Abstract

Carbon single-wall nanotubes (SWNTs) are studied as the thermal-absorption coating on a large area pyroelectric detector. The SWNTs were produced by a laser vaporization method and dispersed onto the detector surface by use of a simple airbrush technique. The detector was based on a 1-cm-diameter, 60-μm-thick lithium tantalate disk having nickel electrodes. We report the spectral responsivity of the detector ranging from 600 to 1800 nm, as well as the spatial and directional uniformity at 850 nm. Using Drude and Lorentzian dielectric functions and an effective medium approximation to obtain the indices of refraction of semiconductor and metallic SWNTs, we compared the expected theoretical relative responsivity for the two types of tube with the measured relative responsivity of the detector. Values of thermal conductivity, specific heat, and damage threshold obtained from the literature are compared with properties of alternatives for thermal coatings such as gold-black and carbon-based paint.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Chen, “Optical properties of carbon nanotubes,” Ph.D. dissertation (University of Pennsylvania, Philadelphia, Pa., 2003).
  2. A. Ugawa, A. G. Rinzler, D. B. Tanner, “Far-infrared gaps in single-wall carbon nanotubes,” Phys. Rev. B 60, R11305–R11308 (1999).
    [CrossRef]
  3. F. J. García-Vidal, J. M. Pitarke, J. B. Pendry, “Effective medium theory of the optical properties of aligned carbon nanotubes,” Phys. Rev. Lett. 78, 4289–4292 (1997).
    [CrossRef]
  4. J. Lehman, G. Eppeldauer, J. A. Aust, M. Racz, “Domainengineered pyroelectric radiometer,” Appl. Opt. 38, 7047–7055 (1999).
    [CrossRef]
  5. A. H. Pfund, “Optical properties of metallic and crystalline powders,” J. Opt. Soc. Am. 23, 375–378 (1933).
    [CrossRef]
  6. J. Lehman, E. Theocharous, G. Eppeldauer, C. Pannell, “Gold-black coatings for freestanding pyroelectric detectors,” Meas. Sci. Technol. 14, 916–922 (2003).
    [CrossRef]
  7. R. Saito, G. Dresselhaus, M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998), pp. 11–14.
  8. J. S. Kim, K. S. Ahn, C. O. Kim, J. P. Hong, “Ultraviolet laser treatment of multiwall carbon nanotubes grown at low temperature,” Appl. Phys. Lett. 82, 1607–1609 (2003).
    [CrossRef]
  9. T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, R. E. Smalley, “Catalytic growth of single-walled nanotubes by laser vaporization,” Chem. Phys. Lett. 243, 49–54 (1995).
    [CrossRef]
  10. A. C. Dillon, T. Gennett, K. M. Jones, J. L. Alleman, P. A. Parilla, M. J. Heben, “A simple and complete purification of single-walled carbon nanotube materials,” Adv. Mater. 11, 1354–1358 (1999).
    [CrossRef]
  11. J. H. Lehman, “Calibration service for spectral responsivity of laser and optical-fiber power meters at wavelengths between 0.4 μm and 1.8 μm,” NIST Spec. Publ. 250–53, 1–39 (1999).
  12. J. H. Lehman, “Pyroelectric trap detector for spectral responsivity measurements,” Appl. Opt. 36, 9117–9118 (1997).
    [CrossRef]
  13. E. Theocharous, N. P. Fox, T. R. Prior, “Comparison of the performance of infrared detectors for radiometric applications,” in Optical Radiation Measurements III, J. M. Palmer, ed., Proc. SPIE2815, 56–68 (1996).
    [CrossRef]
  14. S. M. Bachilo, M. S. Strano, C. Kittrell, R. H. Hauge, R. E. Smalley, R. B. Weisman, “Structure-assigned optical spectra of single-walled carbon nanotubes,” Science 298, 2361–2366 (2002).
    [CrossRef] [PubMed]
  15. W. Becker, R. Fettig, A. Gaymann, W. Ruppel, “Black gold deposits as absorbers for far infrared radiation,” Phys. Status Solidi B 194, 241–255 (1996).
    [CrossRef]
  16. See, e.g., M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, UK, 1993), pp. 38, 617, 620.
  17. A. C. Dillon, M. Yudasaka, M. S. Dresselhaus, “Employing Raman spectroscopy to qualitatively evaluate the purity of carbon single-wall nanotube materials,” J. Nanosci. Nanotechnol. 4, 691–703 (2004).
    [CrossRef] [PubMed]
  18. D. Chattopadhyay, I. Galeska, F. Papadimitrakopoulos, “A route for bulk separation of semiconducting from metallic single-wall carbon nanotubes,” J. Am. Chem. Soc. 125, 3370–3375 (2003).
    [CrossRef] [PubMed]
  19. M. Zheng, A. Jagota, E. D. Semke, B. A. Diner, R. S. McLean, S. R. Lustig, R. E. Richardson, N. G. Tassi, “DNA-assisted dispersion and separation of carbon nanotubes,” Nature Mater. 2, 338–342 (2003).
    [CrossRef]
  20. R. Krupke, F. Hennrich, H. von Lohneysen, M. M. Kappes, “Separation of metallic from semiconducting single-walled carbon nanotubes,” Science 301, 344–347 (2003).
    [CrossRef] [PubMed]
  21. S. Berber, Y.-K. Kwon, D. Tománek, “Unusually high thermal conductivity of carbon nanotubes,” Phys. Rev. Lett. 84, 4613–4616 (2000).
    [CrossRef] [PubMed]
  22. W. R. Blevin, J. Geist, “Influence of black coatings on pyroelectric detectors,” Appl. Opt. 13, 1171–1178 (1974).
    [CrossRef] [PubMed]
  23. D. L. Livigni, “High accuracy laser power and energy meter calibration service,” NIST Spec. Publ. 250–62, 1–144 (2003).
  24. E. D. West, W. E. Case, A. L. Rasmussen, L. B. Schmidt, “A reference calorimeter for laser energy measurements,” J. Res. Natl. Bur. Stand. Sect. A 76, 13–26 (1972).
    [CrossRef]
  25. S. Y. Set, H. Yaguchi, Y. Tanaka, M. Jablonski, “Laser mode locking using a saturable absorber incorporating carbon nanotubes,” J. Lightwave Technol. 22, 51–56 (2004).
    [CrossRef]
  26. J. Lefebvre, Y. Homma, P. Finnie, “Bright band gap photoluminescence from unprocessed single-walled carbon nanotubes,” Phys. Rev. Lett. 90, 217401 (2003).
    [CrossRef] [PubMed]
  27. S. Bauer, B. Ploss, “A method for the measurement of the thermal, dielectric, and pyroelectric properties of thin pyroelectric films and their applications for integrated heat sensors,” J. Appl. Phys. 68, 6361–6367 (1990).
    [CrossRef]
  28. R. J. Phelan, A. R. Cook, “Electrically calibrated pyroelectric optical-radiation detector,” Appl. Opt. 12, 2494–2500 (1973).
    [CrossRef] [PubMed]
  29. A. C. Dillon, A. H. Mahan, P. A. Parilla, J. L. Alleman, M. J. Heben, K. M. Jones, K. E. H. Gilbert, “Continuous hot wire chemical vapor deposition of high-density carbon multiwall nanotubes,” Nano Lett. 3, 1425–1429 (2003).
    [CrossRef]
  30. W. R. Blevin, W. J. Brown, “Black coatings for absolute radiometers,” Metrologia 2, 139–143 (1966).
    [CrossRef]
  31. J. Hone, M. C. Llaguno, M. J. Biercuk, A. T. Johnson, B. Batlogg, Z. Benes, J. E. Fischer, “Thermal properties of carbon nanotubes and nanotube-based materials,” Appl. Phys. A 74, 339–343 (2002).
    [CrossRef]
  32. J. S. Kim, K. S. Ahn, C. O. Kim, J. P. Hong, “Ultraviolet laser treatment of multiwall carbon nanotubes grown at low temperature,” Appl. Phys. Lett. 82, 1607–1609 (2003).
    [CrossRef]
  33. This is a typical value as given by one or more vendors (not specified) and depends on the nature of the laser pulses and the mode of cooling the detector.

2004

A. C. Dillon, M. Yudasaka, M. S. Dresselhaus, “Employing Raman spectroscopy to qualitatively evaluate the purity of carbon single-wall nanotube materials,” J. Nanosci. Nanotechnol. 4, 691–703 (2004).
[CrossRef] [PubMed]

S. Y. Set, H. Yaguchi, Y. Tanaka, M. Jablonski, “Laser mode locking using a saturable absorber incorporating carbon nanotubes,” J. Lightwave Technol. 22, 51–56 (2004).
[CrossRef]

2003

J. Lefebvre, Y. Homma, P. Finnie, “Bright band gap photoluminescence from unprocessed single-walled carbon nanotubes,” Phys. Rev. Lett. 90, 217401 (2003).
[CrossRef] [PubMed]

A. C. Dillon, A. H. Mahan, P. A. Parilla, J. L. Alleman, M. J. Heben, K. M. Jones, K. E. H. Gilbert, “Continuous hot wire chemical vapor deposition of high-density carbon multiwall nanotubes,” Nano Lett. 3, 1425–1429 (2003).
[CrossRef]

J. S. Kim, K. S. Ahn, C. O. Kim, J. P. Hong, “Ultraviolet laser treatment of multiwall carbon nanotubes grown at low temperature,” Appl. Phys. Lett. 82, 1607–1609 (2003).
[CrossRef]

D. Chattopadhyay, I. Galeska, F. Papadimitrakopoulos, “A route for bulk separation of semiconducting from metallic single-wall carbon nanotubes,” J. Am. Chem. Soc. 125, 3370–3375 (2003).
[CrossRef] [PubMed]

M. Zheng, A. Jagota, E. D. Semke, B. A. Diner, R. S. McLean, S. R. Lustig, R. E. Richardson, N. G. Tassi, “DNA-assisted dispersion and separation of carbon nanotubes,” Nature Mater. 2, 338–342 (2003).
[CrossRef]

R. Krupke, F. Hennrich, H. von Lohneysen, M. M. Kappes, “Separation of metallic from semiconducting single-walled carbon nanotubes,” Science 301, 344–347 (2003).
[CrossRef] [PubMed]

D. L. Livigni, “High accuracy laser power and energy meter calibration service,” NIST Spec. Publ. 250–62, 1–144 (2003).

J. Lehman, E. Theocharous, G. Eppeldauer, C. Pannell, “Gold-black coatings for freestanding pyroelectric detectors,” Meas. Sci. Technol. 14, 916–922 (2003).
[CrossRef]

J. S. Kim, K. S. Ahn, C. O. Kim, J. P. Hong, “Ultraviolet laser treatment of multiwall carbon nanotubes grown at low temperature,” Appl. Phys. Lett. 82, 1607–1609 (2003).
[CrossRef]

2002

S. M. Bachilo, M. S. Strano, C. Kittrell, R. H. Hauge, R. E. Smalley, R. B. Weisman, “Structure-assigned optical spectra of single-walled carbon nanotubes,” Science 298, 2361–2366 (2002).
[CrossRef] [PubMed]

J. Hone, M. C. Llaguno, M. J. Biercuk, A. T. Johnson, B. Batlogg, Z. Benes, J. E. Fischer, “Thermal properties of carbon nanotubes and nanotube-based materials,” Appl. Phys. A 74, 339–343 (2002).
[CrossRef]

2000

S. Berber, Y.-K. Kwon, D. Tománek, “Unusually high thermal conductivity of carbon nanotubes,” Phys. Rev. Lett. 84, 4613–4616 (2000).
[CrossRef] [PubMed]

1999

A. C. Dillon, T. Gennett, K. M. Jones, J. L. Alleman, P. A. Parilla, M. J. Heben, “A simple and complete purification of single-walled carbon nanotube materials,” Adv. Mater. 11, 1354–1358 (1999).
[CrossRef]

J. H. Lehman, “Calibration service for spectral responsivity of laser and optical-fiber power meters at wavelengths between 0.4 μm and 1.8 μm,” NIST Spec. Publ. 250–53, 1–39 (1999).

A. Ugawa, A. G. Rinzler, D. B. Tanner, “Far-infrared gaps in single-wall carbon nanotubes,” Phys. Rev. B 60, R11305–R11308 (1999).
[CrossRef]

J. Lehman, G. Eppeldauer, J. A. Aust, M. Racz, “Domainengineered pyroelectric radiometer,” Appl. Opt. 38, 7047–7055 (1999).
[CrossRef]

1997

F. J. García-Vidal, J. M. Pitarke, J. B. Pendry, “Effective medium theory of the optical properties of aligned carbon nanotubes,” Phys. Rev. Lett. 78, 4289–4292 (1997).
[CrossRef]

J. H. Lehman, “Pyroelectric trap detector for spectral responsivity measurements,” Appl. Opt. 36, 9117–9118 (1997).
[CrossRef]

1996

W. Becker, R. Fettig, A. Gaymann, W. Ruppel, “Black gold deposits as absorbers for far infrared radiation,” Phys. Status Solidi B 194, 241–255 (1996).
[CrossRef]

1995

T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, R. E. Smalley, “Catalytic growth of single-walled nanotubes by laser vaporization,” Chem. Phys. Lett. 243, 49–54 (1995).
[CrossRef]

1990

S. Bauer, B. Ploss, “A method for the measurement of the thermal, dielectric, and pyroelectric properties of thin pyroelectric films and their applications for integrated heat sensors,” J. Appl. Phys. 68, 6361–6367 (1990).
[CrossRef]

1974

1973

1972

E. D. West, W. E. Case, A. L. Rasmussen, L. B. Schmidt, “A reference calorimeter for laser energy measurements,” J. Res. Natl. Bur. Stand. Sect. A 76, 13–26 (1972).
[CrossRef]

1966

W. R. Blevin, W. J. Brown, “Black coatings for absolute radiometers,” Metrologia 2, 139–143 (1966).
[CrossRef]

1933

Ahn, K. S.

J. S. Kim, K. S. Ahn, C. O. Kim, J. P. Hong, “Ultraviolet laser treatment of multiwall carbon nanotubes grown at low temperature,” Appl. Phys. Lett. 82, 1607–1609 (2003).
[CrossRef]

J. S. Kim, K. S. Ahn, C. O. Kim, J. P. Hong, “Ultraviolet laser treatment of multiwall carbon nanotubes grown at low temperature,” Appl. Phys. Lett. 82, 1607–1609 (2003).
[CrossRef]

Alleman, J. L.

A. C. Dillon, A. H. Mahan, P. A. Parilla, J. L. Alleman, M. J. Heben, K. M. Jones, K. E. H. Gilbert, “Continuous hot wire chemical vapor deposition of high-density carbon multiwall nanotubes,” Nano Lett. 3, 1425–1429 (2003).
[CrossRef]

A. C. Dillon, T. Gennett, K. M. Jones, J. L. Alleman, P. A. Parilla, M. J. Heben, “A simple and complete purification of single-walled carbon nanotube materials,” Adv. Mater. 11, 1354–1358 (1999).
[CrossRef]

Aust, J. A.

Bachilo, S. M.

S. M. Bachilo, M. S. Strano, C. Kittrell, R. H. Hauge, R. E. Smalley, R. B. Weisman, “Structure-assigned optical spectra of single-walled carbon nanotubes,” Science 298, 2361–2366 (2002).
[CrossRef] [PubMed]

Batlogg, B.

J. Hone, M. C. Llaguno, M. J. Biercuk, A. T. Johnson, B. Batlogg, Z. Benes, J. E. Fischer, “Thermal properties of carbon nanotubes and nanotube-based materials,” Appl. Phys. A 74, 339–343 (2002).
[CrossRef]

Bauer, S.

S. Bauer, B. Ploss, “A method for the measurement of the thermal, dielectric, and pyroelectric properties of thin pyroelectric films and their applications for integrated heat sensors,” J. Appl. Phys. 68, 6361–6367 (1990).
[CrossRef]

Becker, W.

W. Becker, R. Fettig, A. Gaymann, W. Ruppel, “Black gold deposits as absorbers for far infrared radiation,” Phys. Status Solidi B 194, 241–255 (1996).
[CrossRef]

Benes, Z.

J. Hone, M. C. Llaguno, M. J. Biercuk, A. T. Johnson, B. Batlogg, Z. Benes, J. E. Fischer, “Thermal properties of carbon nanotubes and nanotube-based materials,” Appl. Phys. A 74, 339–343 (2002).
[CrossRef]

Berber, S.

S. Berber, Y.-K. Kwon, D. Tománek, “Unusually high thermal conductivity of carbon nanotubes,” Phys. Rev. Lett. 84, 4613–4616 (2000).
[CrossRef] [PubMed]

Biercuk, M. J.

J. Hone, M. C. Llaguno, M. J. Biercuk, A. T. Johnson, B. Batlogg, Z. Benes, J. E. Fischer, “Thermal properties of carbon nanotubes and nanotube-based materials,” Appl. Phys. A 74, 339–343 (2002).
[CrossRef]

Blevin, W. R.

W. R. Blevin, J. Geist, “Influence of black coatings on pyroelectric detectors,” Appl. Opt. 13, 1171–1178 (1974).
[CrossRef] [PubMed]

W. R. Blevin, W. J. Brown, “Black coatings for absolute radiometers,” Metrologia 2, 139–143 (1966).
[CrossRef]

Born, M.

See, e.g., M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, UK, 1993), pp. 38, 617, 620.

Brown, W. J.

W. R. Blevin, W. J. Brown, “Black coatings for absolute radiometers,” Metrologia 2, 139–143 (1966).
[CrossRef]

Case, W. E.

E. D. West, W. E. Case, A. L. Rasmussen, L. B. Schmidt, “A reference calorimeter for laser energy measurements,” J. Res. Natl. Bur. Stand. Sect. A 76, 13–26 (1972).
[CrossRef]

Chattopadhyay, D.

D. Chattopadhyay, I. Galeska, F. Papadimitrakopoulos, “A route for bulk separation of semiconducting from metallic single-wall carbon nanotubes,” J. Am. Chem. Soc. 125, 3370–3375 (2003).
[CrossRef] [PubMed]

Chen, G.

G. Chen, “Optical properties of carbon nanotubes,” Ph.D. dissertation (University of Pennsylvania, Philadelphia, Pa., 2003).

Colbert, D. T.

T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, R. E. Smalley, “Catalytic growth of single-walled nanotubes by laser vaporization,” Chem. Phys. Lett. 243, 49–54 (1995).
[CrossRef]

Cook, A. R.

Dillon, A. C.

A. C. Dillon, M. Yudasaka, M. S. Dresselhaus, “Employing Raman spectroscopy to qualitatively evaluate the purity of carbon single-wall nanotube materials,” J. Nanosci. Nanotechnol. 4, 691–703 (2004).
[CrossRef] [PubMed]

A. C. Dillon, A. H. Mahan, P. A. Parilla, J. L. Alleman, M. J. Heben, K. M. Jones, K. E. H. Gilbert, “Continuous hot wire chemical vapor deposition of high-density carbon multiwall nanotubes,” Nano Lett. 3, 1425–1429 (2003).
[CrossRef]

A. C. Dillon, T. Gennett, K. M. Jones, J. L. Alleman, P. A. Parilla, M. J. Heben, “A simple and complete purification of single-walled carbon nanotube materials,” Adv. Mater. 11, 1354–1358 (1999).
[CrossRef]

Diner, B. A.

M. Zheng, A. Jagota, E. D. Semke, B. A. Diner, R. S. McLean, S. R. Lustig, R. E. Richardson, N. G. Tassi, “DNA-assisted dispersion and separation of carbon nanotubes,” Nature Mater. 2, 338–342 (2003).
[CrossRef]

Dresselhaus, G.

R. Saito, G. Dresselhaus, M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998), pp. 11–14.

Dresselhaus, M. S.

A. C. Dillon, M. Yudasaka, M. S. Dresselhaus, “Employing Raman spectroscopy to qualitatively evaluate the purity of carbon single-wall nanotube materials,” J. Nanosci. Nanotechnol. 4, 691–703 (2004).
[CrossRef] [PubMed]

R. Saito, G. Dresselhaus, M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998), pp. 11–14.

Eppeldauer, G.

J. Lehman, E. Theocharous, G. Eppeldauer, C. Pannell, “Gold-black coatings for freestanding pyroelectric detectors,” Meas. Sci. Technol. 14, 916–922 (2003).
[CrossRef]

J. Lehman, G. Eppeldauer, J. A. Aust, M. Racz, “Domainengineered pyroelectric radiometer,” Appl. Opt. 38, 7047–7055 (1999).
[CrossRef]

Fettig, R.

W. Becker, R. Fettig, A. Gaymann, W. Ruppel, “Black gold deposits as absorbers for far infrared radiation,” Phys. Status Solidi B 194, 241–255 (1996).
[CrossRef]

Finnie, P.

J. Lefebvre, Y. Homma, P. Finnie, “Bright band gap photoluminescence from unprocessed single-walled carbon nanotubes,” Phys. Rev. Lett. 90, 217401 (2003).
[CrossRef] [PubMed]

Fischer, J. E.

J. Hone, M. C. Llaguno, M. J. Biercuk, A. T. Johnson, B. Batlogg, Z. Benes, J. E. Fischer, “Thermal properties of carbon nanotubes and nanotube-based materials,” Appl. Phys. A 74, 339–343 (2002).
[CrossRef]

Fox, N. P.

E. Theocharous, N. P. Fox, T. R. Prior, “Comparison of the performance of infrared detectors for radiometric applications,” in Optical Radiation Measurements III, J. M. Palmer, ed., Proc. SPIE2815, 56–68 (1996).
[CrossRef]

Galeska, I.

D. Chattopadhyay, I. Galeska, F. Papadimitrakopoulos, “A route for bulk separation of semiconducting from metallic single-wall carbon nanotubes,” J. Am. Chem. Soc. 125, 3370–3375 (2003).
[CrossRef] [PubMed]

García-Vidal, F. J.

F. J. García-Vidal, J. M. Pitarke, J. B. Pendry, “Effective medium theory of the optical properties of aligned carbon nanotubes,” Phys. Rev. Lett. 78, 4289–4292 (1997).
[CrossRef]

Gaymann, A.

W. Becker, R. Fettig, A. Gaymann, W. Ruppel, “Black gold deposits as absorbers for far infrared radiation,” Phys. Status Solidi B 194, 241–255 (1996).
[CrossRef]

Geist, J.

Gennett, T.

A. C. Dillon, T. Gennett, K. M. Jones, J. L. Alleman, P. A. Parilla, M. J. Heben, “A simple and complete purification of single-walled carbon nanotube materials,” Adv. Mater. 11, 1354–1358 (1999).
[CrossRef]

Gilbert, K. E. H.

A. C. Dillon, A. H. Mahan, P. A. Parilla, J. L. Alleman, M. J. Heben, K. M. Jones, K. E. H. Gilbert, “Continuous hot wire chemical vapor deposition of high-density carbon multiwall nanotubes,” Nano Lett. 3, 1425–1429 (2003).
[CrossRef]

Guo, T.

T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, R. E. Smalley, “Catalytic growth of single-walled nanotubes by laser vaporization,” Chem. Phys. Lett. 243, 49–54 (1995).
[CrossRef]

Hauge, R. H.

S. M. Bachilo, M. S. Strano, C. Kittrell, R. H. Hauge, R. E. Smalley, R. B. Weisman, “Structure-assigned optical spectra of single-walled carbon nanotubes,” Science 298, 2361–2366 (2002).
[CrossRef] [PubMed]

Heben, M. J.

A. C. Dillon, A. H. Mahan, P. A. Parilla, J. L. Alleman, M. J. Heben, K. M. Jones, K. E. H. Gilbert, “Continuous hot wire chemical vapor deposition of high-density carbon multiwall nanotubes,” Nano Lett. 3, 1425–1429 (2003).
[CrossRef]

A. C. Dillon, T. Gennett, K. M. Jones, J. L. Alleman, P. A. Parilla, M. J. Heben, “A simple and complete purification of single-walled carbon nanotube materials,” Adv. Mater. 11, 1354–1358 (1999).
[CrossRef]

Hennrich, F.

R. Krupke, F. Hennrich, H. von Lohneysen, M. M. Kappes, “Separation of metallic from semiconducting single-walled carbon nanotubes,” Science 301, 344–347 (2003).
[CrossRef] [PubMed]

Homma, Y.

J. Lefebvre, Y. Homma, P. Finnie, “Bright band gap photoluminescence from unprocessed single-walled carbon nanotubes,” Phys. Rev. Lett. 90, 217401 (2003).
[CrossRef] [PubMed]

Hone, J.

J. Hone, M. C. Llaguno, M. J. Biercuk, A. T. Johnson, B. Batlogg, Z. Benes, J. E. Fischer, “Thermal properties of carbon nanotubes and nanotube-based materials,” Appl. Phys. A 74, 339–343 (2002).
[CrossRef]

Hong, J. P.

J. S. Kim, K. S. Ahn, C. O. Kim, J. P. Hong, “Ultraviolet laser treatment of multiwall carbon nanotubes grown at low temperature,” Appl. Phys. Lett. 82, 1607–1609 (2003).
[CrossRef]

J. S. Kim, K. S. Ahn, C. O. Kim, J. P. Hong, “Ultraviolet laser treatment of multiwall carbon nanotubes grown at low temperature,” Appl. Phys. Lett. 82, 1607–1609 (2003).
[CrossRef]

Jablonski, M.

Jagota, A.

M. Zheng, A. Jagota, E. D. Semke, B. A. Diner, R. S. McLean, S. R. Lustig, R. E. Richardson, N. G. Tassi, “DNA-assisted dispersion and separation of carbon nanotubes,” Nature Mater. 2, 338–342 (2003).
[CrossRef]

Johnson, A. T.

J. Hone, M. C. Llaguno, M. J. Biercuk, A. T. Johnson, B. Batlogg, Z. Benes, J. E. Fischer, “Thermal properties of carbon nanotubes and nanotube-based materials,” Appl. Phys. A 74, 339–343 (2002).
[CrossRef]

Jones, K. M.

A. C. Dillon, A. H. Mahan, P. A. Parilla, J. L. Alleman, M. J. Heben, K. M. Jones, K. E. H. Gilbert, “Continuous hot wire chemical vapor deposition of high-density carbon multiwall nanotubes,” Nano Lett. 3, 1425–1429 (2003).
[CrossRef]

A. C. Dillon, T. Gennett, K. M. Jones, J. L. Alleman, P. A. Parilla, M. J. Heben, “A simple and complete purification of single-walled carbon nanotube materials,” Adv. Mater. 11, 1354–1358 (1999).
[CrossRef]

Kappes, M. M.

R. Krupke, F. Hennrich, H. von Lohneysen, M. M. Kappes, “Separation of metallic from semiconducting single-walled carbon nanotubes,” Science 301, 344–347 (2003).
[CrossRef] [PubMed]

Kim, C. O.

J. S. Kim, K. S. Ahn, C. O. Kim, J. P. Hong, “Ultraviolet laser treatment of multiwall carbon nanotubes grown at low temperature,” Appl. Phys. Lett. 82, 1607–1609 (2003).
[CrossRef]

J. S. Kim, K. S. Ahn, C. O. Kim, J. P. Hong, “Ultraviolet laser treatment of multiwall carbon nanotubes grown at low temperature,” Appl. Phys. Lett. 82, 1607–1609 (2003).
[CrossRef]

Kim, J. S.

J. S. Kim, K. S. Ahn, C. O. Kim, J. P. Hong, “Ultraviolet laser treatment of multiwall carbon nanotubes grown at low temperature,” Appl. Phys. Lett. 82, 1607–1609 (2003).
[CrossRef]

J. S. Kim, K. S. Ahn, C. O. Kim, J. P. Hong, “Ultraviolet laser treatment of multiwall carbon nanotubes grown at low temperature,” Appl. Phys. Lett. 82, 1607–1609 (2003).
[CrossRef]

Kittrell, C.

S. M. Bachilo, M. S. Strano, C. Kittrell, R. H. Hauge, R. E. Smalley, R. B. Weisman, “Structure-assigned optical spectra of single-walled carbon nanotubes,” Science 298, 2361–2366 (2002).
[CrossRef] [PubMed]

Krupke, R.

R. Krupke, F. Hennrich, H. von Lohneysen, M. M. Kappes, “Separation of metallic from semiconducting single-walled carbon nanotubes,” Science 301, 344–347 (2003).
[CrossRef] [PubMed]

Kwon, Y.-K.

S. Berber, Y.-K. Kwon, D. Tománek, “Unusually high thermal conductivity of carbon nanotubes,” Phys. Rev. Lett. 84, 4613–4616 (2000).
[CrossRef] [PubMed]

Lefebvre, J.

J. Lefebvre, Y. Homma, P. Finnie, “Bright band gap photoluminescence from unprocessed single-walled carbon nanotubes,” Phys. Rev. Lett. 90, 217401 (2003).
[CrossRef] [PubMed]

Lehman, J.

J. Lehman, E. Theocharous, G. Eppeldauer, C. Pannell, “Gold-black coatings for freestanding pyroelectric detectors,” Meas. Sci. Technol. 14, 916–922 (2003).
[CrossRef]

J. Lehman, G. Eppeldauer, J. A. Aust, M. Racz, “Domainengineered pyroelectric radiometer,” Appl. Opt. 38, 7047–7055 (1999).
[CrossRef]

Lehman, J. H.

J. H. Lehman, “Calibration service for spectral responsivity of laser and optical-fiber power meters at wavelengths between 0.4 μm and 1.8 μm,” NIST Spec. Publ. 250–53, 1–39 (1999).

J. H. Lehman, “Pyroelectric trap detector for spectral responsivity measurements,” Appl. Opt. 36, 9117–9118 (1997).
[CrossRef]

Livigni, D. L.

D. L. Livigni, “High accuracy laser power and energy meter calibration service,” NIST Spec. Publ. 250–62, 1–144 (2003).

Llaguno, M. C.

J. Hone, M. C. Llaguno, M. J. Biercuk, A. T. Johnson, B. Batlogg, Z. Benes, J. E. Fischer, “Thermal properties of carbon nanotubes and nanotube-based materials,” Appl. Phys. A 74, 339–343 (2002).
[CrossRef]

Lustig, S. R.

M. Zheng, A. Jagota, E. D. Semke, B. A. Diner, R. S. McLean, S. R. Lustig, R. E. Richardson, N. G. Tassi, “DNA-assisted dispersion and separation of carbon nanotubes,” Nature Mater. 2, 338–342 (2003).
[CrossRef]

Mahan, A. H.

A. C. Dillon, A. H. Mahan, P. A. Parilla, J. L. Alleman, M. J. Heben, K. M. Jones, K. E. H. Gilbert, “Continuous hot wire chemical vapor deposition of high-density carbon multiwall nanotubes,” Nano Lett. 3, 1425–1429 (2003).
[CrossRef]

McLean, R. S.

M. Zheng, A. Jagota, E. D. Semke, B. A. Diner, R. S. McLean, S. R. Lustig, R. E. Richardson, N. G. Tassi, “DNA-assisted dispersion and separation of carbon nanotubes,” Nature Mater. 2, 338–342 (2003).
[CrossRef]

Nikolaev, P.

T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, R. E. Smalley, “Catalytic growth of single-walled nanotubes by laser vaporization,” Chem. Phys. Lett. 243, 49–54 (1995).
[CrossRef]

Pannell, C.

J. Lehman, E. Theocharous, G. Eppeldauer, C. Pannell, “Gold-black coatings for freestanding pyroelectric detectors,” Meas. Sci. Technol. 14, 916–922 (2003).
[CrossRef]

Papadimitrakopoulos, F.

D. Chattopadhyay, I. Galeska, F. Papadimitrakopoulos, “A route for bulk separation of semiconducting from metallic single-wall carbon nanotubes,” J. Am. Chem. Soc. 125, 3370–3375 (2003).
[CrossRef] [PubMed]

Parilla, P. A.

A. C. Dillon, A. H. Mahan, P. A. Parilla, J. L. Alleman, M. J. Heben, K. M. Jones, K. E. H. Gilbert, “Continuous hot wire chemical vapor deposition of high-density carbon multiwall nanotubes,” Nano Lett. 3, 1425–1429 (2003).
[CrossRef]

A. C. Dillon, T. Gennett, K. M. Jones, J. L. Alleman, P. A. Parilla, M. J. Heben, “A simple and complete purification of single-walled carbon nanotube materials,” Adv. Mater. 11, 1354–1358 (1999).
[CrossRef]

Pendry, J. B.

F. J. García-Vidal, J. M. Pitarke, J. B. Pendry, “Effective medium theory of the optical properties of aligned carbon nanotubes,” Phys. Rev. Lett. 78, 4289–4292 (1997).
[CrossRef]

Pfund, A. H.

Phelan, R. J.

Pitarke, J. M.

F. J. García-Vidal, J. M. Pitarke, J. B. Pendry, “Effective medium theory of the optical properties of aligned carbon nanotubes,” Phys. Rev. Lett. 78, 4289–4292 (1997).
[CrossRef]

Ploss, B.

S. Bauer, B. Ploss, “A method for the measurement of the thermal, dielectric, and pyroelectric properties of thin pyroelectric films and their applications for integrated heat sensors,” J. Appl. Phys. 68, 6361–6367 (1990).
[CrossRef]

Prior, T. R.

E. Theocharous, N. P. Fox, T. R. Prior, “Comparison of the performance of infrared detectors for radiometric applications,” in Optical Radiation Measurements III, J. M. Palmer, ed., Proc. SPIE2815, 56–68 (1996).
[CrossRef]

Racz, M.

Rasmussen, A. L.

E. D. West, W. E. Case, A. L. Rasmussen, L. B. Schmidt, “A reference calorimeter for laser energy measurements,” J. Res. Natl. Bur. Stand. Sect. A 76, 13–26 (1972).
[CrossRef]

Richardson, R. E.

M. Zheng, A. Jagota, E. D. Semke, B. A. Diner, R. S. McLean, S. R. Lustig, R. E. Richardson, N. G. Tassi, “DNA-assisted dispersion and separation of carbon nanotubes,” Nature Mater. 2, 338–342 (2003).
[CrossRef]

Rinzler, A. G.

A. Ugawa, A. G. Rinzler, D. B. Tanner, “Far-infrared gaps in single-wall carbon nanotubes,” Phys. Rev. B 60, R11305–R11308 (1999).
[CrossRef]

Ruppel, W.

W. Becker, R. Fettig, A. Gaymann, W. Ruppel, “Black gold deposits as absorbers for far infrared radiation,” Phys. Status Solidi B 194, 241–255 (1996).
[CrossRef]

Saito, R.

R. Saito, G. Dresselhaus, M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998), pp. 11–14.

Schmidt, L. B.

E. D. West, W. E. Case, A. L. Rasmussen, L. B. Schmidt, “A reference calorimeter for laser energy measurements,” J. Res. Natl. Bur. Stand. Sect. A 76, 13–26 (1972).
[CrossRef]

Semke, E. D.

M. Zheng, A. Jagota, E. D. Semke, B. A. Diner, R. S. McLean, S. R. Lustig, R. E. Richardson, N. G. Tassi, “DNA-assisted dispersion and separation of carbon nanotubes,” Nature Mater. 2, 338–342 (2003).
[CrossRef]

Set, S. Y.

Smalley, R. E.

S. M. Bachilo, M. S. Strano, C. Kittrell, R. H. Hauge, R. E. Smalley, R. B. Weisman, “Structure-assigned optical spectra of single-walled carbon nanotubes,” Science 298, 2361–2366 (2002).
[CrossRef] [PubMed]

T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, R. E. Smalley, “Catalytic growth of single-walled nanotubes by laser vaporization,” Chem. Phys. Lett. 243, 49–54 (1995).
[CrossRef]

Strano, M. S.

S. M. Bachilo, M. S. Strano, C. Kittrell, R. H. Hauge, R. E. Smalley, R. B. Weisman, “Structure-assigned optical spectra of single-walled carbon nanotubes,” Science 298, 2361–2366 (2002).
[CrossRef] [PubMed]

Tanaka, Y.

Tanner, D. B.

A. Ugawa, A. G. Rinzler, D. B. Tanner, “Far-infrared gaps in single-wall carbon nanotubes,” Phys. Rev. B 60, R11305–R11308 (1999).
[CrossRef]

Tassi, N. G.

M. Zheng, A. Jagota, E. D. Semke, B. A. Diner, R. S. McLean, S. R. Lustig, R. E. Richardson, N. G. Tassi, “DNA-assisted dispersion and separation of carbon nanotubes,” Nature Mater. 2, 338–342 (2003).
[CrossRef]

Theocharous, E.

J. Lehman, E. Theocharous, G. Eppeldauer, C. Pannell, “Gold-black coatings for freestanding pyroelectric detectors,” Meas. Sci. Technol. 14, 916–922 (2003).
[CrossRef]

E. Theocharous, N. P. Fox, T. R. Prior, “Comparison of the performance of infrared detectors for radiometric applications,” in Optical Radiation Measurements III, J. M. Palmer, ed., Proc. SPIE2815, 56–68 (1996).
[CrossRef]

Thess, A.

T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, R. E. Smalley, “Catalytic growth of single-walled nanotubes by laser vaporization,” Chem. Phys. Lett. 243, 49–54 (1995).
[CrossRef]

Tománek, D.

S. Berber, Y.-K. Kwon, D. Tománek, “Unusually high thermal conductivity of carbon nanotubes,” Phys. Rev. Lett. 84, 4613–4616 (2000).
[CrossRef] [PubMed]

Ugawa, A.

A. Ugawa, A. G. Rinzler, D. B. Tanner, “Far-infrared gaps in single-wall carbon nanotubes,” Phys. Rev. B 60, R11305–R11308 (1999).
[CrossRef]

von Lohneysen, H.

R. Krupke, F. Hennrich, H. von Lohneysen, M. M. Kappes, “Separation of metallic from semiconducting single-walled carbon nanotubes,” Science 301, 344–347 (2003).
[CrossRef] [PubMed]

Weisman, R. B.

S. M. Bachilo, M. S. Strano, C. Kittrell, R. H. Hauge, R. E. Smalley, R. B. Weisman, “Structure-assigned optical spectra of single-walled carbon nanotubes,” Science 298, 2361–2366 (2002).
[CrossRef] [PubMed]

West, E. D.

E. D. West, W. E. Case, A. L. Rasmussen, L. B. Schmidt, “A reference calorimeter for laser energy measurements,” J. Res. Natl. Bur. Stand. Sect. A 76, 13–26 (1972).
[CrossRef]

Wolf, E.

See, e.g., M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, UK, 1993), pp. 38, 617, 620.

Yaguchi, H.

Yudasaka, M.

A. C. Dillon, M. Yudasaka, M. S. Dresselhaus, “Employing Raman spectroscopy to qualitatively evaluate the purity of carbon single-wall nanotube materials,” J. Nanosci. Nanotechnol. 4, 691–703 (2004).
[CrossRef] [PubMed]

Zheng, M.

M. Zheng, A. Jagota, E. D. Semke, B. A. Diner, R. S. McLean, S. R. Lustig, R. E. Richardson, N. G. Tassi, “DNA-assisted dispersion and separation of carbon nanotubes,” Nature Mater. 2, 338–342 (2003).
[CrossRef]

Adv. Mater.

A. C. Dillon, T. Gennett, K. M. Jones, J. L. Alleman, P. A. Parilla, M. J. Heben, “A simple and complete purification of single-walled carbon nanotube materials,” Adv. Mater. 11, 1354–1358 (1999).
[CrossRef]

Appl. Opt.

Appl. Phys. A

J. Hone, M. C. Llaguno, M. J. Biercuk, A. T. Johnson, B. Batlogg, Z. Benes, J. E. Fischer, “Thermal properties of carbon nanotubes and nanotube-based materials,” Appl. Phys. A 74, 339–343 (2002).
[CrossRef]

Appl. Phys. Lett.

J. S. Kim, K. S. Ahn, C. O. Kim, J. P. Hong, “Ultraviolet laser treatment of multiwall carbon nanotubes grown at low temperature,” Appl. Phys. Lett. 82, 1607–1609 (2003).
[CrossRef]

J. S. Kim, K. S. Ahn, C. O. Kim, J. P. Hong, “Ultraviolet laser treatment of multiwall carbon nanotubes grown at low temperature,” Appl. Phys. Lett. 82, 1607–1609 (2003).
[CrossRef]

Chem. Phys. Lett.

T. Guo, P. Nikolaev, A. Thess, D. T. Colbert, R. E. Smalley, “Catalytic growth of single-walled nanotubes by laser vaporization,” Chem. Phys. Lett. 243, 49–54 (1995).
[CrossRef]

J. Am. Chem. Soc.

D. Chattopadhyay, I. Galeska, F. Papadimitrakopoulos, “A route for bulk separation of semiconducting from metallic single-wall carbon nanotubes,” J. Am. Chem. Soc. 125, 3370–3375 (2003).
[CrossRef] [PubMed]

J. Appl. Phys.

S. Bauer, B. Ploss, “A method for the measurement of the thermal, dielectric, and pyroelectric properties of thin pyroelectric films and their applications for integrated heat sensors,” J. Appl. Phys. 68, 6361–6367 (1990).
[CrossRef]

J. Lightwave Technol.

J. Nanosci. Nanotechnol.

A. C. Dillon, M. Yudasaka, M. S. Dresselhaus, “Employing Raman spectroscopy to qualitatively evaluate the purity of carbon single-wall nanotube materials,” J. Nanosci. Nanotechnol. 4, 691–703 (2004).
[CrossRef] [PubMed]

J. Opt. Soc. Am.

J. Res. Natl. Bur. Stand. Sect. A

E. D. West, W. E. Case, A. L. Rasmussen, L. B. Schmidt, “A reference calorimeter for laser energy measurements,” J. Res. Natl. Bur. Stand. Sect. A 76, 13–26 (1972).
[CrossRef]

Meas. Sci. Technol.

J. Lehman, E. Theocharous, G. Eppeldauer, C. Pannell, “Gold-black coatings for freestanding pyroelectric detectors,” Meas. Sci. Technol. 14, 916–922 (2003).
[CrossRef]

Metrologia

W. R. Blevin, W. J. Brown, “Black coatings for absolute radiometers,” Metrologia 2, 139–143 (1966).
[CrossRef]

Nano Lett.

A. C. Dillon, A. H. Mahan, P. A. Parilla, J. L. Alleman, M. J. Heben, K. M. Jones, K. E. H. Gilbert, “Continuous hot wire chemical vapor deposition of high-density carbon multiwall nanotubes,” Nano Lett. 3, 1425–1429 (2003).
[CrossRef]

Nature Mater.

M. Zheng, A. Jagota, E. D. Semke, B. A. Diner, R. S. McLean, S. R. Lustig, R. E. Richardson, N. G. Tassi, “DNA-assisted dispersion and separation of carbon nanotubes,” Nature Mater. 2, 338–342 (2003).
[CrossRef]

NIST Spec. Publ.

J. H. Lehman, “Calibration service for spectral responsivity of laser and optical-fiber power meters at wavelengths between 0.4 μm and 1.8 μm,” NIST Spec. Publ. 250–53, 1–39 (1999).

D. L. Livigni, “High accuracy laser power and energy meter calibration service,” NIST Spec. Publ. 250–62, 1–144 (2003).

Phys. Rev. B

A. Ugawa, A. G. Rinzler, D. B. Tanner, “Far-infrared gaps in single-wall carbon nanotubes,” Phys. Rev. B 60, R11305–R11308 (1999).
[CrossRef]

Phys. Rev. Lett.

F. J. García-Vidal, J. M. Pitarke, J. B. Pendry, “Effective medium theory of the optical properties of aligned carbon nanotubes,” Phys. Rev. Lett. 78, 4289–4292 (1997).
[CrossRef]

S. Berber, Y.-K. Kwon, D. Tománek, “Unusually high thermal conductivity of carbon nanotubes,” Phys. Rev. Lett. 84, 4613–4616 (2000).
[CrossRef] [PubMed]

J. Lefebvre, Y. Homma, P. Finnie, “Bright band gap photoluminescence from unprocessed single-walled carbon nanotubes,” Phys. Rev. Lett. 90, 217401 (2003).
[CrossRef] [PubMed]

Phys. Status Solidi B

W. Becker, R. Fettig, A. Gaymann, W. Ruppel, “Black gold deposits as absorbers for far infrared radiation,” Phys. Status Solidi B 194, 241–255 (1996).
[CrossRef]

Science

S. M. Bachilo, M. S. Strano, C. Kittrell, R. H. Hauge, R. E. Smalley, R. B. Weisman, “Structure-assigned optical spectra of single-walled carbon nanotubes,” Science 298, 2361–2366 (2002).
[CrossRef] [PubMed]

R. Krupke, F. Hennrich, H. von Lohneysen, M. M. Kappes, “Separation of metallic from semiconducting single-walled carbon nanotubes,” Science 301, 344–347 (2003).
[CrossRef] [PubMed]

Other

G. Chen, “Optical properties of carbon nanotubes,” Ph.D. dissertation (University of Pennsylvania, Philadelphia, Pa., 2003).

See, e.g., M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, UK, 1993), pp. 38, 617, 620.

R. Saito, G. Dresselhaus, M. S. Dresselhaus, Physical Properties of Carbon Nanotubes (Imperial College Press, London, 1998), pp. 11–14.

E. Theocharous, N. P. Fox, T. R. Prior, “Comparison of the performance of infrared detectors for radiometric applications,” in Optical Radiation Measurements III, J. M. Palmer, ed., Proc. SPIE2815, 56–68 (1996).
[CrossRef]

This is a typical value as given by one or more vendors (not specified) and depends on the nature of the laser pulses and the mode of cooling the detector.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Pyroelectric detector coated with SWNTs (detector 2). The active detector area is 1 cm in diameter. Inset, appearance of the tubes imaged by a scanning electron microscope (1-μm scale as indicated).

Fig. 2
Fig. 2

SWNT-coated detector response as a function of position at 850-nm wavelength (1% contour intervals).

Fig. 3
Fig. 3

Directional uniformity of the SWNT-coated detector acquired at 850-nm wavelength.

Fig. 4
Fig. 4

Spectral responsivity of two pyroelectric detectors that were identical except for their coatings.

Fig. 5
Fig. 5

Relative response of a SWNT-coated pyroelectric detector compared with predicted responses for films made exclusively of either semiconductor SWNTs or metal SWNTs. The detector model includes 25-nm Ni electrodes, 60-μm-thick LiTaO3, and a 2-μm-thick SWNT coating.

Tables (2)

Tables Icon

Table 1 Summary of Properties for Eqs. (1)(3)

Tables Icon

Table 2 Summary of Thermal Properties of Various Coatings Suitable for Thermal Detectors

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ɛ m ( ω ) = ɛ - ω p 2 ω 2 + i γ ω
ɛ s ( ω ) = ɛ - ω p 2 ω 2 - ω o 2 + i Γ ω
f ɛ m ( ω ) - ɛ ( ω ) g ɛ m ( ω ) + ( 1 - g ) ɛ ( ω ) + ( 1 - f ) ɛ s ( ω ) - ɛ ( ω ) g ɛ s ( ω ) + ( 1 - g ) ɛ ( ω ) = 0.
ɛ ( ω ) 1 - f g 0 ( e ω p τ ) 2 1 + ( e ω τ ) 2 + i f g 0 ( e ω p ) 2 τ e ω [ 1 + ( e ω τ ) 2 ] ,

Metrics