Abstract

We describe a novel optical acoustic detector based on a bias-controlled fiber Fabry–Perot interferometer. The detector has a broad bandwidth from 10 Mhz to a few gigahertz and higher sensitivity than conventional systems, which are useful for noncontact characterization of microsamples based on laser ultrasound.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. B. Scruby, L. E. Drain, Laser Ultrasonics: Techniques and Applications (Adam Hilger, Bristol, UK, 1990).
  2. A. J. A. Bruinsma, J. A. Vogel, “Ultrasonic noncontact inspection system with optical fiber methods,” Appl. Opt. 27, 4690–4695 (1988).
    [CrossRef] [PubMed]
  3. J. E. Bowers, “Fiber-optical sensor for surface acoustic waves,” Appl. Phys. Lett. 41, 231–233 (1982).
    [CrossRef]
  4. J.-P. Monchalin, R. Heon, P. Bouchard, C. Padioleau, “Broadband optical detection of ultrasound by optical sideband stripping with a confocal Fabry–Perot,” Appl. Phys. Lett. 55, 1612–1614 (1989).
    [CrossRef]
  5. B. Culshaw, G. Pierce, P. Jun, “Non-contact measurement of the mechanical properties materials using an all-optical technique,” IEEE Sens. J. 3, 62–70 (2003).
    [CrossRef]
  6. Y. Shen, P. Hess, “Real-time detection of laser-induced transient gratings and surface acoustic wave pulses with a Michelson interferometer,” J. Appl. Phys. 82, 4758–4762 (1997).
    [CrossRef]
  7. J. D. Hamilton, M. O’Donnell, “High frequency ultrasound imaging with optical arrays,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45, 216–235 (1998).
    [CrossRef]
  8. Q. Shan, A. S. Bradford, R. J. Dewhurst, “New field formulas for the Fabry–Perot interferometer and their application to ultrasound detection,” Meas. Sci. Technol. 9, 24–37 (1998).
    [CrossRef]
  9. A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford U. Press, New York, 1997).

2003

B. Culshaw, G. Pierce, P. Jun, “Non-contact measurement of the mechanical properties materials using an all-optical technique,” IEEE Sens. J. 3, 62–70 (2003).
[CrossRef]

1998

J. D. Hamilton, M. O’Donnell, “High frequency ultrasound imaging with optical arrays,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45, 216–235 (1998).
[CrossRef]

Q. Shan, A. S. Bradford, R. J. Dewhurst, “New field formulas for the Fabry–Perot interferometer and their application to ultrasound detection,” Meas. Sci. Technol. 9, 24–37 (1998).
[CrossRef]

1997

Y. Shen, P. Hess, “Real-time detection of laser-induced transient gratings and surface acoustic wave pulses with a Michelson interferometer,” J. Appl. Phys. 82, 4758–4762 (1997).
[CrossRef]

1989

J.-P. Monchalin, R. Heon, P. Bouchard, C. Padioleau, “Broadband optical detection of ultrasound by optical sideband stripping with a confocal Fabry–Perot,” Appl. Phys. Lett. 55, 1612–1614 (1989).
[CrossRef]

1988

1982

J. E. Bowers, “Fiber-optical sensor for surface acoustic waves,” Appl. Phys. Lett. 41, 231–233 (1982).
[CrossRef]

Bouchard, P.

J.-P. Monchalin, R. Heon, P. Bouchard, C. Padioleau, “Broadband optical detection of ultrasound by optical sideband stripping with a confocal Fabry–Perot,” Appl. Phys. Lett. 55, 1612–1614 (1989).
[CrossRef]

Bowers, J. E.

J. E. Bowers, “Fiber-optical sensor for surface acoustic waves,” Appl. Phys. Lett. 41, 231–233 (1982).
[CrossRef]

Bradford, A. S.

Q. Shan, A. S. Bradford, R. J. Dewhurst, “New field formulas for the Fabry–Perot interferometer and their application to ultrasound detection,” Meas. Sci. Technol. 9, 24–37 (1998).
[CrossRef]

Bruinsma, A. J. A.

Culshaw, B.

B. Culshaw, G. Pierce, P. Jun, “Non-contact measurement of the mechanical properties materials using an all-optical technique,” IEEE Sens. J. 3, 62–70 (2003).
[CrossRef]

Dewhurst, R. J.

Q. Shan, A. S. Bradford, R. J. Dewhurst, “New field formulas for the Fabry–Perot interferometer and their application to ultrasound detection,” Meas. Sci. Technol. 9, 24–37 (1998).
[CrossRef]

Drain, L. E.

C. B. Scruby, L. E. Drain, Laser Ultrasonics: Techniques and Applications (Adam Hilger, Bristol, UK, 1990).

Hamilton, J. D.

J. D. Hamilton, M. O’Donnell, “High frequency ultrasound imaging with optical arrays,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45, 216–235 (1998).
[CrossRef]

Heon, R.

J.-P. Monchalin, R. Heon, P. Bouchard, C. Padioleau, “Broadband optical detection of ultrasound by optical sideband stripping with a confocal Fabry–Perot,” Appl. Phys. Lett. 55, 1612–1614 (1989).
[CrossRef]

Hess, P.

Y. Shen, P. Hess, “Real-time detection of laser-induced transient gratings and surface acoustic wave pulses with a Michelson interferometer,” J. Appl. Phys. 82, 4758–4762 (1997).
[CrossRef]

Jun, P.

B. Culshaw, G. Pierce, P. Jun, “Non-contact measurement of the mechanical properties materials using an all-optical technique,” IEEE Sens. J. 3, 62–70 (2003).
[CrossRef]

Monchalin, J.-P.

J.-P. Monchalin, R. Heon, P. Bouchard, C. Padioleau, “Broadband optical detection of ultrasound by optical sideband stripping with a confocal Fabry–Perot,” Appl. Phys. Lett. 55, 1612–1614 (1989).
[CrossRef]

O’Donnell, M.

J. D. Hamilton, M. O’Donnell, “High frequency ultrasound imaging with optical arrays,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45, 216–235 (1998).
[CrossRef]

Padioleau, C.

J.-P. Monchalin, R. Heon, P. Bouchard, C. Padioleau, “Broadband optical detection of ultrasound by optical sideband stripping with a confocal Fabry–Perot,” Appl. Phys. Lett. 55, 1612–1614 (1989).
[CrossRef]

Pierce, G.

B. Culshaw, G. Pierce, P. Jun, “Non-contact measurement of the mechanical properties materials using an all-optical technique,” IEEE Sens. J. 3, 62–70 (2003).
[CrossRef]

Scruby, C. B.

C. B. Scruby, L. E. Drain, Laser Ultrasonics: Techniques and Applications (Adam Hilger, Bristol, UK, 1990).

Shan, Q.

Q. Shan, A. S. Bradford, R. J. Dewhurst, “New field formulas for the Fabry–Perot interferometer and their application to ultrasound detection,” Meas. Sci. Technol. 9, 24–37 (1998).
[CrossRef]

Shen, Y.

Y. Shen, P. Hess, “Real-time detection of laser-induced transient gratings and surface acoustic wave pulses with a Michelson interferometer,” J. Appl. Phys. 82, 4758–4762 (1997).
[CrossRef]

Vogel, J. A.

Yariv, A.

A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford U. Press, New York, 1997).

Appl. Opt.

Appl. Phys. Lett.

J. E. Bowers, “Fiber-optical sensor for surface acoustic waves,” Appl. Phys. Lett. 41, 231–233 (1982).
[CrossRef]

J.-P. Monchalin, R. Heon, P. Bouchard, C. Padioleau, “Broadband optical detection of ultrasound by optical sideband stripping with a confocal Fabry–Perot,” Appl. Phys. Lett. 55, 1612–1614 (1989).
[CrossRef]

IEEE Sens. J.

B. Culshaw, G. Pierce, P. Jun, “Non-contact measurement of the mechanical properties materials using an all-optical technique,” IEEE Sens. J. 3, 62–70 (2003).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control

J. D. Hamilton, M. O’Donnell, “High frequency ultrasound imaging with optical arrays,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 45, 216–235 (1998).
[CrossRef]

J. Appl. Phys.

Y. Shen, P. Hess, “Real-time detection of laser-induced transient gratings and surface acoustic wave pulses with a Michelson interferometer,” J. Appl. Phys. 82, 4758–4762 (1997).
[CrossRef]

Meas. Sci. Technol.

Q. Shan, A. S. Bradford, R. J. Dewhurst, “New field formulas for the Fabry–Perot interferometer and their application to ultrasound detection,” Meas. Sci. Technol. 9, 24–37 (1998).
[CrossRef]

Other

A. Yariv, Optical Electronics in Modern Communications, 5th ed. (Oxford U. Press, New York, 1997).

C. B. Scruby, L. E. Drain, Laser Ultrasonics: Techniques and Applications (Adam Hilger, Bristol, UK, 1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of the optical detection of an acoustic wave with a Fabry–Perot interferometer. In the experiment an electro-optic phase modulator was used as an idealized test sample instead of an acoustic wave. FFPI, fiber Fabry–Perot interferometer; PD1 and PD2, photodetectors; AM, amplitude-modulated; PM, phase-modulated.

Fig. 2
Fig. 2

Theoretical reflection characteristics of an FFPI (free spectral range 5.25 GHz, finesse = 190). ν, laser frequency; fu, acoustic frequency. (a) Intensity response and (b) phase response.

Fig. 3
Fig. 3

Frequency response of the acoustic detector. The sensitivity factor SF and the normalized bias frequency fr are defined in the text. Solid curves are theoretical results obtained under the assumption of a scattering loss of 0.44% per round trip inside the FFPI cavity.

Fig. 4
Fig. 4

Characteristics for a high-frequency input. (a) Normalized SNR and (b) visibility measured at 200 MHz. fr, normalized bias frequency; R, reflectivity. Solid curves are theoretical results under the same assumption as in Fig. 3.

Fig. 5
Fig. 5

Output spectrum for an input phase modulation of 200 MHz and 2.6 mrad. The results were normalized by the square root of the detection bandwidth (4 MHz). The normalized bias frequency fr was 0.5.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

E = E 0 exp [ - i 2 π ν t - i 4 π U λ cos ( 2 π f u t + ψ ) ] E 0 exp ( - i 2 π ν t ) [ 1 - i 4 π U λ cos ( 2 π f u t + ψ ) ] ,
r ( ϕ ) = R 1 - ( 1 - R 1 ) R 2 exp ( - i ϕ - α ) × m = 0 [ R 1 R 2 exp ( - i ϕ - α ) ] m = R 1 - R 2 exp ( - i ϕ - α ) 1 - R 1 R 2 exp ( - i ϕ - α ) ,             ϕ = 2 π ν FSR ,
I out = I dc + I in 4 π U λ SF cos ( 2 π f u t + θ ) , I dc = r ( ϕ ) 2 I in ,
SNR = P ac 2 η 2 B h ν P dc = SF 2 r 2 [ 4 π U λ ( i 2 e B ) 1 / 2 ] 2 ,
S F max = 2 1 + [ 1 + R 2 exp ( - 2 α ) 1 - R 1 ]             ( at f r = 0.0 ) ,
SF 2 / r 2 = 2 [ 1 - cos ( 2 arg { r } ) ] .

Metrics