Abstract

We present and apply a novel method, the scattering photoacoustic (SPA) technique, for measuring optical parameters in weakly absorbing, highly scattering suspensions. In this method, a solid absorber is in contact with a suspension sample to permit the photoacoustic detection of the sample’s light-scattering properties. We conducted measurements conducted to determine the reduced scattering coefficients of Intralipid suspensions with a concentration range of 0.1–5%, and the results are in good agreement with those achieved by other researchers. Moreover, we also illustrate the relationship between the amplitude of the SPA signal and absorption, scattering, and detection distance. Through a study of Intralipid–ink mixes, we demonstrate that the SPA technique has the ability to determine simultaneously the absorption and reduced scattering coefficients of turbid media. This new technique has low cost and is noninvasive, and it enables on-line measurements to be made.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Pickering, S. A. Prahl, N. van Wieringen, J. F. Beek, H. J. C. M. Sterenborg, M. J. C. van Gemert, “Double-integrating-sphere system for measuring the optical properties of tissue,” Appl. Opt. 32, 399–410 (1993).
    [CrossRef] [PubMed]
  2. S. A. Prahl, M. J. C. van Gemert, A. J. Welch, “Determining the optical properties of turbid media by using the adding-doubling method,” Appl. Opt. 32, 559–568 (1993).
    [CrossRef] [PubMed]
  3. M. Bondani, D. Redaelli, A. Spinelli, A. Andreoni, G. Roberti, P. Riccio, R. Liuzzi, I. Rech, “Photon time-of flight distributions through turbid media directly measured with single-photon avalanche diodes,” J. Opt. Soc. Am. B 20, 2383–2388 (2003).
    [CrossRef]
  4. A. Oraevsky, S. L. Jacques, F. K. Tittel, “Measurement of tissue optical properties by time-resolved detection of laser-induced transient,” Appl. Opt. 36, 402–415 (1997).
    [CrossRef] [PubMed]
  5. A. C. Tam, “Applications of photoacoustic sensing techniques,” Rev. Mod. Phys. 58, 381–431 (1986).
    [CrossRef]
  6. Z. Zhao, M. Törmänen, R. Myllylä, “Preliminary measurement of fibers and fines in pulp suspension by scattering pho toacoustic technique,” Meas. Sci. Technol. (to be published).
  7. M. W. Sigrist, F. K. Kneubühl, “Laser generated stress wave in liquids,” J. Acoust. Soc. Am. 64, 1652–1663 (1978).
    [CrossRef]
  8. J. Diebold, T. Sun, “Properties of photoacoustic waves in one, two, and three dimensions,” Acoustica 80, 339–351 (1994).
  9. S. L. Jacques, Tissue Optics, short course notes (SPIE, 1997).
  10. G. Zaccanti, S. Del Bianco, F. Martelli, “Measurements of optical properties of high-density media,” Appl. Opt. 42, 4023–4030 (2003).
    [CrossRef] [PubMed]
  11. K. M. Quan, H. A. MacKenzie, P. Hodgson, G. B. Christison, “Photoacoustic generation in liquids with low optical absorption,” Ultrasonics 32, 181–186 (1994).
    [CrossRef]
  12. Z. Zhao, M. Törmänen, R. Myllylä, “A method for measuring optical parameters in weakly absorbing turbid media,” Opt. Appl. 34, 647–656 (2004).
  13. H. J. van Staveren, C. J. M. Moes, J. Van Marle, S. A. Prahl, M. J. C. Van Gemert, “Light scattering in Intralipid-10% in the wavelength range400–1100nm,” Appl. Opt. 30, 4507–4514 (1991).
    [CrossRef] [PubMed]

2004 (1)

Z. Zhao, M. Törmänen, R. Myllylä, “A method for measuring optical parameters in weakly absorbing turbid media,” Opt. Appl. 34, 647–656 (2004).

2003 (2)

1997 (1)

1994 (2)

K. M. Quan, H. A. MacKenzie, P. Hodgson, G. B. Christison, “Photoacoustic generation in liquids with low optical absorption,” Ultrasonics 32, 181–186 (1994).
[CrossRef]

J. Diebold, T. Sun, “Properties of photoacoustic waves in one, two, and three dimensions,” Acoustica 80, 339–351 (1994).

1993 (2)

1991 (1)

1986 (1)

A. C. Tam, “Applications of photoacoustic sensing techniques,” Rev. Mod. Phys. 58, 381–431 (1986).
[CrossRef]

1978 (1)

M. W. Sigrist, F. K. Kneubühl, “Laser generated stress wave in liquids,” J. Acoust. Soc. Am. 64, 1652–1663 (1978).
[CrossRef]

Andreoni, A.

Beek, J. F.

Bondani, M.

Christison, G. B.

K. M. Quan, H. A. MacKenzie, P. Hodgson, G. B. Christison, “Photoacoustic generation in liquids with low optical absorption,” Ultrasonics 32, 181–186 (1994).
[CrossRef]

Del Bianco, S.

Diebold, J.

J. Diebold, T. Sun, “Properties of photoacoustic waves in one, two, and three dimensions,” Acoustica 80, 339–351 (1994).

Hodgson, P.

K. M. Quan, H. A. MacKenzie, P. Hodgson, G. B. Christison, “Photoacoustic generation in liquids with low optical absorption,” Ultrasonics 32, 181–186 (1994).
[CrossRef]

Jacques, S. L.

Kneubühl, F. K.

M. W. Sigrist, F. K. Kneubühl, “Laser generated stress wave in liquids,” J. Acoust. Soc. Am. 64, 1652–1663 (1978).
[CrossRef]

Liuzzi, R.

MacKenzie, H. A.

K. M. Quan, H. A. MacKenzie, P. Hodgson, G. B. Christison, “Photoacoustic generation in liquids with low optical absorption,” Ultrasonics 32, 181–186 (1994).
[CrossRef]

Martelli, F.

Moes, C. J. M.

Myllylä, R.

Z. Zhao, M. Törmänen, R. Myllylä, “A method for measuring optical parameters in weakly absorbing turbid media,” Opt. Appl. 34, 647–656 (2004).

Z. Zhao, M. Törmänen, R. Myllylä, “Preliminary measurement of fibers and fines in pulp suspension by scattering pho toacoustic technique,” Meas. Sci. Technol. (to be published).

Oraevsky, A.

Pickering, J. W.

Prahl, S. A.

Quan, K. M.

K. M. Quan, H. A. MacKenzie, P. Hodgson, G. B. Christison, “Photoacoustic generation in liquids with low optical absorption,” Ultrasonics 32, 181–186 (1994).
[CrossRef]

Rech, I.

Redaelli, D.

Riccio, P.

Roberti, G.

Sigrist, M. W.

M. W. Sigrist, F. K. Kneubühl, “Laser generated stress wave in liquids,” J. Acoust. Soc. Am. 64, 1652–1663 (1978).
[CrossRef]

Spinelli, A.

Sterenborg, H. J. C. M.

Sun, T.

J. Diebold, T. Sun, “Properties of photoacoustic waves in one, two, and three dimensions,” Acoustica 80, 339–351 (1994).

Tam, A. C.

A. C. Tam, “Applications of photoacoustic sensing techniques,” Rev. Mod. Phys. 58, 381–431 (1986).
[CrossRef]

Tittel, F. K.

Törmänen, M.

Z. Zhao, M. Törmänen, R. Myllylä, “A method for measuring optical parameters in weakly absorbing turbid media,” Opt. Appl. 34, 647–656 (2004).

Z. Zhao, M. Törmänen, R. Myllylä, “Preliminary measurement of fibers and fines in pulp suspension by scattering pho toacoustic technique,” Meas. Sci. Technol. (to be published).

van Gemert, M. J. C.

Van Marle, J.

van Staveren, H. J.

van Wieringen, N.

Welch, A. J.

Zaccanti, G.

Zhao, Z.

Z. Zhao, M. Törmänen, R. Myllylä, “A method for measuring optical parameters in weakly absorbing turbid media,” Opt. Appl. 34, 647–656 (2004).

Z. Zhao, M. Törmänen, R. Myllylä, “Preliminary measurement of fibers and fines in pulp suspension by scattering pho toacoustic technique,” Meas. Sci. Technol. (to be published).

Acoustica (1)

J. Diebold, T. Sun, “Properties of photoacoustic waves in one, two, and three dimensions,” Acoustica 80, 339–351 (1994).

Appl. Opt. (5)

J. Acoust. Soc. Am. (1)

M. W. Sigrist, F. K. Kneubühl, “Laser generated stress wave in liquids,” J. Acoust. Soc. Am. 64, 1652–1663 (1978).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Appl. (1)

Z. Zhao, M. Törmänen, R. Myllylä, “A method for measuring optical parameters in weakly absorbing turbid media,” Opt. Appl. 34, 647–656 (2004).

Rev. Mod. Phys. (1)

A. C. Tam, “Applications of photoacoustic sensing techniques,” Rev. Mod. Phys. 58, 381–431 (1986).
[CrossRef]

Ultrasonics (1)

K. M. Quan, H. A. MacKenzie, P. Hodgson, G. B. Christison, “Photoacoustic generation in liquids with low optical absorption,” Ultrasonics 32, 181–186 (1994).
[CrossRef]

Other (2)

S. L. Jacques, Tissue Optics, short course notes (SPIE, 1997).

Z. Zhao, M. Törmänen, R. Myllylä, “Preliminary measurement of fibers and fines in pulp suspension by scattering pho toacoustic technique,” Meas. Sci. Technol. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of the SPA technique in weakly absorbing, highly scattering media.

Fig. 2
Fig. 2

Experimental setup for the SPA measurement.

Fig. 3
Fig. 3

Typical received signals produced by (a) a PVDF transducer and (b) a PZT transducer. VPA and VSPA are the signal amplitudes produced by the PA and SPA sources, respectively.

Fig. 4
Fig. 4

Experimental curves of VSPA versus several Intralipid concentrations.

Fig. 5
Fig. 5

Theoretical curves based on Eq. (5), where μa = 0.0115 mm−1.

Fig. 6
Fig. 6

ln(rV) − r lines measured in Intralipid samples by the PZT transducer at 1064 nm.

Fig. 7
Fig. 7

ln(rV) − r lines measured in Intralipid samples by the PVDF transducer at 1064 nm.

Fig. 8
Fig. 8

Measurement results between scattering and (a) VPA and (b) VSPA in ink–Intralipid mixes at 532 nm.

Fig. 9
Fig. 9

Measurement results between absorption and (a) VPA and (b) VSPA in ink–Intralipid mixes at 532 nm.

Tables (2)

Tables Icon

Table 1 Measured Values of μs′ at a Wavelength of 1064 nm

Tables Icon

Table 2 Measurement Values at a Wavelength of 532 nma

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

V PA = k r β ν 2 C P E a R a 2 ,
V SPA = k α β ν 2 2 C p F ,
F ( r ) = F 4 π D r exp ( r μ a / D ) .
R d exp { 7 [ 3 ( 1 + μ s / μ a ) ] 1 / 2 } ,
V SPA = K { 1 exp [ 7 ( μ a 3 μ s ) 1 / 2 ] } μ s 1 r × exp ( r 3 μ a μ s ) ,
K = 3 k 8 π E l α β ν 2 C p .
ln ( r V SPA ) = 3 μ a μ s r + ln ( K 1 exp { 7 [ μ a / ( 3 μ s ) ] 1 / 2 } μ s ) .

Metrics