Abstract

Diffractive optical elements (DOEs) are key components in the miniaturization of optical systems because of their planarity and extreme thinness. We demonstrate the fabrication of DOEs by use of gray-scale photolithography with a high-energy-beam sensitive glass photomask. We obtained DOE lenses with continuous phase profiles as small as 800 μm in diameter and 5.9 μm in the outermost grating pitch by selecting a suitable optical density for each height level and optimizing the process variables. Microlenses patterned with eight levels and replicated by UV embossing with the polymer master mold showed a diffraction efficiency of 81.5%, which was sufficiently high for the devices to be used as optical pickups. The effects of deviations in diffraction efficiency between the DOE height and profile design were analyzed.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. F. Borrelli, Microoptics Technology (Marcel Dekker, New York, 1999).
  2. Z. Liping, L. Y. Loy, Z. Yan, “Quasi-continuous mask-coding method for fabricating diffractive optical elements,” in Micromachine Technology for Diffractive and Holographic Optics, S. H. Lee, J. Allen Cox, eds., Proc. SPIE3879, 106–115 (1999).
    [CrossRef]
  3. H. P. Herzig, ed., Micro-Optics: Elements, Systems and Applications (Taylor & Francis, London, 1997).
  4. C. Wu, “Method of making high energy beam sensitive glasses,” U.S. patent5,078,771 (7January1992).
  5. W. Daschner, P. Long, P. Stein, C. Wu, S. H. Lee, “Cost-effective mass fabrication of multilevel diffractive optical elements by use of a single optical exposure with a gray-scale mask on high-energy beam-sensitive glass,” Appl. Opt. 36, 4675–4680 (1997).
    [CrossRef] [PubMed]
  6. S. Sinzinger, J. Jahns, Microoptics (Wiley-VCH, Weinhein, Germany, 1999).
  7. M. C. Hutley, “The manufacture of microlenses,” in Diffractive Optics: Design, Fabrication, and Applications, postconference ed., Vol. 11 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), pp. 316–319.
  8. S.-J. Choi, P. J. Yoo, S. J. Baek, T. W. Kim, H. H. Lee, “An ultraviolet-curable mold for sub-100-nm lithography,” J. Am. Chem. Soc. 126, 7744–7755 (2004).
    [CrossRef] [PubMed]
  9. J. F. Isenberg, Advanced Topics in CODE V Training (Optical Technology Education Center, Incheon, Korea, 2003).
  10. Y. Oppliger, P. Sixt, J. M. Stauffer, J. M. Mayor, P. Regnault, G. Voirin, “One-step 3D shaping using a gray-tone mask for optical and microelectronic applications,” Microelectron. Eng. 23, 449–454 (1994).
    [CrossRef]
  11. V. P. Koronkevich, V. P. Kiryanov, V. P. Korol’kov, G. Poleshchuk, V. A. Cherkashin, A. A. Kharissov, “Fabrication of diffractive optical elements by laser writing with circular scanning,” in Diffractive Optics: Design, Fabrication, and Applications, postconference ed. Vol. 11 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), pp. 310–313.

2004 (1)

S.-J. Choi, P. J. Yoo, S. J. Baek, T. W. Kim, H. H. Lee, “An ultraviolet-curable mold for sub-100-nm lithography,” J. Am. Chem. Soc. 126, 7744–7755 (2004).
[CrossRef] [PubMed]

1997 (1)

1994 (1)

Y. Oppliger, P. Sixt, J. M. Stauffer, J. M. Mayor, P. Regnault, G. Voirin, “One-step 3D shaping using a gray-tone mask for optical and microelectronic applications,” Microelectron. Eng. 23, 449–454 (1994).
[CrossRef]

Baek, S. J.

S.-J. Choi, P. J. Yoo, S. J. Baek, T. W. Kim, H. H. Lee, “An ultraviolet-curable mold for sub-100-nm lithography,” J. Am. Chem. Soc. 126, 7744–7755 (2004).
[CrossRef] [PubMed]

Borrelli, N. F.

N. F. Borrelli, Microoptics Technology (Marcel Dekker, New York, 1999).

Cherkashin, V. A.

V. P. Koronkevich, V. P. Kiryanov, V. P. Korol’kov, G. Poleshchuk, V. A. Cherkashin, A. A. Kharissov, “Fabrication of diffractive optical elements by laser writing with circular scanning,” in Diffractive Optics: Design, Fabrication, and Applications, postconference ed. Vol. 11 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), pp. 310–313.

Choi, S.-J.

S.-J. Choi, P. J. Yoo, S. J. Baek, T. W. Kim, H. H. Lee, “An ultraviolet-curable mold for sub-100-nm lithography,” J. Am. Chem. Soc. 126, 7744–7755 (2004).
[CrossRef] [PubMed]

Daschner, W.

Hutley, M. C.

M. C. Hutley, “The manufacture of microlenses,” in Diffractive Optics: Design, Fabrication, and Applications, postconference ed., Vol. 11 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), pp. 316–319.

Isenberg, J. F.

J. F. Isenberg, Advanced Topics in CODE V Training (Optical Technology Education Center, Incheon, Korea, 2003).

Jahns, J.

S. Sinzinger, J. Jahns, Microoptics (Wiley-VCH, Weinhein, Germany, 1999).

Kharissov, A. A.

V. P. Koronkevich, V. P. Kiryanov, V. P. Korol’kov, G. Poleshchuk, V. A. Cherkashin, A. A. Kharissov, “Fabrication of diffractive optical elements by laser writing with circular scanning,” in Diffractive Optics: Design, Fabrication, and Applications, postconference ed. Vol. 11 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), pp. 310–313.

Kim, T. W.

S.-J. Choi, P. J. Yoo, S. J. Baek, T. W. Kim, H. H. Lee, “An ultraviolet-curable mold for sub-100-nm lithography,” J. Am. Chem. Soc. 126, 7744–7755 (2004).
[CrossRef] [PubMed]

Kiryanov, V. P.

V. P. Koronkevich, V. P. Kiryanov, V. P. Korol’kov, G. Poleshchuk, V. A. Cherkashin, A. A. Kharissov, “Fabrication of diffractive optical elements by laser writing with circular scanning,” in Diffractive Optics: Design, Fabrication, and Applications, postconference ed. Vol. 11 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), pp. 310–313.

Korol’kov, V. P.

V. P. Koronkevich, V. P. Kiryanov, V. P. Korol’kov, G. Poleshchuk, V. A. Cherkashin, A. A. Kharissov, “Fabrication of diffractive optical elements by laser writing with circular scanning,” in Diffractive Optics: Design, Fabrication, and Applications, postconference ed. Vol. 11 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), pp. 310–313.

Koronkevich, V. P.

V. P. Koronkevich, V. P. Kiryanov, V. P. Korol’kov, G. Poleshchuk, V. A. Cherkashin, A. A. Kharissov, “Fabrication of diffractive optical elements by laser writing with circular scanning,” in Diffractive Optics: Design, Fabrication, and Applications, postconference ed. Vol. 11 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), pp. 310–313.

Lee, H. H.

S.-J. Choi, P. J. Yoo, S. J. Baek, T. W. Kim, H. H. Lee, “An ultraviolet-curable mold for sub-100-nm lithography,” J. Am. Chem. Soc. 126, 7744–7755 (2004).
[CrossRef] [PubMed]

Lee, S. H.

Liping, Z.

Z. Liping, L. Y. Loy, Z. Yan, “Quasi-continuous mask-coding method for fabricating diffractive optical elements,” in Micromachine Technology for Diffractive and Holographic Optics, S. H. Lee, J. Allen Cox, eds., Proc. SPIE3879, 106–115 (1999).
[CrossRef]

Long, P.

Loy, L. Y.

Z. Liping, L. Y. Loy, Z. Yan, “Quasi-continuous mask-coding method for fabricating diffractive optical elements,” in Micromachine Technology for Diffractive and Holographic Optics, S. H. Lee, J. Allen Cox, eds., Proc. SPIE3879, 106–115 (1999).
[CrossRef]

Mayor, J. M.

Y. Oppliger, P. Sixt, J. M. Stauffer, J. M. Mayor, P. Regnault, G. Voirin, “One-step 3D shaping using a gray-tone mask for optical and microelectronic applications,” Microelectron. Eng. 23, 449–454 (1994).
[CrossRef]

Oppliger, Y.

Y. Oppliger, P. Sixt, J. M. Stauffer, J. M. Mayor, P. Regnault, G. Voirin, “One-step 3D shaping using a gray-tone mask for optical and microelectronic applications,” Microelectron. Eng. 23, 449–454 (1994).
[CrossRef]

Poleshchuk, G.

V. P. Koronkevich, V. P. Kiryanov, V. P. Korol’kov, G. Poleshchuk, V. A. Cherkashin, A. A. Kharissov, “Fabrication of diffractive optical elements by laser writing with circular scanning,” in Diffractive Optics: Design, Fabrication, and Applications, postconference ed. Vol. 11 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), pp. 310–313.

Regnault, P.

Y. Oppliger, P. Sixt, J. M. Stauffer, J. M. Mayor, P. Regnault, G. Voirin, “One-step 3D shaping using a gray-tone mask for optical and microelectronic applications,” Microelectron. Eng. 23, 449–454 (1994).
[CrossRef]

Sinzinger, S.

S. Sinzinger, J. Jahns, Microoptics (Wiley-VCH, Weinhein, Germany, 1999).

Sixt, P.

Y. Oppliger, P. Sixt, J. M. Stauffer, J. M. Mayor, P. Regnault, G. Voirin, “One-step 3D shaping using a gray-tone mask for optical and microelectronic applications,” Microelectron. Eng. 23, 449–454 (1994).
[CrossRef]

Stauffer, J. M.

Y. Oppliger, P. Sixt, J. M. Stauffer, J. M. Mayor, P. Regnault, G. Voirin, “One-step 3D shaping using a gray-tone mask for optical and microelectronic applications,” Microelectron. Eng. 23, 449–454 (1994).
[CrossRef]

Stein, P.

Voirin, G.

Y. Oppliger, P. Sixt, J. M. Stauffer, J. M. Mayor, P. Regnault, G. Voirin, “One-step 3D shaping using a gray-tone mask for optical and microelectronic applications,” Microelectron. Eng. 23, 449–454 (1994).
[CrossRef]

Wu, C.

Yan, Z.

Z. Liping, L. Y. Loy, Z. Yan, “Quasi-continuous mask-coding method for fabricating diffractive optical elements,” in Micromachine Technology for Diffractive and Holographic Optics, S. H. Lee, J. Allen Cox, eds., Proc. SPIE3879, 106–115 (1999).
[CrossRef]

Yoo, P. J.

S.-J. Choi, P. J. Yoo, S. J. Baek, T. W. Kim, H. H. Lee, “An ultraviolet-curable mold for sub-100-nm lithography,” J. Am. Chem. Soc. 126, 7744–7755 (2004).
[CrossRef] [PubMed]

Appl. Opt. (1)

J. Am. Chem. Soc. (1)

S.-J. Choi, P. J. Yoo, S. J. Baek, T. W. Kim, H. H. Lee, “An ultraviolet-curable mold for sub-100-nm lithography,” J. Am. Chem. Soc. 126, 7744–7755 (2004).
[CrossRef] [PubMed]

Microelectron. Eng. (1)

Y. Oppliger, P. Sixt, J. M. Stauffer, J. M. Mayor, P. Regnault, G. Voirin, “One-step 3D shaping using a gray-tone mask for optical and microelectronic applications,” Microelectron. Eng. 23, 449–454 (1994).
[CrossRef]

Other (8)

V. P. Koronkevich, V. P. Kiryanov, V. P. Korol’kov, G. Poleshchuk, V. A. Cherkashin, A. A. Kharissov, “Fabrication of diffractive optical elements by laser writing with circular scanning,” in Diffractive Optics: Design, Fabrication, and Applications, postconference ed. Vol. 11 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), pp. 310–313.

J. F. Isenberg, Advanced Topics in CODE V Training (Optical Technology Education Center, Incheon, Korea, 2003).

N. F. Borrelli, Microoptics Technology (Marcel Dekker, New York, 1999).

Z. Liping, L. Y. Loy, Z. Yan, “Quasi-continuous mask-coding method for fabricating diffractive optical elements,” in Micromachine Technology for Diffractive and Holographic Optics, S. H. Lee, J. Allen Cox, eds., Proc. SPIE3879, 106–115 (1999).
[CrossRef]

H. P. Herzig, ed., Micro-Optics: Elements, Systems and Applications (Taylor & Francis, London, 1997).

C. Wu, “Method of making high energy beam sensitive glasses,” U.S. patent5,078,771 (7January1992).

S. Sinzinger, J. Jahns, Microoptics (Wiley-VCH, Weinhein, Germany, 1999).

M. C. Hutley, “The manufacture of microlenses,” in Diffractive Optics: Design, Fabrication, and Applications, postconference ed., Vol. 11 of 1994 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1994), pp. 316–319.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Residual photoresist (PR) thickness with variation in optical density: (a) AZ1512 photoresist, (b) diluted AZ4330 photoresist with AZ1500 thinner.

Fig. 2
Fig. 2

Residual photoresist (PR) thickness with variation of optical density: (a) 2.0-s exposure, (b) 3.5-s exposure.

Fig. 3
Fig. 3

Fabrication of DOEs: (a) gray-scale photo mask, (b) photoresist deposition, (c) UV exposure and development, (d) molding the polymer master, (e) unmolding the polymer master, (f) UV embossing, (g) replicated DOE.

Fig. 4
Fig. 4

Experimental setup for measurement of diffraction efficiency.

Fig. 5
Fig. 5

Optical microscopic image of a DOE patterned on a dilute AZ4330 photoresist.

Fig. 6
Fig. 6

Atomic-force microscope image of a DOE replicated by UV embossing with a polymer master.

Fig. 7
Fig. 7

Diffraction efficiency calculated as a function of DOE height.

Tables (4)

Tables Icon

Table 1 Designed Heights of the Eight-Level DOE

Tables Icon

Table 2 Selected Optical Densities

Tables Icon

Table 3 Height Measurements

Tables Icon

Table 4 Comparison of Simulated Values with Measured Efficiencies

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

C 1 r 2 + C 2 r 4 + C 3 r 6 + C 4 r 8 + C 5 r 10 + C 6 r 12 + 2 π N N N = 0.
h DOE = λ source n DOE - 1 ,
h DOElevel = h DOE N ( N - 1 ) .
η m = { sin [ π ( λ 0 / λ - m ) ] π ( λ 0 / λ - m ) } 2 [ sin ( π λ 0 / N λ ) π λ 0 / N λ ] 2 = ( sin { π [ ( n - 1 ) d / λ ] - m } π { [ ( n - 1 ) d / λ ] - m } ) 2 ( sin [ π ( n - 1 ) d / N λ ] [ π ( n - 1 ) d / N λ ] ) 2 ,

Metrics