Abstract

We have developed a 756 nm, 3 W single-frequency cw Ti:sapphire laser by using the technique of injection locking. A cw Ti:sapphire laser in a ring-type configuration was forced to lase unidirectionally by use of an optical diode to prevent a high-power backward laser from disturbing the injection laser. A master laser was amplified by a broad-area laser diode and coupled into a single-mode fiber to generate a 50 mW injection laser with a Gaussian beam profile, which was enough to lock the Ti:sapphire laser at full power of 3 W. Such a high-power single-frequency Ti:sapphire laser enables a watt-level blue or near-ultraviolet single-frequency laser to be generated by frequency doubling.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. C. Wilson, J. C. Sharpe, C. R. McKenzie, P. J. Manson, D. M. Warrington, “Narrow-linewidth master-oscillator power amplifier based on a semiconductor tapered amplifier,” Appl. Opt. 37, 4871–4875 (1998).
    [CrossRef]
  2. G. Ferrari, M. O. Mewes, F. Schreck, C. Salomon, “High-power multiple-frequency narrow-linewidth laser source based on a semiconductor tapered amplifier,” Opt. Lett. 24, 151–153 (1999).
    [CrossRef]
  3. G. L. Abbas, S. Yang, V. W. S. Chan, J. G. Fujimoto, “Injection behavior and modeling of 100 mW broad area diode lasers,” IEEE J Quantum Electron. 24, 609–617 (1988).
    [CrossRef]
  4. E. Gehrig, B. Beier, K. J. Boller, R. Wallenstein, “Experimental characterization and numerical modelling of an Al-GaAs oscillator broad area double pass amplifier,” Appl. Phys. B 66, 287–293 (1998).
    [CrossRef]
  5. I. Shvarchuck, K. Dieckmann, M. Zielonkowski, J. T. M. Walraven, “Broad-area diode-laser system for a rubidium Bose–Einstein condensation experiment,” Appl. Phys. B 71, 475–480 (2000).
    [CrossRef]
  6. P. F. Moulton, “Spectroscopic and laser characteristics of Ti:Al2O3,” J. Opt. Soc. Am. B 3, 125–133 (1986).
    [CrossRef]
  7. A. Ashkin, G. D. Boyd, J. M. Dziendzic, “Resonant optical second harmonic generation and mixing,” IEEE J. Quantum Electron. QE-2, 109–124 (1966).
    [CrossRef]
  8. C. S. Adams, A. I. Ferguson, “Tunable narrow linewidth ultra-violet light generation by frequency doubling of a ring Ti:sapphire laser using lithium tri-borate in an external enhancement cavity,” Opt. Commun. 90, 89–94 (1992).
    [CrossRef]
  9. S. Bourzeix, M. D. Plimmer, F. Nez, L. Julien, F. Biraben, “Efficient frequency doubling of a continuous wave titanium sapphire laser in an external enhancement cavity,” Opt. Commun. 99, 89–94 (1993).
    [CrossRef]
  10. E. Jurdik, J. Hohlfeld, A. F. van Etteger, A. J. Toonen, W. L. Meerts, H. van Kempen, Th. Rasing, “Performance optimization of an external enhancement resonator for optical second-harmonic generation,” J. Opt. Soc. Am. B 19, 1660–1667 (2002).
    [CrossRef]
  11. A. Siegman, Lasers (University Science, 1986).
  12. C. N. Man, A. Brillet, “Injection locking of argon-ion lasers,” Opt. Lett. 9, 333–334 (1984).
    [CrossRef] [PubMed]
  13. B. Couillaud, A. Ducasse, E. Freysz, L. Sarger, “Experimental study of the injection-locked continuous-wave ring dye laser,” Opt. Lett. 9, 435–437 (1984).
    [CrossRef] [PubMed]
  14. C. D. Nabors, A. D. Farinas, T. Day, S. T. Yang, E. K. Gustafson, R. L. Byer, “Injection locking of a 13-W cw Nd:YAG ring laser,” Opt. Lett. 14, 1189–1191 (1989).
    [CrossRef] [PubMed]
  15. E. A. Cummings, M. S. Hicken, S. D. Bergeson, “Demonstration of a 1-W injection-locked continuous-wave titanium: sapphire laser,” Appl. Opt. 41, 7583–7587 (2002).
    [CrossRef]
  16. P. A. Vetter, D. M. Meekhof, P. K. Majumder, S. K. Lamoreaux, E. N. Fortson, “Precise test of electroweak theory from a new measurement of parity nonconservation in atomic thallium,” Phy. Rev. Lett. 74, 2658–2661 (1995).
    [CrossRef]
  17. A. Owunwanne, M. Patel, S. Sadek, Handbook of Radiopharmaceuticals (Chapman & Hall, 1995).
  18. P. A. Schulz, “Single-frequency Ti:Al2O3 ring laser,” IEEE J. Quantum Electron. 24, 1039–1044 (1988).
    [CrossRef]
  19. R. W. P. Drever, J. L. Hall, F. B. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
    [CrossRef]

2002 (2)

2000 (1)

I. Shvarchuck, K. Dieckmann, M. Zielonkowski, J. T. M. Walraven, “Broad-area diode-laser system for a rubidium Bose–Einstein condensation experiment,” Appl. Phys. B 71, 475–480 (2000).
[CrossRef]

1999 (1)

1998 (2)

A. C. Wilson, J. C. Sharpe, C. R. McKenzie, P. J. Manson, D. M. Warrington, “Narrow-linewidth master-oscillator power amplifier based on a semiconductor tapered amplifier,” Appl. Opt. 37, 4871–4875 (1998).
[CrossRef]

E. Gehrig, B. Beier, K. J. Boller, R. Wallenstein, “Experimental characterization and numerical modelling of an Al-GaAs oscillator broad area double pass amplifier,” Appl. Phys. B 66, 287–293 (1998).
[CrossRef]

1995 (1)

P. A. Vetter, D. M. Meekhof, P. K. Majumder, S. K. Lamoreaux, E. N. Fortson, “Precise test of electroweak theory from a new measurement of parity nonconservation in atomic thallium,” Phy. Rev. Lett. 74, 2658–2661 (1995).
[CrossRef]

1993 (1)

S. Bourzeix, M. D. Plimmer, F. Nez, L. Julien, F. Biraben, “Efficient frequency doubling of a continuous wave titanium sapphire laser in an external enhancement cavity,” Opt. Commun. 99, 89–94 (1993).
[CrossRef]

1992 (1)

C. S. Adams, A. I. Ferguson, “Tunable narrow linewidth ultra-violet light generation by frequency doubling of a ring Ti:sapphire laser using lithium tri-borate in an external enhancement cavity,” Opt. Commun. 90, 89–94 (1992).
[CrossRef]

1989 (1)

1988 (2)

P. A. Schulz, “Single-frequency Ti:Al2O3 ring laser,” IEEE J. Quantum Electron. 24, 1039–1044 (1988).
[CrossRef]

G. L. Abbas, S. Yang, V. W. S. Chan, J. G. Fujimoto, “Injection behavior and modeling of 100 mW broad area diode lasers,” IEEE J Quantum Electron. 24, 609–617 (1988).
[CrossRef]

1986 (1)

1984 (2)

1983 (1)

R. W. P. Drever, J. L. Hall, F. B. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

1966 (1)

A. Ashkin, G. D. Boyd, J. M. Dziendzic, “Resonant optical second harmonic generation and mixing,” IEEE J. Quantum Electron. QE-2, 109–124 (1966).
[CrossRef]

Abbas, G. L.

G. L. Abbas, S. Yang, V. W. S. Chan, J. G. Fujimoto, “Injection behavior and modeling of 100 mW broad area diode lasers,” IEEE J Quantum Electron. 24, 609–617 (1988).
[CrossRef]

Adams, C. S.

C. S. Adams, A. I. Ferguson, “Tunable narrow linewidth ultra-violet light generation by frequency doubling of a ring Ti:sapphire laser using lithium tri-borate in an external enhancement cavity,” Opt. Commun. 90, 89–94 (1992).
[CrossRef]

Ashkin, A.

A. Ashkin, G. D. Boyd, J. M. Dziendzic, “Resonant optical second harmonic generation and mixing,” IEEE J. Quantum Electron. QE-2, 109–124 (1966).
[CrossRef]

Beier, B.

E. Gehrig, B. Beier, K. J. Boller, R. Wallenstein, “Experimental characterization and numerical modelling of an Al-GaAs oscillator broad area double pass amplifier,” Appl. Phys. B 66, 287–293 (1998).
[CrossRef]

Bergeson, S. D.

Biraben, F.

S. Bourzeix, M. D. Plimmer, F. Nez, L. Julien, F. Biraben, “Efficient frequency doubling of a continuous wave titanium sapphire laser in an external enhancement cavity,” Opt. Commun. 99, 89–94 (1993).
[CrossRef]

Boller, K. J.

E. Gehrig, B. Beier, K. J. Boller, R. Wallenstein, “Experimental characterization and numerical modelling of an Al-GaAs oscillator broad area double pass amplifier,” Appl. Phys. B 66, 287–293 (1998).
[CrossRef]

Bourzeix, S.

S. Bourzeix, M. D. Plimmer, F. Nez, L. Julien, F. Biraben, “Efficient frequency doubling of a continuous wave titanium sapphire laser in an external enhancement cavity,” Opt. Commun. 99, 89–94 (1993).
[CrossRef]

Boyd, G. D.

A. Ashkin, G. D. Boyd, J. M. Dziendzic, “Resonant optical second harmonic generation and mixing,” IEEE J. Quantum Electron. QE-2, 109–124 (1966).
[CrossRef]

Brillet, A.

Byer, R. L.

Chan, V. W. S.

G. L. Abbas, S. Yang, V. W. S. Chan, J. G. Fujimoto, “Injection behavior and modeling of 100 mW broad area diode lasers,” IEEE J Quantum Electron. 24, 609–617 (1988).
[CrossRef]

Couillaud, B.

Cummings, E. A.

Day, T.

Dieckmann, K.

I. Shvarchuck, K. Dieckmann, M. Zielonkowski, J. T. M. Walraven, “Broad-area diode-laser system for a rubidium Bose–Einstein condensation experiment,” Appl. Phys. B 71, 475–480 (2000).
[CrossRef]

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. B. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Ducasse, A.

Dziendzic, J. M.

A. Ashkin, G. D. Boyd, J. M. Dziendzic, “Resonant optical second harmonic generation and mixing,” IEEE J. Quantum Electron. QE-2, 109–124 (1966).
[CrossRef]

Farinas, A. D.

Ferguson, A. I.

C. S. Adams, A. I. Ferguson, “Tunable narrow linewidth ultra-violet light generation by frequency doubling of a ring Ti:sapphire laser using lithium tri-borate in an external enhancement cavity,” Opt. Commun. 90, 89–94 (1992).
[CrossRef]

Ferrari, G.

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. B. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Fortson, E. N.

P. A. Vetter, D. M. Meekhof, P. K. Majumder, S. K. Lamoreaux, E. N. Fortson, “Precise test of electroweak theory from a new measurement of parity nonconservation in atomic thallium,” Phy. Rev. Lett. 74, 2658–2661 (1995).
[CrossRef]

Freysz, E.

Fujimoto, J. G.

G. L. Abbas, S. Yang, V. W. S. Chan, J. G. Fujimoto, “Injection behavior and modeling of 100 mW broad area diode lasers,” IEEE J Quantum Electron. 24, 609–617 (1988).
[CrossRef]

Gehrig, E.

E. Gehrig, B. Beier, K. J. Boller, R. Wallenstein, “Experimental characterization and numerical modelling of an Al-GaAs oscillator broad area double pass amplifier,” Appl. Phys. B 66, 287–293 (1998).
[CrossRef]

Gustafson, E. K.

Hall, J. L.

R. W. P. Drever, J. L. Hall, F. B. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Hicken, M. S.

Hohlfeld, J.

Hough, J.

R. W. P. Drever, J. L. Hall, F. B. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Julien, L.

S. Bourzeix, M. D. Plimmer, F. Nez, L. Julien, F. Biraben, “Efficient frequency doubling of a continuous wave titanium sapphire laser in an external enhancement cavity,” Opt. Commun. 99, 89–94 (1993).
[CrossRef]

Jurdik, E.

Kowalski, F. B.

R. W. P. Drever, J. L. Hall, F. B. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Lamoreaux, S. K.

P. A. Vetter, D. M. Meekhof, P. K. Majumder, S. K. Lamoreaux, E. N. Fortson, “Precise test of electroweak theory from a new measurement of parity nonconservation in atomic thallium,” Phy. Rev. Lett. 74, 2658–2661 (1995).
[CrossRef]

Majumder, P. K.

P. A. Vetter, D. M. Meekhof, P. K. Majumder, S. K. Lamoreaux, E. N. Fortson, “Precise test of electroweak theory from a new measurement of parity nonconservation in atomic thallium,” Phy. Rev. Lett. 74, 2658–2661 (1995).
[CrossRef]

Man, C. N.

Manson, P. J.

McKenzie, C. R.

Meekhof, D. M.

P. A. Vetter, D. M. Meekhof, P. K. Majumder, S. K. Lamoreaux, E. N. Fortson, “Precise test of electroweak theory from a new measurement of parity nonconservation in atomic thallium,” Phy. Rev. Lett. 74, 2658–2661 (1995).
[CrossRef]

Meerts, W. L.

Mewes, M. O.

Moulton, P. F.

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. B. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Nabors, C. D.

Nez, F.

S. Bourzeix, M. D. Plimmer, F. Nez, L. Julien, F. Biraben, “Efficient frequency doubling of a continuous wave titanium sapphire laser in an external enhancement cavity,” Opt. Commun. 99, 89–94 (1993).
[CrossRef]

Owunwanne, A.

A. Owunwanne, M. Patel, S. Sadek, Handbook of Radiopharmaceuticals (Chapman & Hall, 1995).

Patel, M.

A. Owunwanne, M. Patel, S. Sadek, Handbook of Radiopharmaceuticals (Chapman & Hall, 1995).

Plimmer, M. D.

S. Bourzeix, M. D. Plimmer, F. Nez, L. Julien, F. Biraben, “Efficient frequency doubling of a continuous wave titanium sapphire laser in an external enhancement cavity,” Opt. Commun. 99, 89–94 (1993).
[CrossRef]

Rasing, Th.

Sadek, S.

A. Owunwanne, M. Patel, S. Sadek, Handbook of Radiopharmaceuticals (Chapman & Hall, 1995).

Salomon, C.

Sarger, L.

Schreck, F.

Schulz, P. A.

P. A. Schulz, “Single-frequency Ti:Al2O3 ring laser,” IEEE J. Quantum Electron. 24, 1039–1044 (1988).
[CrossRef]

Sharpe, J. C.

Shvarchuck, I.

I. Shvarchuck, K. Dieckmann, M. Zielonkowski, J. T. M. Walraven, “Broad-area diode-laser system for a rubidium Bose–Einstein condensation experiment,” Appl. Phys. B 71, 475–480 (2000).
[CrossRef]

Siegman, A.

A. Siegman, Lasers (University Science, 1986).

Toonen, A. J.

van Etteger, A. F.

van Kempen, H.

Vetter, P. A.

P. A. Vetter, D. M. Meekhof, P. K. Majumder, S. K. Lamoreaux, E. N. Fortson, “Precise test of electroweak theory from a new measurement of parity nonconservation in atomic thallium,” Phy. Rev. Lett. 74, 2658–2661 (1995).
[CrossRef]

Wallenstein, R.

E. Gehrig, B. Beier, K. J. Boller, R. Wallenstein, “Experimental characterization and numerical modelling of an Al-GaAs oscillator broad area double pass amplifier,” Appl. Phys. B 66, 287–293 (1998).
[CrossRef]

Walraven, J. T. M.

I. Shvarchuck, K. Dieckmann, M. Zielonkowski, J. T. M. Walraven, “Broad-area diode-laser system for a rubidium Bose–Einstein condensation experiment,” Appl. Phys. B 71, 475–480 (2000).
[CrossRef]

Ward, H.

R. W. P. Drever, J. L. Hall, F. B. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Warrington, D. M.

Wilson, A. C.

Yang, S.

G. L. Abbas, S. Yang, V. W. S. Chan, J. G. Fujimoto, “Injection behavior and modeling of 100 mW broad area diode lasers,” IEEE J Quantum Electron. 24, 609–617 (1988).
[CrossRef]

Yang, S. T.

Zielonkowski, M.

I. Shvarchuck, K. Dieckmann, M. Zielonkowski, J. T. M. Walraven, “Broad-area diode-laser system for a rubidium Bose–Einstein condensation experiment,” Appl. Phys. B 71, 475–480 (2000).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (3)

R. W. P. Drever, J. L. Hall, F. B. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

E. Gehrig, B. Beier, K. J. Boller, R. Wallenstein, “Experimental characterization and numerical modelling of an Al-GaAs oscillator broad area double pass amplifier,” Appl. Phys. B 66, 287–293 (1998).
[CrossRef]

I. Shvarchuck, K. Dieckmann, M. Zielonkowski, J. T. M. Walraven, “Broad-area diode-laser system for a rubidium Bose–Einstein condensation experiment,” Appl. Phys. B 71, 475–480 (2000).
[CrossRef]

IEEE J Quantum Electron. (1)

G. L. Abbas, S. Yang, V. W. S. Chan, J. G. Fujimoto, “Injection behavior and modeling of 100 mW broad area diode lasers,” IEEE J Quantum Electron. 24, 609–617 (1988).
[CrossRef]

IEEE J. Quantum Electron. (2)

P. A. Schulz, “Single-frequency Ti:Al2O3 ring laser,” IEEE J. Quantum Electron. 24, 1039–1044 (1988).
[CrossRef]

A. Ashkin, G. D. Boyd, J. M. Dziendzic, “Resonant optical second harmonic generation and mixing,” IEEE J. Quantum Electron. QE-2, 109–124 (1966).
[CrossRef]

J. Opt. Soc. Am. B (2)

Opt. Commun. (2)

C. S. Adams, A. I. Ferguson, “Tunable narrow linewidth ultra-violet light generation by frequency doubling of a ring Ti:sapphire laser using lithium tri-borate in an external enhancement cavity,” Opt. Commun. 90, 89–94 (1992).
[CrossRef]

S. Bourzeix, M. D. Plimmer, F. Nez, L. Julien, F. Biraben, “Efficient frequency doubling of a continuous wave titanium sapphire laser in an external enhancement cavity,” Opt. Commun. 99, 89–94 (1993).
[CrossRef]

Opt. Lett. (4)

Phy. Rev. Lett. (1)

P. A. Vetter, D. M. Meekhof, P. K. Majumder, S. K. Lamoreaux, E. N. Fortson, “Precise test of electroweak theory from a new measurement of parity nonconservation in atomic thallium,” Phy. Rev. Lett. 74, 2658–2661 (1995).
[CrossRef]

Other (2)

A. Owunwanne, M. Patel, S. Sadek, Handbook of Radiopharmaceuticals (Chapman & Hall, 1995).

A. Siegman, Lasers (University Science, 1986).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Experimental setup of the injection-locked Ti:sapphire laser.

Fig. 2
Fig. 2

Schematic of injection locking based on the Pound–Drever–Hall technique. PI, electronic circuit for amplification and integration of error signal.

Fig. 3
Fig. 3

Error signal for the injection locking generated by the Pound–Drever–Hall technique.

Fig. 4
Fig. 4

Output power of the free-running Ti:sapphire laser with respect to the pump power. The maximal output power was more than 3 W with the slope efficiency shown.

Fig. 5
Fig. 5

Optical frequency spectrum of the Ti:sapphire laser monitored by the scanning Fabry–Perot cavity (a) before and (b) after injection locking.

Metrics