Abstract

We present a new approach of generating the several wavelengths required for color holography with coherence lengths in the range of several meters. Our proposed laser system consists of an argon-ion laser, which is equipped with broadband optics. Its main lasing lines include 457, 488, and 514 nm. Sufficient coherence length is achieved by means of an intracavity etalon. We report single-frequency operation at several competing wavelengths and the successful recording of multicolor holograms with the described laser system.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. J. Gambogi, W. K. Smothers, K. W. Steijn, S. H. Stevenson, A. M. Weber, “Color holography using DuPont holographic recording films,” in Holographic Materials, T. J. Trout, ed., Proc. SPIE2405, 62–73 (1995).
    [CrossRef]
  2. Y. Gentet, P. Gentet, “Ultimate emulsion and its applications: a laboratory made silver-halide emulsion of optimized quality for monochromatic, pulsed and full color holography,” in Holography 2000, T. H. Jeong, W. K. Sobotka, eds., Proc. SPIE4149, 56–62 (2000).
    [CrossRef]
  3. K. W. Steijn, “Multicolor holographic recording in DuPont holographic recording film: determination of exposure conditions for color balance,” in Holographic Materials II, T. J. Trout, ed., Proc. SPIE2688, 123–134 (1996).
    [CrossRef]
  4. P. M. Hubel, L. Solymar, “Color-reflection holography: theory and experiments,” Appl. Opt. 30, 4190–4203 (1991).
    [CrossRef] [PubMed]
  5. W. Gambogi, K. Steijn, S. Mackara, T. Duzick, B. Hamzavy, J. Kelly, “Holographic optical element (HOE) imaging in DuPont holographic photopolymers,” in Diffractive and Holographic Optics Technology, I. Cindrich, S. H. Lee, eds., Proc. SPIE2152, 282–293 (1994).
    [CrossRef]
  6. J. Matsuoka, N. Kitamura, S. Fujinaga, T. Kitaoka, H. Yamashita, “Temperature dependence of refractive index of SiO2 glass,” J. Non-Cryst. Solids 135, 86–89 (1991).
    [CrossRef]

1991 (2)

P. M. Hubel, L. Solymar, “Color-reflection holography: theory and experiments,” Appl. Opt. 30, 4190–4203 (1991).
[CrossRef] [PubMed]

J. Matsuoka, N. Kitamura, S. Fujinaga, T. Kitaoka, H. Yamashita, “Temperature dependence of refractive index of SiO2 glass,” J. Non-Cryst. Solids 135, 86–89 (1991).
[CrossRef]

Duzick, T.

W. Gambogi, K. Steijn, S. Mackara, T. Duzick, B. Hamzavy, J. Kelly, “Holographic optical element (HOE) imaging in DuPont holographic photopolymers,” in Diffractive and Holographic Optics Technology, I. Cindrich, S. H. Lee, eds., Proc. SPIE2152, 282–293 (1994).
[CrossRef]

Fujinaga, S.

J. Matsuoka, N. Kitamura, S. Fujinaga, T. Kitaoka, H. Yamashita, “Temperature dependence of refractive index of SiO2 glass,” J. Non-Cryst. Solids 135, 86–89 (1991).
[CrossRef]

Gambogi, W.

W. Gambogi, K. Steijn, S. Mackara, T. Duzick, B. Hamzavy, J. Kelly, “Holographic optical element (HOE) imaging in DuPont holographic photopolymers,” in Diffractive and Holographic Optics Technology, I. Cindrich, S. H. Lee, eds., Proc. SPIE2152, 282–293 (1994).
[CrossRef]

Gambogi, W. J.

W. J. Gambogi, W. K. Smothers, K. W. Steijn, S. H. Stevenson, A. M. Weber, “Color holography using DuPont holographic recording films,” in Holographic Materials, T. J. Trout, ed., Proc. SPIE2405, 62–73 (1995).
[CrossRef]

Gentet, P.

Y. Gentet, P. Gentet, “Ultimate emulsion and its applications: a laboratory made silver-halide emulsion of optimized quality for monochromatic, pulsed and full color holography,” in Holography 2000, T. H. Jeong, W. K. Sobotka, eds., Proc. SPIE4149, 56–62 (2000).
[CrossRef]

Gentet, Y.

Y. Gentet, P. Gentet, “Ultimate emulsion and its applications: a laboratory made silver-halide emulsion of optimized quality for monochromatic, pulsed and full color holography,” in Holography 2000, T. H. Jeong, W. K. Sobotka, eds., Proc. SPIE4149, 56–62 (2000).
[CrossRef]

Hamzavy, B.

W. Gambogi, K. Steijn, S. Mackara, T. Duzick, B. Hamzavy, J. Kelly, “Holographic optical element (HOE) imaging in DuPont holographic photopolymers,” in Diffractive and Holographic Optics Technology, I. Cindrich, S. H. Lee, eds., Proc. SPIE2152, 282–293 (1994).
[CrossRef]

Hubel, P. M.

Kelly, J.

W. Gambogi, K. Steijn, S. Mackara, T. Duzick, B. Hamzavy, J. Kelly, “Holographic optical element (HOE) imaging in DuPont holographic photopolymers,” in Diffractive and Holographic Optics Technology, I. Cindrich, S. H. Lee, eds., Proc. SPIE2152, 282–293 (1994).
[CrossRef]

Kitamura, N.

J. Matsuoka, N. Kitamura, S. Fujinaga, T. Kitaoka, H. Yamashita, “Temperature dependence of refractive index of SiO2 glass,” J. Non-Cryst. Solids 135, 86–89 (1991).
[CrossRef]

Kitaoka, T.

J. Matsuoka, N. Kitamura, S. Fujinaga, T. Kitaoka, H. Yamashita, “Temperature dependence of refractive index of SiO2 glass,” J. Non-Cryst. Solids 135, 86–89 (1991).
[CrossRef]

Mackara, S.

W. Gambogi, K. Steijn, S. Mackara, T. Duzick, B. Hamzavy, J. Kelly, “Holographic optical element (HOE) imaging in DuPont holographic photopolymers,” in Diffractive and Holographic Optics Technology, I. Cindrich, S. H. Lee, eds., Proc. SPIE2152, 282–293 (1994).
[CrossRef]

Matsuoka, J.

J. Matsuoka, N. Kitamura, S. Fujinaga, T. Kitaoka, H. Yamashita, “Temperature dependence of refractive index of SiO2 glass,” J. Non-Cryst. Solids 135, 86–89 (1991).
[CrossRef]

Smothers, W. K.

W. J. Gambogi, W. K. Smothers, K. W. Steijn, S. H. Stevenson, A. M. Weber, “Color holography using DuPont holographic recording films,” in Holographic Materials, T. J. Trout, ed., Proc. SPIE2405, 62–73 (1995).
[CrossRef]

Solymar, L.

Steijn, K.

W. Gambogi, K. Steijn, S. Mackara, T. Duzick, B. Hamzavy, J. Kelly, “Holographic optical element (HOE) imaging in DuPont holographic photopolymers,” in Diffractive and Holographic Optics Technology, I. Cindrich, S. H. Lee, eds., Proc. SPIE2152, 282–293 (1994).
[CrossRef]

Steijn, K. W.

K. W. Steijn, “Multicolor holographic recording in DuPont holographic recording film: determination of exposure conditions for color balance,” in Holographic Materials II, T. J. Trout, ed., Proc. SPIE2688, 123–134 (1996).
[CrossRef]

W. J. Gambogi, W. K. Smothers, K. W. Steijn, S. H. Stevenson, A. M. Weber, “Color holography using DuPont holographic recording films,” in Holographic Materials, T. J. Trout, ed., Proc. SPIE2405, 62–73 (1995).
[CrossRef]

Stevenson, S. H.

W. J. Gambogi, W. K. Smothers, K. W. Steijn, S. H. Stevenson, A. M. Weber, “Color holography using DuPont holographic recording films,” in Holographic Materials, T. J. Trout, ed., Proc. SPIE2405, 62–73 (1995).
[CrossRef]

Weber, A. M.

W. J. Gambogi, W. K. Smothers, K. W. Steijn, S. H. Stevenson, A. M. Weber, “Color holography using DuPont holographic recording films,” in Holographic Materials, T. J. Trout, ed., Proc. SPIE2405, 62–73 (1995).
[CrossRef]

Yamashita, H.

J. Matsuoka, N. Kitamura, S. Fujinaga, T. Kitaoka, H. Yamashita, “Temperature dependence of refractive index of SiO2 glass,” J. Non-Cryst. Solids 135, 86–89 (1991).
[CrossRef]

Appl. Opt. (1)

J. Non-Cryst. Solids (1)

J. Matsuoka, N. Kitamura, S. Fujinaga, T. Kitaoka, H. Yamashita, “Temperature dependence of refractive index of SiO2 glass,” J. Non-Cryst. Solids 135, 86–89 (1991).
[CrossRef]

Other (4)

W. Gambogi, K. Steijn, S. Mackara, T. Duzick, B. Hamzavy, J. Kelly, “Holographic optical element (HOE) imaging in DuPont holographic photopolymers,” in Diffractive and Holographic Optics Technology, I. Cindrich, S. H. Lee, eds., Proc. SPIE2152, 282–293 (1994).
[CrossRef]

W. J. Gambogi, W. K. Smothers, K. W. Steijn, S. H. Stevenson, A. M. Weber, “Color holography using DuPont holographic recording films,” in Holographic Materials, T. J. Trout, ed., Proc. SPIE2405, 62–73 (1995).
[CrossRef]

Y. Gentet, P. Gentet, “Ultimate emulsion and its applications: a laboratory made silver-halide emulsion of optimized quality for monochromatic, pulsed and full color holography,” in Holography 2000, T. H. Jeong, W. K. Sobotka, eds., Proc. SPIE4149, 56–62 (2000).
[CrossRef]

K. W. Steijn, “Multicolor holographic recording in DuPont holographic recording film: determination of exposure conditions for color balance,” in Holographic Materials II, T. J. Trout, ed., Proc. SPIE2688, 123–134 (1996).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Gain profile and cavity mode spacing. (b) Etalon’s transmission suppresses all modes but one.

Fig. 2
Fig. 2

Screenshots of a scanning Fabry–Perot spectrum analyzer: (a) 488 nm/single-frequency operation. (b) Several argon lines lasing simultaneously in single-frequency mode. Note that the time base and amplification of the oscilloscope were changed in Fig. 2(b) in order to resolve the peaks.

Fig. 3
Fig. 3

Argon-laser spectrum versus etalon temperature.

Fig. 4
Fig. 4

(a) Laser spectrum with maximum total intensity. (b) Dual line operation.

Fig. 5
Fig. 5

Spectral transmittance of a two-color reflection hologram. The diffraction peaks are visible at 488 and 514 nm.

Tables (1)

Tables Icon

Table 1 Krypton and Argon Laser Lines and Their Relative Strengths

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

FSR = Δ ν = c 2 n ( λ , T ) d ( T ) ,
f c = M × FSR ,
δ f δ T = M δ ( FSR ) δ T = c λ [ 1 n ( λ ) ( δ n δ T ) + 1 d ( δ d δ T ) ] .

Metrics