 54, 3–15 (1999).
[CrossRef]

A. Díez, M. V. Andrés, J. L. Cruz, “In-line fiber-optic sensors based on the excitation of surface plasma modes in metal-coated tapered fibers,” Sens. Actuators B 73, 95–99 (2001).
[CrossRef]

Other

R. J. Black, F. Gonthier, S. Lacroix, J. Lapierre, J. Bures, “Tapered fibers: an overview,” in Fiber Optics and Optoelectronics, V. J. Tekippe, ed., Proc. SPIE839, 2–19 (1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

View of the setup for production of UWT fibers (traveling-burner technique). Two motors (1) stretch the fiber while it is heated by a specially designed heater (2). The gas inlet appears at right (3).

Fig. 2
Fig. 2

Scheme of the profile of a tapered optical fiber. The regions are identified and are discussed in the text.

Fig. 3
Fig. 3

Scheme of the DL UWT fiber devices. It must be taken into account that we used different kinds of deposition (as explained in the text) and for illustration purposes we show only one deposition, namely, that in which the deposition is made only on the waist region. Longitudinal and sectional views are shown.

Fig. 4
Fig. 4

Total output power transmitted by the devices (normalized by dividing by the transmittance with the air as the outer medium) as a function of refractive index of the outer medium for a taper with a waist diameter of 35 μm.

Fig. 5
Fig. 5

SPR maps: (a) 3-D plot of the spectral transmittance of the device when the outer refractive index varies, (b) contour plot corresponding to the same case with transmittance shown in gray levels, (c) location of the transmittance minima.

Fig. 6
Fig. 6

Displacement of the first (diamonds) and second (squares) transmittance dips for the same device as in Fig. 5. Data were adjusted to regression lines.

Fig. 7
Fig. 7

Variation of the locations of the main transmittance dips with the waist diameter of the tapers (diamonds, 40 μm; squares, 37 μm; triangles, 35 μm; circles, 31 μm).

Fig. 8
Fig. 8

Dependence of the behavior of the systems with polarization: circles, measurement taken without polarization control; diamonds, measurements taken with controlled polarization.

Fig. 9
Fig. 9

Spectral transmittance of the devices as a function of longitudinal extension of the deposited region: (a) 3-D plot for a device in which the deposition is on the waist only; (b) 3-D plot for a device in which the deposition is on the transition region only; (c) comparison of the responses for both cases for a fixed value of the outer refractive index (upper dotted curve, transition region; lower continuous curve, waist).

Metrics