Abstract

The lasing and photostability characteristics of Rhodamine 6G and Pyrromethene 567 dyes dispersed in polymeric host materials have been investigated as a function of the intensities of incident pump and signal beams in a longitudinally pumped dye laser in an oscillator–amplifier configuration. A substantial reduction in the rate of photodegradation was observed under lasing conditions and with increasing signal intensity in a dye amplifier, establishing that the service lives of these materials improve with an increase in the rate of stimulated emission. We observed ∼62% amplifier efficiency at 2 Hz operation and 10% reduction in amplifier efficiency at 10 Hz operation after exposure of 72,000 pulses by use of a Pyrromethene disk.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Costela, I. Garcia-Moreno, R. Sastre, “Polymeric solid-state dye lasers: recent developments,” Phys. Chem. Chem. Phys. 5, 4745–4763 (2003).
    [CrossRef]
  2. M. D. Rahn, T. A. King, “Comparison of solid-state dye laser performance in various host media,” in Solid State Lasers VIII, R. Scheps, ed., Proc. SPIE3613, 94–105 (1999).
    [CrossRef]
  3. H. R. Aldag, S. M. Dolotov, M. F. Koldunov, Ya. V. Kravchenko, A. A. Manenkov, D. P. Pacheco, A. V. Reznichenko, G. P. Roskova, “Efficient solid-state dye lasers based on polymer-filled microporous glass,” in Solid State Lasers IX, R. Scheps, ed., Proc. SPIE3929, 133–144 (2000).
    [CrossRef]
  4. F. J. Duarte, R. O. James, “Tunable solid-state lasers incorporating dye-doped, polymer-nanoparticle gain media,” Opt. Lett. 28, 2088–2090 (2003).
    [CrossRef] [PubMed]
  5. A. Costela, I. Garcia-Moreno, C. Gomez, O. Garcia, R. Sastre, A. Roig, E. Molins, “Polymer-filled nanoporous silica aerogels as hosts for highly stable solid-state dye lasers,” J. Phys. Chem. B 109, 4475–4480 (2005).
    [CrossRef]
  6. V. S. Nechitailo, R. S. Anderson, S. C. Picarello, G. A. Matyushin, J. H. Bohn, “Polymer dye lasers with exceptional performance,” in Solid State Lasers VIII, R. Schep, ed., Proc. SPIE3613, 106–111 (1999).
    [CrossRef]
  7. T. N. Kopylova, V. B. Sukhanov, G. V. Mayer, A. V. Reznichenko, M. S. Dolotov, A. A. Shaposhnikov, “Solid-state active media of tunable organic-compound lasers pumped with a laser. II. A copper vapor laser,” Appl. Phys. B 74, 545–547 (2002).
    [CrossRef]
  8. K. M. Abedin, M. Alvarez, A. Costela, I. Garcia-Moreno, O. Garcia, R. Sastre, D. W. Coutts, C. E. Webb, “10 kHz repetition rate solid-state dye laser pumped by diode-pumped solid-state laser,” Opt. Commun. 218, 359–363 (2003).
    [CrossRef]
  9. R. Duchowicz, L. B. Scaffardi, A. Costela, I. Garcia-Moreno, R. Sastre, A. U. Acuna, “Photothermal characterization and stability analysis of polymeric dye lasers,” Appl. Opt. 39, 4959–4963 (2000).
  10. M. Pons, S. Nonell, I. Garcia-Moreno, A. Costela, R. Sastre, “Time-resolved thermal lens study on the heat dissipation effects in solid polymeric matrices used as laser dyes,” Appl. Phys. B 75, 687–694 (2002).
    [CrossRef]
  11. P. R. Hamond, “Effect of laser dye deterioration on performance,” Appl. Phys. 14, 199–203 (1977).
    [CrossRef]
  12. S. Y. Lam, M. J. Damzen, “Characterization of solid-state dyes and their use as tunable laser amplifiers,” Appl. Phys. B 77, 577–584 (2003).
    [CrossRef]
  13. M. D. Rahn, T. A. King, A. A. Gorman, I. Hamblett, “Photostability enhancement of Pyrromethene 567 and Perylene Orange in oxygen-free liquid and solid dye lasers,” Appl. Opt. 36, 5862–5871 (1997).
    [CrossRef] [PubMed]
  14. A. Bergmann, W. Holzer, R. Stark, H. Gratz, A. Penzkofer, F. Amat-Guerri, A. Costela, I. Garcia-Moreno, R. Sastre, “Photo-physical characterization of pyrromethene dyes in solid matrices of acrylic copolymers,” Chem. Phys. 271, 201–213 (2001).
    [CrossRef]
  15. W. Wunderlich, “Physical constants of poly(methyl methacrylate),” in Polymer Handbook, J. Brandrup, ed. (Wiley, 1989), pp. 77–80.
  16. K. M. Dyumaev, A. A. Manenkov, A. P. Maslyukov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, “Dyes in modified polymers: problems of photostability and conversion efficiency at high intensities,” J. Opt. Soc. Am. B 9, 143–151 (1992).
    [CrossRef]
  17. S. Popov, “Dye photodestruction in a solid-state dye laser with a polymeric gain medium,” Appl. Opt. 37, 6449–6455 (1998).
    [CrossRef]
  18. R. Duchowicz, L. B. Scaffardi, A. Costela, I. Garcia-Moreno, R. Sastre, A. U. Acuna, “Photothermal analysis of polymeric dye laser materials excited at different pump rates,” Appl. Opt. 42, 1029–1035 (2003).
    [CrossRef] [PubMed]

2005

A. Costela, I. Garcia-Moreno, C. Gomez, O. Garcia, R. Sastre, A. Roig, E. Molins, “Polymer-filled nanoporous silica aerogels as hosts for highly stable solid-state dye lasers,” J. Phys. Chem. B 109, 4475–4480 (2005).
[CrossRef]

2003

K. M. Abedin, M. Alvarez, A. Costela, I. Garcia-Moreno, O. Garcia, R. Sastre, D. W. Coutts, C. E. Webb, “10 kHz repetition rate solid-state dye laser pumped by diode-pumped solid-state laser,” Opt. Commun. 218, 359–363 (2003).
[CrossRef]

S. Y. Lam, M. J. Damzen, “Characterization of solid-state dyes and their use as tunable laser amplifiers,” Appl. Phys. B 77, 577–584 (2003).
[CrossRef]

A. Costela, I. Garcia-Moreno, R. Sastre, “Polymeric solid-state dye lasers: recent developments,” Phys. Chem. Chem. Phys. 5, 4745–4763 (2003).
[CrossRef]

R. Duchowicz, L. B. Scaffardi, A. Costela, I. Garcia-Moreno, R. Sastre, A. U. Acuna, “Photothermal analysis of polymeric dye laser materials excited at different pump rates,” Appl. Opt. 42, 1029–1035 (2003).
[CrossRef] [PubMed]

F. J. Duarte, R. O. James, “Tunable solid-state lasers incorporating dye-doped, polymer-nanoparticle gain media,” Opt. Lett. 28, 2088–2090 (2003).
[CrossRef] [PubMed]

2002

M. Pons, S. Nonell, I. Garcia-Moreno, A. Costela, R. Sastre, “Time-resolved thermal lens study on the heat dissipation effects in solid polymeric matrices used as laser dyes,” Appl. Phys. B 75, 687–694 (2002).
[CrossRef]

T. N. Kopylova, V. B. Sukhanov, G. V. Mayer, A. V. Reznichenko, M. S. Dolotov, A. A. Shaposhnikov, “Solid-state active media of tunable organic-compound lasers pumped with a laser. II. A copper vapor laser,” Appl. Phys. B 74, 545–547 (2002).
[CrossRef]

2001

A. Bergmann, W. Holzer, R. Stark, H. Gratz, A. Penzkofer, F. Amat-Guerri, A. Costela, I. Garcia-Moreno, R. Sastre, “Photo-physical characterization of pyrromethene dyes in solid matrices of acrylic copolymers,” Chem. Phys. 271, 201–213 (2001).
[CrossRef]

2000

1998

1997

1992

1977

P. R. Hamond, “Effect of laser dye deterioration on performance,” Appl. Phys. 14, 199–203 (1977).
[CrossRef]

Abedin, K. M.

K. M. Abedin, M. Alvarez, A. Costela, I. Garcia-Moreno, O. Garcia, R. Sastre, D. W. Coutts, C. E. Webb, “10 kHz repetition rate solid-state dye laser pumped by diode-pumped solid-state laser,” Opt. Commun. 218, 359–363 (2003).
[CrossRef]

Acuna, A. U.

Aldag, H. R.

H. R. Aldag, S. M. Dolotov, M. F. Koldunov, Ya. V. Kravchenko, A. A. Manenkov, D. P. Pacheco, A. V. Reznichenko, G. P. Roskova, “Efficient solid-state dye lasers based on polymer-filled microporous glass,” in Solid State Lasers IX, R. Scheps, ed., Proc. SPIE3929, 133–144 (2000).
[CrossRef]

Alvarez, M.

K. M. Abedin, M. Alvarez, A. Costela, I. Garcia-Moreno, O. Garcia, R. Sastre, D. W. Coutts, C. E. Webb, “10 kHz repetition rate solid-state dye laser pumped by diode-pumped solid-state laser,” Opt. Commun. 218, 359–363 (2003).
[CrossRef]

Amat-Guerri, F.

A. Bergmann, W. Holzer, R. Stark, H. Gratz, A. Penzkofer, F. Amat-Guerri, A. Costela, I. Garcia-Moreno, R. Sastre, “Photo-physical characterization of pyrromethene dyes in solid matrices of acrylic copolymers,” Chem. Phys. 271, 201–213 (2001).
[CrossRef]

Anderson, R. S.

V. S. Nechitailo, R. S. Anderson, S. C. Picarello, G. A. Matyushin, J. H. Bohn, “Polymer dye lasers with exceptional performance,” in Solid State Lasers VIII, R. Schep, ed., Proc. SPIE3613, 106–111 (1999).
[CrossRef]

Bergmann, A.

A. Bergmann, W. Holzer, R. Stark, H. Gratz, A. Penzkofer, F. Amat-Guerri, A. Costela, I. Garcia-Moreno, R. Sastre, “Photo-physical characterization of pyrromethene dyes in solid matrices of acrylic copolymers,” Chem. Phys. 271, 201–213 (2001).
[CrossRef]

Bohn, J. H.

V. S. Nechitailo, R. S. Anderson, S. C. Picarello, G. A. Matyushin, J. H. Bohn, “Polymer dye lasers with exceptional performance,” in Solid State Lasers VIII, R. Schep, ed., Proc. SPIE3613, 106–111 (1999).
[CrossRef]

Costela, A.

A. Costela, I. Garcia-Moreno, C. Gomez, O. Garcia, R. Sastre, A. Roig, E. Molins, “Polymer-filled nanoporous silica aerogels as hosts for highly stable solid-state dye lasers,” J. Phys. Chem. B 109, 4475–4480 (2005).
[CrossRef]

A. Costela, I. Garcia-Moreno, R. Sastre, “Polymeric solid-state dye lasers: recent developments,” Phys. Chem. Chem. Phys. 5, 4745–4763 (2003).
[CrossRef]

R. Duchowicz, L. B. Scaffardi, A. Costela, I. Garcia-Moreno, R. Sastre, A. U. Acuna, “Photothermal analysis of polymeric dye laser materials excited at different pump rates,” Appl. Opt. 42, 1029–1035 (2003).
[CrossRef] [PubMed]

K. M. Abedin, M. Alvarez, A. Costela, I. Garcia-Moreno, O. Garcia, R. Sastre, D. W. Coutts, C. E. Webb, “10 kHz repetition rate solid-state dye laser pumped by diode-pumped solid-state laser,” Opt. Commun. 218, 359–363 (2003).
[CrossRef]

M. Pons, S. Nonell, I. Garcia-Moreno, A. Costela, R. Sastre, “Time-resolved thermal lens study on the heat dissipation effects in solid polymeric matrices used as laser dyes,” Appl. Phys. B 75, 687–694 (2002).
[CrossRef]

A. Bergmann, W. Holzer, R. Stark, H. Gratz, A. Penzkofer, F. Amat-Guerri, A. Costela, I. Garcia-Moreno, R. Sastre, “Photo-physical characterization of pyrromethene dyes in solid matrices of acrylic copolymers,” Chem. Phys. 271, 201–213 (2001).
[CrossRef]

R. Duchowicz, L. B. Scaffardi, A. Costela, I. Garcia-Moreno, R. Sastre, A. U. Acuna, “Photothermal characterization and stability analysis of polymeric dye lasers,” Appl. Opt. 39, 4959–4963 (2000).

Coutts, D. W.

K. M. Abedin, M. Alvarez, A. Costela, I. Garcia-Moreno, O. Garcia, R. Sastre, D. W. Coutts, C. E. Webb, “10 kHz repetition rate solid-state dye laser pumped by diode-pumped solid-state laser,” Opt. Commun. 218, 359–363 (2003).
[CrossRef]

Damzen, M. J.

S. Y. Lam, M. J. Damzen, “Characterization of solid-state dyes and their use as tunable laser amplifiers,” Appl. Phys. B 77, 577–584 (2003).
[CrossRef]

Dolotov, M. S.

T. N. Kopylova, V. B. Sukhanov, G. V. Mayer, A. V. Reznichenko, M. S. Dolotov, A. A. Shaposhnikov, “Solid-state active media of tunable organic-compound lasers pumped with a laser. II. A copper vapor laser,” Appl. Phys. B 74, 545–547 (2002).
[CrossRef]

Dolotov, S. M.

H. R. Aldag, S. M. Dolotov, M. F. Koldunov, Ya. V. Kravchenko, A. A. Manenkov, D. P. Pacheco, A. V. Reznichenko, G. P. Roskova, “Efficient solid-state dye lasers based on polymer-filled microporous glass,” in Solid State Lasers IX, R. Scheps, ed., Proc. SPIE3929, 133–144 (2000).
[CrossRef]

Duarte, F. J.

Duchowicz, R.

Dyumaev, K. M.

Garcia, O.

A. Costela, I. Garcia-Moreno, C. Gomez, O. Garcia, R. Sastre, A. Roig, E. Molins, “Polymer-filled nanoporous silica aerogels as hosts for highly stable solid-state dye lasers,” J. Phys. Chem. B 109, 4475–4480 (2005).
[CrossRef]

K. M. Abedin, M. Alvarez, A. Costela, I. Garcia-Moreno, O. Garcia, R. Sastre, D. W. Coutts, C. E. Webb, “10 kHz repetition rate solid-state dye laser pumped by diode-pumped solid-state laser,” Opt. Commun. 218, 359–363 (2003).
[CrossRef]

Garcia-Moreno, I.

A. Costela, I. Garcia-Moreno, C. Gomez, O. Garcia, R. Sastre, A. Roig, E. Molins, “Polymer-filled nanoporous silica aerogels as hosts for highly stable solid-state dye lasers,” J. Phys. Chem. B 109, 4475–4480 (2005).
[CrossRef]

A. Costela, I. Garcia-Moreno, R. Sastre, “Polymeric solid-state dye lasers: recent developments,” Phys. Chem. Chem. Phys. 5, 4745–4763 (2003).
[CrossRef]

R. Duchowicz, L. B. Scaffardi, A. Costela, I. Garcia-Moreno, R. Sastre, A. U. Acuna, “Photothermal analysis of polymeric dye laser materials excited at different pump rates,” Appl. Opt. 42, 1029–1035 (2003).
[CrossRef] [PubMed]

K. M. Abedin, M. Alvarez, A. Costela, I. Garcia-Moreno, O. Garcia, R. Sastre, D. W. Coutts, C. E. Webb, “10 kHz repetition rate solid-state dye laser pumped by diode-pumped solid-state laser,” Opt. Commun. 218, 359–363 (2003).
[CrossRef]

M. Pons, S. Nonell, I. Garcia-Moreno, A. Costela, R. Sastre, “Time-resolved thermal lens study on the heat dissipation effects in solid polymeric matrices used as laser dyes,” Appl. Phys. B 75, 687–694 (2002).
[CrossRef]

A. Bergmann, W. Holzer, R. Stark, H. Gratz, A. Penzkofer, F. Amat-Guerri, A. Costela, I. Garcia-Moreno, R. Sastre, “Photo-physical characterization of pyrromethene dyes in solid matrices of acrylic copolymers,” Chem. Phys. 271, 201–213 (2001).
[CrossRef]

R. Duchowicz, L. B. Scaffardi, A. Costela, I. Garcia-Moreno, R. Sastre, A. U. Acuna, “Photothermal characterization and stability analysis of polymeric dye lasers,” Appl. Opt. 39, 4959–4963 (2000).

Gomez, C.

A. Costela, I. Garcia-Moreno, C. Gomez, O. Garcia, R. Sastre, A. Roig, E. Molins, “Polymer-filled nanoporous silica aerogels as hosts for highly stable solid-state dye lasers,” J. Phys. Chem. B 109, 4475–4480 (2005).
[CrossRef]

Gorman, A. A.

Gratz, H.

A. Bergmann, W. Holzer, R. Stark, H. Gratz, A. Penzkofer, F. Amat-Guerri, A. Costela, I. Garcia-Moreno, R. Sastre, “Photo-physical characterization of pyrromethene dyes in solid matrices of acrylic copolymers,” Chem. Phys. 271, 201–213 (2001).
[CrossRef]

Hamblett, I.

Hamond, P. R.

P. R. Hamond, “Effect of laser dye deterioration on performance,” Appl. Phys. 14, 199–203 (1977).
[CrossRef]

Holzer, W.

A. Bergmann, W. Holzer, R. Stark, H. Gratz, A. Penzkofer, F. Amat-Guerri, A. Costela, I. Garcia-Moreno, R. Sastre, “Photo-physical characterization of pyrromethene dyes in solid matrices of acrylic copolymers,” Chem. Phys. 271, 201–213 (2001).
[CrossRef]

James, R. O.

King, T. A.

M. D. Rahn, T. A. King, A. A. Gorman, I. Hamblett, “Photostability enhancement of Pyrromethene 567 and Perylene Orange in oxygen-free liquid and solid dye lasers,” Appl. Opt. 36, 5862–5871 (1997).
[CrossRef] [PubMed]

M. D. Rahn, T. A. King, “Comparison of solid-state dye laser performance in various host media,” in Solid State Lasers VIII, R. Scheps, ed., Proc. SPIE3613, 94–105 (1999).
[CrossRef]

Koldunov, M. F.

H. R. Aldag, S. M. Dolotov, M. F. Koldunov, Ya. V. Kravchenko, A. A. Manenkov, D. P. Pacheco, A. V. Reznichenko, G. P. Roskova, “Efficient solid-state dye lasers based on polymer-filled microporous glass,” in Solid State Lasers IX, R. Scheps, ed., Proc. SPIE3929, 133–144 (2000).
[CrossRef]

Kopylova, T. N.

T. N. Kopylova, V. B. Sukhanov, G. V. Mayer, A. V. Reznichenko, M. S. Dolotov, A. A. Shaposhnikov, “Solid-state active media of tunable organic-compound lasers pumped with a laser. II. A copper vapor laser,” Appl. Phys. B 74, 545–547 (2002).
[CrossRef]

Kravchenko, Ya. V.

H. R. Aldag, S. M. Dolotov, M. F. Koldunov, Ya. V. Kravchenko, A. A. Manenkov, D. P. Pacheco, A. V. Reznichenko, G. P. Roskova, “Efficient solid-state dye lasers based on polymer-filled microporous glass,” in Solid State Lasers IX, R. Scheps, ed., Proc. SPIE3929, 133–144 (2000).
[CrossRef]

Lam, S. Y.

S. Y. Lam, M. J. Damzen, “Characterization of solid-state dyes and their use as tunable laser amplifiers,” Appl. Phys. B 77, 577–584 (2003).
[CrossRef]

Manenkov, A. A.

K. M. Dyumaev, A. A. Manenkov, A. P. Maslyukov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, “Dyes in modified polymers: problems of photostability and conversion efficiency at high intensities,” J. Opt. Soc. Am. B 9, 143–151 (1992).
[CrossRef]

H. R. Aldag, S. M. Dolotov, M. F. Koldunov, Ya. V. Kravchenko, A. A. Manenkov, D. P. Pacheco, A. V. Reznichenko, G. P. Roskova, “Efficient solid-state dye lasers based on polymer-filled microporous glass,” in Solid State Lasers IX, R. Scheps, ed., Proc. SPIE3929, 133–144 (2000).
[CrossRef]

Maslyukov, A. P.

Matyushin, G. A.

K. M. Dyumaev, A. A. Manenkov, A. P. Maslyukov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, “Dyes in modified polymers: problems of photostability and conversion efficiency at high intensities,” J. Opt. Soc. Am. B 9, 143–151 (1992).
[CrossRef]

V. S. Nechitailo, R. S. Anderson, S. C. Picarello, G. A. Matyushin, J. H. Bohn, “Polymer dye lasers with exceptional performance,” in Solid State Lasers VIII, R. Schep, ed., Proc. SPIE3613, 106–111 (1999).
[CrossRef]

Mayer, G. V.

T. N. Kopylova, V. B. Sukhanov, G. V. Mayer, A. V. Reznichenko, M. S. Dolotov, A. A. Shaposhnikov, “Solid-state active media of tunable organic-compound lasers pumped with a laser. II. A copper vapor laser,” Appl. Phys. B 74, 545–547 (2002).
[CrossRef]

Molins, E.

A. Costela, I. Garcia-Moreno, C. Gomez, O. Garcia, R. Sastre, A. Roig, E. Molins, “Polymer-filled nanoporous silica aerogels as hosts for highly stable solid-state dye lasers,” J. Phys. Chem. B 109, 4475–4480 (2005).
[CrossRef]

Nechitailo, V. S.

K. M. Dyumaev, A. A. Manenkov, A. P. Maslyukov, G. A. Matyushin, V. S. Nechitailo, A. M. Prokhorov, “Dyes in modified polymers: problems of photostability and conversion efficiency at high intensities,” J. Opt. Soc. Am. B 9, 143–151 (1992).
[CrossRef]

V. S. Nechitailo, R. S. Anderson, S. C. Picarello, G. A. Matyushin, J. H. Bohn, “Polymer dye lasers with exceptional performance,” in Solid State Lasers VIII, R. Schep, ed., Proc. SPIE3613, 106–111 (1999).
[CrossRef]

Nonell, S.

M. Pons, S. Nonell, I. Garcia-Moreno, A. Costela, R. Sastre, “Time-resolved thermal lens study on the heat dissipation effects in solid polymeric matrices used as laser dyes,” Appl. Phys. B 75, 687–694 (2002).
[CrossRef]

Pacheco, D. P.

H. R. Aldag, S. M. Dolotov, M. F. Koldunov, Ya. V. Kravchenko, A. A. Manenkov, D. P. Pacheco, A. V. Reznichenko, G. P. Roskova, “Efficient solid-state dye lasers based on polymer-filled microporous glass,” in Solid State Lasers IX, R. Scheps, ed., Proc. SPIE3929, 133–144 (2000).
[CrossRef]

Penzkofer, A.

A. Bergmann, W. Holzer, R. Stark, H. Gratz, A. Penzkofer, F. Amat-Guerri, A. Costela, I. Garcia-Moreno, R. Sastre, “Photo-physical characterization of pyrromethene dyes in solid matrices of acrylic copolymers,” Chem. Phys. 271, 201–213 (2001).
[CrossRef]

Picarello, S. C.

V. S. Nechitailo, R. S. Anderson, S. C. Picarello, G. A. Matyushin, J. H. Bohn, “Polymer dye lasers with exceptional performance,” in Solid State Lasers VIII, R. Schep, ed., Proc. SPIE3613, 106–111 (1999).
[CrossRef]

Pons, M.

M. Pons, S. Nonell, I. Garcia-Moreno, A. Costela, R. Sastre, “Time-resolved thermal lens study on the heat dissipation effects in solid polymeric matrices used as laser dyes,” Appl. Phys. B 75, 687–694 (2002).
[CrossRef]

Popov, S.

Prokhorov, A. M.

Rahn, M. D.

M. D. Rahn, T. A. King, A. A. Gorman, I. Hamblett, “Photostability enhancement of Pyrromethene 567 and Perylene Orange in oxygen-free liquid and solid dye lasers,” Appl. Opt. 36, 5862–5871 (1997).
[CrossRef] [PubMed]

M. D. Rahn, T. A. King, “Comparison of solid-state dye laser performance in various host media,” in Solid State Lasers VIII, R. Scheps, ed., Proc. SPIE3613, 94–105 (1999).
[CrossRef]

Reznichenko, A. V.

T. N. Kopylova, V. B. Sukhanov, G. V. Mayer, A. V. Reznichenko, M. S. Dolotov, A. A. Shaposhnikov, “Solid-state active media of tunable organic-compound lasers pumped with a laser. II. A copper vapor laser,” Appl. Phys. B 74, 545–547 (2002).
[CrossRef]

H. R. Aldag, S. M. Dolotov, M. F. Koldunov, Ya. V. Kravchenko, A. A. Manenkov, D. P. Pacheco, A. V. Reznichenko, G. P. Roskova, “Efficient solid-state dye lasers based on polymer-filled microporous glass,” in Solid State Lasers IX, R. Scheps, ed., Proc. SPIE3929, 133–144 (2000).
[CrossRef]

Roig, A.

A. Costela, I. Garcia-Moreno, C. Gomez, O. Garcia, R. Sastre, A. Roig, E. Molins, “Polymer-filled nanoporous silica aerogels as hosts for highly stable solid-state dye lasers,” J. Phys. Chem. B 109, 4475–4480 (2005).
[CrossRef]

Roskova, G. P.

H. R. Aldag, S. M. Dolotov, M. F. Koldunov, Ya. V. Kravchenko, A. A. Manenkov, D. P. Pacheco, A. V. Reznichenko, G. P. Roskova, “Efficient solid-state dye lasers based on polymer-filled microporous glass,” in Solid State Lasers IX, R. Scheps, ed., Proc. SPIE3929, 133–144 (2000).
[CrossRef]

Sastre, R.

A. Costela, I. Garcia-Moreno, C. Gomez, O. Garcia, R. Sastre, A. Roig, E. Molins, “Polymer-filled nanoporous silica aerogels as hosts for highly stable solid-state dye lasers,” J. Phys. Chem. B 109, 4475–4480 (2005).
[CrossRef]

R. Duchowicz, L. B. Scaffardi, A. Costela, I. Garcia-Moreno, R. Sastre, A. U. Acuna, “Photothermal analysis of polymeric dye laser materials excited at different pump rates,” Appl. Opt. 42, 1029–1035 (2003).
[CrossRef] [PubMed]

A. Costela, I. Garcia-Moreno, R. Sastre, “Polymeric solid-state dye lasers: recent developments,” Phys. Chem. Chem. Phys. 5, 4745–4763 (2003).
[CrossRef]

K. M. Abedin, M. Alvarez, A. Costela, I. Garcia-Moreno, O. Garcia, R. Sastre, D. W. Coutts, C. E. Webb, “10 kHz repetition rate solid-state dye laser pumped by diode-pumped solid-state laser,” Opt. Commun. 218, 359–363 (2003).
[CrossRef]

M. Pons, S. Nonell, I. Garcia-Moreno, A. Costela, R. Sastre, “Time-resolved thermal lens study on the heat dissipation effects in solid polymeric matrices used as laser dyes,” Appl. Phys. B 75, 687–694 (2002).
[CrossRef]

A. Bergmann, W. Holzer, R. Stark, H. Gratz, A. Penzkofer, F. Amat-Guerri, A. Costela, I. Garcia-Moreno, R. Sastre, “Photo-physical characterization of pyrromethene dyes in solid matrices of acrylic copolymers,” Chem. Phys. 271, 201–213 (2001).
[CrossRef]

R. Duchowicz, L. B. Scaffardi, A. Costela, I. Garcia-Moreno, R. Sastre, A. U. Acuna, “Photothermal characterization and stability analysis of polymeric dye lasers,” Appl. Opt. 39, 4959–4963 (2000).

Scaffardi, L. B.

Shaposhnikov, A. A.

T. N. Kopylova, V. B. Sukhanov, G. V. Mayer, A. V. Reznichenko, M. S. Dolotov, A. A. Shaposhnikov, “Solid-state active media of tunable organic-compound lasers pumped with a laser. II. A copper vapor laser,” Appl. Phys. B 74, 545–547 (2002).
[CrossRef]

Stark, R.

A. Bergmann, W. Holzer, R. Stark, H. Gratz, A. Penzkofer, F. Amat-Guerri, A. Costela, I. Garcia-Moreno, R. Sastre, “Photo-physical characterization of pyrromethene dyes in solid matrices of acrylic copolymers,” Chem. Phys. 271, 201–213 (2001).
[CrossRef]

Sukhanov, V. B.

T. N. Kopylova, V. B. Sukhanov, G. V. Mayer, A. V. Reznichenko, M. S. Dolotov, A. A. Shaposhnikov, “Solid-state active media of tunable organic-compound lasers pumped with a laser. II. A copper vapor laser,” Appl. Phys. B 74, 545–547 (2002).
[CrossRef]

Webb, C. E.

K. M. Abedin, M. Alvarez, A. Costela, I. Garcia-Moreno, O. Garcia, R. Sastre, D. W. Coutts, C. E. Webb, “10 kHz repetition rate solid-state dye laser pumped by diode-pumped solid-state laser,” Opt. Commun. 218, 359–363 (2003).
[CrossRef]

Wunderlich, W.

W. Wunderlich, “Physical constants of poly(methyl methacrylate),” in Polymer Handbook, J. Brandrup, ed. (Wiley, 1989), pp. 77–80.

Appl. Opt.

Appl. Phys.

P. R. Hamond, “Effect of laser dye deterioration on performance,” Appl. Phys. 14, 199–203 (1977).
[CrossRef]

Appl. Phys. B

S. Y. Lam, M. J. Damzen, “Characterization of solid-state dyes and their use as tunable laser amplifiers,” Appl. Phys. B 77, 577–584 (2003).
[CrossRef]

T. N. Kopylova, V. B. Sukhanov, G. V. Mayer, A. V. Reznichenko, M. S. Dolotov, A. A. Shaposhnikov, “Solid-state active media of tunable organic-compound lasers pumped with a laser. II. A copper vapor laser,” Appl. Phys. B 74, 545–547 (2002).
[CrossRef]

M. Pons, S. Nonell, I. Garcia-Moreno, A. Costela, R. Sastre, “Time-resolved thermal lens study on the heat dissipation effects in solid polymeric matrices used as laser dyes,” Appl. Phys. B 75, 687–694 (2002).
[CrossRef]

Chem. Phys.

A. Bergmann, W. Holzer, R. Stark, H. Gratz, A. Penzkofer, F. Amat-Guerri, A. Costela, I. Garcia-Moreno, R. Sastre, “Photo-physical characterization of pyrromethene dyes in solid matrices of acrylic copolymers,” Chem. Phys. 271, 201–213 (2001).
[CrossRef]

J. Opt. Soc. Am. B

J. Phys. Chem. B

A. Costela, I. Garcia-Moreno, C. Gomez, O. Garcia, R. Sastre, A. Roig, E. Molins, “Polymer-filled nanoporous silica aerogels as hosts for highly stable solid-state dye lasers,” J. Phys. Chem. B 109, 4475–4480 (2005).
[CrossRef]

Opt. Commun.

K. M. Abedin, M. Alvarez, A. Costela, I. Garcia-Moreno, O. Garcia, R. Sastre, D. W. Coutts, C. E. Webb, “10 kHz repetition rate solid-state dye laser pumped by diode-pumped solid-state laser,” Opt. Commun. 218, 359–363 (2003).
[CrossRef]

Opt. Lett.

Phys. Chem. Chem. Phys.

A. Costela, I. Garcia-Moreno, R. Sastre, “Polymeric solid-state dye lasers: recent developments,” Phys. Chem. Chem. Phys. 5, 4745–4763 (2003).
[CrossRef]

Other

M. D. Rahn, T. A. King, “Comparison of solid-state dye laser performance in various host media,” in Solid State Lasers VIII, R. Scheps, ed., Proc. SPIE3613, 94–105 (1999).
[CrossRef]

H. R. Aldag, S. M. Dolotov, M. F. Koldunov, Ya. V. Kravchenko, A. A. Manenkov, D. P. Pacheco, A. V. Reznichenko, G. P. Roskova, “Efficient solid-state dye lasers based on polymer-filled microporous glass,” in Solid State Lasers IX, R. Scheps, ed., Proc. SPIE3929, 133–144 (2000).
[CrossRef]

V. S. Nechitailo, R. S. Anderson, S. C. Picarello, G. A. Matyushin, J. H. Bohn, “Polymer dye lasers with exceptional performance,” in Solid State Lasers VIII, R. Schep, ed., Proc. SPIE3613, 106–111 (1999).
[CrossRef]

W. Wunderlich, “Physical constants of poly(methyl methacrylate),” in Polymer Handbook, J. Brandrup, ed. (Wiley, 1989), pp. 77–80.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic diagram of the experimental setup of a broadband SSDL oscillator: HR, high reflection; SHG, second-harmonic generation; DL, dye laser; PD, photodiode; CRO, cathode ray oscilloscope.

Fig. 2
Fig. 2

Schematic diagram of a SSDL amplifier setup: SHG, second-harmonic generation; HR, high reflection; Cyl., cylindrical.

Fig. 3
Fig. 3

Typical oscilloscope trace, illustrating temporal profiles of (a) pump, (b) signal, and (c) amplified pulses in a SSDL amplifier. Recording the transmitted pump, signal, or amplified signal through the disk by a photodiode placed after the amplifier disk yielded the measurements.

Fig. 4
Fig. 4

Absorption spectra (S0S1) of a Rhodamine 6G dye-doped polymeric active material. Both absorbance (ABS) and transmittance (T) are shown. The dye concentration of the disk was calculated from the absorbance at peak wavelength 530 nm.

Fig. 5
Fig. 5

Typical concentration profile of Rhodamine 6G dye in a polymeric disk obtained by measurement of the transmission of a green (543 nm) He–Ne laser across the diameter (50 mm) of a disk of 3 mm thickness.

Fig. 6
Fig. 6

Broadband dye laser characteristics of a Rhodamine 6G (Rh 6G) dye-doped polymeric disk as a function of the cumulative exposure of pump (532 nm) pulses. The progressive change in laser efficiency for each plot was recorded on a fresh spot of the disk with lasing and in the absence of lasing. For measurement of dye laser efficiency in the absence of lasing, dye laser feedback was normally blocked and momentarily removed to facilitate the measurement. A recovery in laser efficiency of the oscillator occurred after the disk had been unirradiated for 60 h.

Fig. 7
Fig. 7

Broadband dye laser characteristics of a Pyrromethene 567 (Pm 567) dye-doped polymeric disk as a function of the cumulative exposure of pump (532 nm) pulses. Also included is the change in laser efficiency characteristics when the dye laser feedback is blocked. The measurement technique is the same as for Fig. 6 and is described in the text.

Fig. 8
Fig. 8

Solid-state dye laser (DL) amplifier characteristics as a function of signal energy for Pyrromethene 567 (Pm 567) dye-doped in cross-linked PMMA as the active material. The laser was operated at a 2 Hz repetition rate. Pump wavelength, 532 nm.

Fig. 9
Fig. 9

Photodegradation characteristics in a Pyrromethene 567 (Pm 567) dye-doped SSDL amplifier as a function of signal fluence. We measured the percent increase in transmitted energy of the pump beam (%ΔTp) through the amplifier disk after an exposure of 13,500 pump pulses by blocking the signal beam momentarily during each measurement. The laser was operated at 5 Hz. The arbitrarily selection of 13,500 pump pulses for exposure was made primarily for experimental convenience and is elaborated in the text. Data points that correspond to this plot are listed in Table 2.

Tables (2)

Tables Icon

Table 1 Lasing Characteristics of Rhodamine 6G Dye-Doped Active Materialsa

Tables Icon

Table 2 Amplifier Characteristics of a Pyrromethene 567 Dye-Doped Material after Exposure of 13,500 Pulses at a 5 Hz Repetition Rate

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R = R s + R f , R = σ e I s + 1 / τ = ( σ e I s τ + 1 ) / τ .
T = 1 / R = τ / ( σ e I s τ + 1 ) .

Metrics