Abstract

Cavity-mode wavelengths in air are determined by measuring a laser’s frequency while it is locked to the mode in vacuum during a calibration step and subsequently correcting the mode wavelength for atmospheric pressure compression, temperature difference, and material aging. Using a Zerodur ring cavity, we demonstrate a repeatability of ±2 × 10−8 (3σ), with the wavelength accuracy limited to ±4 × 10−8 by knowledge of the absolute helium gas temperature during the pressure calibration. Mirror cleaning perturbed the mode frequency by less than Δν/ν ∼ 3 × 10−9, limited by temperature correction residuals.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. D. Henshaw, P. Trepagnier, R. Dillon, W. Pril, B. Hultermans, “Stage accuracy results using interferometers compensated for refractivity fluctuations,” In Optical Microlithography XVI, A. Yen, ed., Proc. SPIE5040, 1672–1681 (2003).
    [CrossRef]
  2. C. R. Steinmetz, “Displacement measurement repeatability in tens of nanometers with laser interferometry,” In Integrated Circuit Metrology, Inspection, and Process Control II, K. V. Monahan, ed., Proc. SPIE921, 406–420 (1988).
    [CrossRef]
  3. N. Bobroff, “Residual errors in laser interferometry from air turbulence and nonlinearity,” Appl. Opt. 26, 2676–2681 (1987).
    [CrossRef] [PubMed]
  4. P. E. Ciddor, “Refractive index of air: new equations for the visible and near infrared,” Appl. Opt. 35, 1566–1573 (1996).
    [CrossRef] [PubMed]
  5. M. L. Eickhoff, J. L. Hall, “Real-time precision refractometry: new approaches,” Appl. Opt. 36, 1223–1234 (1997).
    [CrossRef] [PubMed]
  6. R. Thibout, S. Topcu, Y. Alayli, P. Juncar, “A transfer standard of the metre: an air wavelength reference,” European Phys. J. Appl. Phys. 16, 239–245 (2001).
    [CrossRef]
  7. S. Topcu, Y. Alayli, J.-P. Wallerand, P. Juncar, “Heterodyne refractometers and air wavelength reference at 633 nm,” European Phys. J. Appl. Phys. 24, 8590 (2003).
    [CrossRef]
  8. J. A. Stone, A. Stejskal, “Wavelength-tracking capabilities of a Fabry–Perot cavity,” in Recent Developments in Traceable Measurements II, J. Decker, N. Brown, eds., Proc. SPIE5190, 327–338 (2003).
    [CrossRef]
  9. R. Fox, K. Corwin, L. Hollberg, “Stable optical cavities for wavelength references,” NIST Tech. Note 1533 (2004).
  10. S. A. Diddams, J. C. Bergquist, S. R. Jefferts, C. W. Oates, “Standards of time and frequency at the outset of the 21st century,” Science 306, 1318–1324 (2004).
    [CrossRef] [PubMed]
  11. M. Andersson, L. Eliasson, L. R. Pendrill, “Compressible Fabry–Perot refractometer,” Appl. Opt. 26, 4835–4840 (1987).
    [CrossRef] [PubMed]
  12. P. H. Sneddon, S. Bull, G. Cagnoli, D. R. M. Crooks, E. J. Elliffe, J. E. Faller, M. M. Fejer, J. Hough, S. Rowan, “The intrinsic mechanical loss factor of hydroxy-catalysis bonds for use in the mirror suspensions of gravitational wave detectors,” Class. Quantum Grav. 20, 5025–5037 (2003).
    [CrossRef]
  13. Product of Schott Glass. The mention of specific product names in this paper is for technical clarity and is not an endorsement.
  14. Product of Corning Glass. The mention of specific product names in this paper is for technical clarity and is not an endorsement.
  15. R. W. Boyd, “Intuitive explanation of the phase anomaly of focused light beams,” J. Opt. Soc. Am 70, 877–880 (1980).
    [CrossRef]
  16. J. A. Stone, A. Stejskal, “Using helium as a standard of refractive index: correcting errors in a gas refractometer,” Metrologia 41, 189–197 (2004).
    [CrossRef]
  17. F. Riehle, “Use of optical frequency standards for measurements of dimensional stability,” Meas. Sci. Technol. 9, 1042–1048 (1998).
    [CrossRef]
  18. L. Marmet, A. A. Madej, K. J. Siemsen, J. E. Bernard, B. G. Whitford, “Precision frequency measurement of the 2S1/2−2D5/2 transition of Sr+ with a 674-nm diode laser locked to an ultrastable cavity,” IEEE Trans. Instrum. Meas. 46, 169–173 (1997).
    [CrossRef]
  19. Chr. Tamm, D. Engelke, V. Buhner, “Spectroscopy of the electric-quadrupole transition 2S1/2(F= 0)−2D3/2(F= 2) in trapped 171Yb+,” Phys. Rev. A 61, 053405 (2000).
    [CrossRef]
  20. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
    [CrossRef]
  21. R. W. Fox, C. W. Oates, L. Hollberg, “Stabilizing diode lasers to high finesse cavities,” in Cavity-Enhanced Spectroscopies, Vol. 40 of Experimental Methods in the Physical Sciences, R. D. Van Zee, J. Looney, eds. (Syracuse U. Press, 2001).
  22. B. R. Washburn, S. A. Diddams, N. R. Newbury, J. W. Nicholson, M. F. Yan, C. G. Jorgensen, “Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared,” Opt. Lett. 29, 250–252 (2004).
    [CrossRef] [PubMed]
  23. S. R. Jefferts, J. Shirley, T. E. Parker, T. P. Heavner, D. M. Meekhof, C. Nelson, F. Levi, G. Costanzo, A. De Marchi, R. Drullinger, L. Hollberg, W. D. Lee, F. L. Walls, “Accuracy evaluation of NIST-F1,” Metrologia 39, 321–336 (2002).
    [CrossRef]
  24. J. L. Hall, J. Ye, “Optical frequency standards and measurement,” IEEE Trans. Instrum. Meas. 52, 227–231 (2003).
    [CrossRef]
  25. S. Gilbert, W. C. Swann, T. Dennis, “Wavelength standards for optical communications,” in Laser Frequency Stabilization, Standards, Measurements, and Applications, J. L. Hall, J. Ye, eds., Proc. SPIE4269, 184–191 (2001).
    [CrossRef]
  26. S. F. Jacobs, S. C. Johnston, J. M. Sasian, M. Watson, J. D. Targove, D. Bass, “Surface figure changes due to thermal cycling hysteresis,” Appl. Opt. 26, 4438–4442 (1987).
    [CrossRef] [PubMed]

2004

R. Fox, K. Corwin, L. Hollberg, “Stable optical cavities for wavelength references,” NIST Tech. Note 1533 (2004).

S. A. Diddams, J. C. Bergquist, S. R. Jefferts, C. W. Oates, “Standards of time and frequency at the outset of the 21st century,” Science 306, 1318–1324 (2004).
[CrossRef] [PubMed]

J. A. Stone, A. Stejskal, “Using helium as a standard of refractive index: correcting errors in a gas refractometer,” Metrologia 41, 189–197 (2004).
[CrossRef]

B. R. Washburn, S. A. Diddams, N. R. Newbury, J. W. Nicholson, M. F. Yan, C. G. Jorgensen, “Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared,” Opt. Lett. 29, 250–252 (2004).
[CrossRef] [PubMed]

2003

J. L. Hall, J. Ye, “Optical frequency standards and measurement,” IEEE Trans. Instrum. Meas. 52, 227–231 (2003).
[CrossRef]

P. H. Sneddon, S. Bull, G. Cagnoli, D. R. M. Crooks, E. J. Elliffe, J. E. Faller, M. M. Fejer, J. Hough, S. Rowan, “The intrinsic mechanical loss factor of hydroxy-catalysis bonds for use in the mirror suspensions of gravitational wave detectors,” Class. Quantum Grav. 20, 5025–5037 (2003).
[CrossRef]

S. Topcu, Y. Alayli, J.-P. Wallerand, P. Juncar, “Heterodyne refractometers and air wavelength reference at 633 nm,” European Phys. J. Appl. Phys. 24, 8590 (2003).
[CrossRef]

2002

S. R. Jefferts, J. Shirley, T. E. Parker, T. P. Heavner, D. M. Meekhof, C. Nelson, F. Levi, G. Costanzo, A. De Marchi, R. Drullinger, L. Hollberg, W. D. Lee, F. L. Walls, “Accuracy evaluation of NIST-F1,” Metrologia 39, 321–336 (2002).
[CrossRef]

2001

R. Thibout, S. Topcu, Y. Alayli, P. Juncar, “A transfer standard of the metre: an air wavelength reference,” European Phys. J. Appl. Phys. 16, 239–245 (2001).
[CrossRef]

2000

Chr. Tamm, D. Engelke, V. Buhner, “Spectroscopy of the electric-quadrupole transition 2S1/2(F= 0)−2D3/2(F= 2) in trapped 171Yb+,” Phys. Rev. A 61, 053405 (2000).
[CrossRef]

1998

F. Riehle, “Use of optical frequency standards for measurements of dimensional stability,” Meas. Sci. Technol. 9, 1042–1048 (1998).
[CrossRef]

1997

L. Marmet, A. A. Madej, K. J. Siemsen, J. E. Bernard, B. G. Whitford, “Precision frequency measurement of the 2S1/2−2D5/2 transition of Sr+ with a 674-nm diode laser locked to an ultrastable cavity,” IEEE Trans. Instrum. Meas. 46, 169–173 (1997).
[CrossRef]

M. L. Eickhoff, J. L. Hall, “Real-time precision refractometry: new approaches,” Appl. Opt. 36, 1223–1234 (1997).
[CrossRef] [PubMed]

1996

1987

1983

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

1980

R. W. Boyd, “Intuitive explanation of the phase anomaly of focused light beams,” J. Opt. Soc. Am 70, 877–880 (1980).
[CrossRef]

Alayli, Y.

S. Topcu, Y. Alayli, J.-P. Wallerand, P. Juncar, “Heterodyne refractometers and air wavelength reference at 633 nm,” European Phys. J. Appl. Phys. 24, 8590 (2003).
[CrossRef]

R. Thibout, S. Topcu, Y. Alayli, P. Juncar, “A transfer standard of the metre: an air wavelength reference,” European Phys. J. Appl. Phys. 16, 239–245 (2001).
[CrossRef]

Andersson, M.

Bass, D.

Bergquist, J. C.

S. A. Diddams, J. C. Bergquist, S. R. Jefferts, C. W. Oates, “Standards of time and frequency at the outset of the 21st century,” Science 306, 1318–1324 (2004).
[CrossRef] [PubMed]

Bernard, J. E.

L. Marmet, A. A. Madej, K. J. Siemsen, J. E. Bernard, B. G. Whitford, “Precision frequency measurement of the 2S1/2−2D5/2 transition of Sr+ with a 674-nm diode laser locked to an ultrastable cavity,” IEEE Trans. Instrum. Meas. 46, 169–173 (1997).
[CrossRef]

Bobroff, N.

Boyd, R. W.

R. W. Boyd, “Intuitive explanation of the phase anomaly of focused light beams,” J. Opt. Soc. Am 70, 877–880 (1980).
[CrossRef]

Buhner, V.

Chr. Tamm, D. Engelke, V. Buhner, “Spectroscopy of the electric-quadrupole transition 2S1/2(F= 0)−2D3/2(F= 2) in trapped 171Yb+,” Phys. Rev. A 61, 053405 (2000).
[CrossRef]

Bull, S.

P. H. Sneddon, S. Bull, G. Cagnoli, D. R. M. Crooks, E. J. Elliffe, J. E. Faller, M. M. Fejer, J. Hough, S. Rowan, “The intrinsic mechanical loss factor of hydroxy-catalysis bonds for use in the mirror suspensions of gravitational wave detectors,” Class. Quantum Grav. 20, 5025–5037 (2003).
[CrossRef]

Cagnoli, G.

P. H. Sneddon, S. Bull, G. Cagnoli, D. R. M. Crooks, E. J. Elliffe, J. E. Faller, M. M. Fejer, J. Hough, S. Rowan, “The intrinsic mechanical loss factor of hydroxy-catalysis bonds for use in the mirror suspensions of gravitational wave detectors,” Class. Quantum Grav. 20, 5025–5037 (2003).
[CrossRef]

Ciddor, P. E.

Corwin, K.

R. Fox, K. Corwin, L. Hollberg, “Stable optical cavities for wavelength references,” NIST Tech. Note 1533 (2004).

Costanzo, G.

S. R. Jefferts, J. Shirley, T. E. Parker, T. P. Heavner, D. M. Meekhof, C. Nelson, F. Levi, G. Costanzo, A. De Marchi, R. Drullinger, L. Hollberg, W. D. Lee, F. L. Walls, “Accuracy evaluation of NIST-F1,” Metrologia 39, 321–336 (2002).
[CrossRef]

Crooks, D. R. M.

P. H. Sneddon, S. Bull, G. Cagnoli, D. R. M. Crooks, E. J. Elliffe, J. E. Faller, M. M. Fejer, J. Hough, S. Rowan, “The intrinsic mechanical loss factor of hydroxy-catalysis bonds for use in the mirror suspensions of gravitational wave detectors,” Class. Quantum Grav. 20, 5025–5037 (2003).
[CrossRef]

De Marchi, A.

S. R. Jefferts, J. Shirley, T. E. Parker, T. P. Heavner, D. M. Meekhof, C. Nelson, F. Levi, G. Costanzo, A. De Marchi, R. Drullinger, L. Hollberg, W. D. Lee, F. L. Walls, “Accuracy evaluation of NIST-F1,” Metrologia 39, 321–336 (2002).
[CrossRef]

Dennis, T.

S. Gilbert, W. C. Swann, T. Dennis, “Wavelength standards for optical communications,” in Laser Frequency Stabilization, Standards, Measurements, and Applications, J. L. Hall, J. Ye, eds., Proc. SPIE4269, 184–191 (2001).
[CrossRef]

Diddams, S. A.

S. A. Diddams, J. C. Bergquist, S. R. Jefferts, C. W. Oates, “Standards of time and frequency at the outset of the 21st century,” Science 306, 1318–1324 (2004).
[CrossRef] [PubMed]

B. R. Washburn, S. A. Diddams, N. R. Newbury, J. W. Nicholson, M. F. Yan, C. G. Jorgensen, “Phase-locked, erbium-fiber-laser-based frequency comb in the near infrared,” Opt. Lett. 29, 250–252 (2004).
[CrossRef] [PubMed]

Dillon, R.

P. D. Henshaw, P. Trepagnier, R. Dillon, W. Pril, B. Hultermans, “Stage accuracy results using interferometers compensated for refractivity fluctuations,” In Optical Microlithography XVI, A. Yen, ed., Proc. SPIE5040, 1672–1681 (2003).
[CrossRef]

Drever, R. W. P.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Drullinger, R.

S. R. Jefferts, J. Shirley, T. E. Parker, T. P. Heavner, D. M. Meekhof, C. Nelson, F. Levi, G. Costanzo, A. De Marchi, R. Drullinger, L. Hollberg, W. D. Lee, F. L. Walls, “Accuracy evaluation of NIST-F1,” Metrologia 39, 321–336 (2002).
[CrossRef]

Eickhoff, M. L.

Eliasson, L.

Elliffe, E. J.

P. H. Sneddon, S. Bull, G. Cagnoli, D. R. M. Crooks, E. J. Elliffe, J. E. Faller, M. M. Fejer, J. Hough, S. Rowan, “The intrinsic mechanical loss factor of hydroxy-catalysis bonds for use in the mirror suspensions of gravitational wave detectors,” Class. Quantum Grav. 20, 5025–5037 (2003).
[CrossRef]

Engelke, D.

Chr. Tamm, D. Engelke, V. Buhner, “Spectroscopy of the electric-quadrupole transition 2S1/2(F= 0)−2D3/2(F= 2) in trapped 171Yb+,” Phys. Rev. A 61, 053405 (2000).
[CrossRef]

Faller, J. E.

P. H. Sneddon, S. Bull, G. Cagnoli, D. R. M. Crooks, E. J. Elliffe, J. E. Faller, M. M. Fejer, J. Hough, S. Rowan, “The intrinsic mechanical loss factor of hydroxy-catalysis bonds for use in the mirror suspensions of gravitational wave detectors,” Class. Quantum Grav. 20, 5025–5037 (2003).
[CrossRef]

Fejer, M. M.

P. H. Sneddon, S. Bull, G. Cagnoli, D. R. M. Crooks, E. J. Elliffe, J. E. Faller, M. M. Fejer, J. Hough, S. Rowan, “The intrinsic mechanical loss factor of hydroxy-catalysis bonds for use in the mirror suspensions of gravitational wave detectors,” Class. Quantum Grav. 20, 5025–5037 (2003).
[CrossRef]

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Fox, R.

R. Fox, K. Corwin, L. Hollberg, “Stable optical cavities for wavelength references,” NIST Tech. Note 1533 (2004).

Fox, R. W.

R. W. Fox, C. W. Oates, L. Hollberg, “Stabilizing diode lasers to high finesse cavities,” in Cavity-Enhanced Spectroscopies, Vol. 40 of Experimental Methods in the Physical Sciences, R. D. Van Zee, J. Looney, eds. (Syracuse U. Press, 2001).

Gilbert, S.

S. Gilbert, W. C. Swann, T. Dennis, “Wavelength standards for optical communications,” in Laser Frequency Stabilization, Standards, Measurements, and Applications, J. L. Hall, J. Ye, eds., Proc. SPIE4269, 184–191 (2001).
[CrossRef]

Hall, J. L.

J. L. Hall, J. Ye, “Optical frequency standards and measurement,” IEEE Trans. Instrum. Meas. 52, 227–231 (2003).
[CrossRef]

M. L. Eickhoff, J. L. Hall, “Real-time precision refractometry: new approaches,” Appl. Opt. 36, 1223–1234 (1997).
[CrossRef] [PubMed]

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Heavner, T. P.

S. R. Jefferts, J. Shirley, T. E. Parker, T. P. Heavner, D. M. Meekhof, C. Nelson, F. Levi, G. Costanzo, A. De Marchi, R. Drullinger, L. Hollberg, W. D. Lee, F. L. Walls, “Accuracy evaluation of NIST-F1,” Metrologia 39, 321–336 (2002).
[CrossRef]

Henshaw, P. D.

P. D. Henshaw, P. Trepagnier, R. Dillon, W. Pril, B. Hultermans, “Stage accuracy results using interferometers compensated for refractivity fluctuations,” In Optical Microlithography XVI, A. Yen, ed., Proc. SPIE5040, 1672–1681 (2003).
[CrossRef]

Hollberg, L.

R. Fox, K. Corwin, L. Hollberg, “Stable optical cavities for wavelength references,” NIST Tech. Note 1533 (2004).

S. R. Jefferts, J. Shirley, T. E. Parker, T. P. Heavner, D. M. Meekhof, C. Nelson, F. Levi, G. Costanzo, A. De Marchi, R. Drullinger, L. Hollberg, W. D. Lee, F. L. Walls, “Accuracy evaluation of NIST-F1,” Metrologia 39, 321–336 (2002).
[CrossRef]

R. W. Fox, C. W. Oates, L. Hollberg, “Stabilizing diode lasers to high finesse cavities,” in Cavity-Enhanced Spectroscopies, Vol. 40 of Experimental Methods in the Physical Sciences, R. D. Van Zee, J. Looney, eds. (Syracuse U. Press, 2001).

Hough, J.

P. H. Sneddon, S. Bull, G. Cagnoli, D. R. M. Crooks, E. J. Elliffe, J. E. Faller, M. M. Fejer, J. Hough, S. Rowan, “The intrinsic mechanical loss factor of hydroxy-catalysis bonds for use in the mirror suspensions of gravitational wave detectors,” Class. Quantum Grav. 20, 5025–5037 (2003).
[CrossRef]

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Hultermans, B.

P. D. Henshaw, P. Trepagnier, R. Dillon, W. Pril, B. Hultermans, “Stage accuracy results using interferometers compensated for refractivity fluctuations,” In Optical Microlithography XVI, A. Yen, ed., Proc. SPIE5040, 1672–1681 (2003).
[CrossRef]

Jacobs, S. F.

Jefferts, S. R.

S. A. Diddams, J. C. Bergquist, S. R. Jefferts, C. W. Oates, “Standards of time and frequency at the outset of the 21st century,” Science 306, 1318–1324 (2004).
[CrossRef] [PubMed]

S. R. Jefferts, J. Shirley, T. E. Parker, T. P. Heavner, D. M. Meekhof, C. Nelson, F. Levi, G. Costanzo, A. De Marchi, R. Drullinger, L. Hollberg, W. D. Lee, F. L. Walls, “Accuracy evaluation of NIST-F1,” Metrologia 39, 321–336 (2002).
[CrossRef]

Johnston, S. C.

Jorgensen, C. G.

Juncar, P.

S. Topcu, Y. Alayli, J.-P. Wallerand, P. Juncar, “Heterodyne refractometers and air wavelength reference at 633 nm,” European Phys. J. Appl. Phys. 24, 8590 (2003).
[CrossRef]

R. Thibout, S. Topcu, Y. Alayli, P. Juncar, “A transfer standard of the metre: an air wavelength reference,” European Phys. J. Appl. Phys. 16, 239–245 (2001).
[CrossRef]

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Lee, W. D.

S. R. Jefferts, J. Shirley, T. E. Parker, T. P. Heavner, D. M. Meekhof, C. Nelson, F. Levi, G. Costanzo, A. De Marchi, R. Drullinger, L. Hollberg, W. D. Lee, F. L. Walls, “Accuracy evaluation of NIST-F1,” Metrologia 39, 321–336 (2002).
[CrossRef]

Levi, F.

S. R. Jefferts, J. Shirley, T. E. Parker, T. P. Heavner, D. M. Meekhof, C. Nelson, F. Levi, G. Costanzo, A. De Marchi, R. Drullinger, L. Hollberg, W. D. Lee, F. L. Walls, “Accuracy evaluation of NIST-F1,” Metrologia 39, 321–336 (2002).
[CrossRef]

Madej, A. A.

L. Marmet, A. A. Madej, K. J. Siemsen, J. E. Bernard, B. G. Whitford, “Precision frequency measurement of the 2S1/2−2D5/2 transition of Sr+ with a 674-nm diode laser locked to an ultrastable cavity,” IEEE Trans. Instrum. Meas. 46, 169–173 (1997).
[CrossRef]

Marmet, L.

L. Marmet, A. A. Madej, K. J. Siemsen, J. E. Bernard, B. G. Whitford, “Precision frequency measurement of the 2S1/2−2D5/2 transition of Sr+ with a 674-nm diode laser locked to an ultrastable cavity,” IEEE Trans. Instrum. Meas. 46, 169–173 (1997).
[CrossRef]

Meekhof, D. M.

S. R. Jefferts, J. Shirley, T. E. Parker, T. P. Heavner, D. M. Meekhof, C. Nelson, F. Levi, G. Costanzo, A. De Marchi, R. Drullinger, L. Hollberg, W. D. Lee, F. L. Walls, “Accuracy evaluation of NIST-F1,” Metrologia 39, 321–336 (2002).
[CrossRef]

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Nelson, C.

S. R. Jefferts, J. Shirley, T. E. Parker, T. P. Heavner, D. M. Meekhof, C. Nelson, F. Levi, G. Costanzo, A. De Marchi, R. Drullinger, L. Hollberg, W. D. Lee, F. L. Walls, “Accuracy evaluation of NIST-F1,” Metrologia 39, 321–336 (2002).
[CrossRef]

Newbury, N. R.

Nicholson, J. W.

Oates, C. W.

S. A. Diddams, J. C. Bergquist, S. R. Jefferts, C. W. Oates, “Standards of time and frequency at the outset of the 21st century,” Science 306, 1318–1324 (2004).
[CrossRef] [PubMed]

R. W. Fox, C. W. Oates, L. Hollberg, “Stabilizing diode lasers to high finesse cavities,” in Cavity-Enhanced Spectroscopies, Vol. 40 of Experimental Methods in the Physical Sciences, R. D. Van Zee, J. Looney, eds. (Syracuse U. Press, 2001).

Parker, T. E.

S. R. Jefferts, J. Shirley, T. E. Parker, T. P. Heavner, D. M. Meekhof, C. Nelson, F. Levi, G. Costanzo, A. De Marchi, R. Drullinger, L. Hollberg, W. D. Lee, F. L. Walls, “Accuracy evaluation of NIST-F1,” Metrologia 39, 321–336 (2002).
[CrossRef]

Pendrill, L. R.

Pril, W.

P. D. Henshaw, P. Trepagnier, R. Dillon, W. Pril, B. Hultermans, “Stage accuracy results using interferometers compensated for refractivity fluctuations,” In Optical Microlithography XVI, A. Yen, ed., Proc. SPIE5040, 1672–1681 (2003).
[CrossRef]

Riehle, F.

F. Riehle, “Use of optical frequency standards for measurements of dimensional stability,” Meas. Sci. Technol. 9, 1042–1048 (1998).
[CrossRef]

Rowan, S.

P. H. Sneddon, S. Bull, G. Cagnoli, D. R. M. Crooks, E. J. Elliffe, J. E. Faller, M. M. Fejer, J. Hough, S. Rowan, “The intrinsic mechanical loss factor of hydroxy-catalysis bonds for use in the mirror suspensions of gravitational wave detectors,” Class. Quantum Grav. 20, 5025–5037 (2003).
[CrossRef]

Sasian, J. M.

Shirley, J.

S. R. Jefferts, J. Shirley, T. E. Parker, T. P. Heavner, D. M. Meekhof, C. Nelson, F. Levi, G. Costanzo, A. De Marchi, R. Drullinger, L. Hollberg, W. D. Lee, F. L. Walls, “Accuracy evaluation of NIST-F1,” Metrologia 39, 321–336 (2002).
[CrossRef]

Siemsen, K. J.

L. Marmet, A. A. Madej, K. J. Siemsen, J. E. Bernard, B. G. Whitford, “Precision frequency measurement of the 2S1/2−2D5/2 transition of Sr+ with a 674-nm diode laser locked to an ultrastable cavity,” IEEE Trans. Instrum. Meas. 46, 169–173 (1997).
[CrossRef]

Sneddon, P. H.

P. H. Sneddon, S. Bull, G. Cagnoli, D. R. M. Crooks, E. J. Elliffe, J. E. Faller, M. M. Fejer, J. Hough, S. Rowan, “The intrinsic mechanical loss factor of hydroxy-catalysis bonds for use in the mirror suspensions of gravitational wave detectors,” Class. Quantum Grav. 20, 5025–5037 (2003).
[CrossRef]

Steinmetz, C. R.

C. R. Steinmetz, “Displacement measurement repeatability in tens of nanometers with laser interferometry,” In Integrated Circuit Metrology, Inspection, and Process Control II, K. V. Monahan, ed., Proc. SPIE921, 406–420 (1988).
[CrossRef]

Stejskal, A.

J. A. Stone, A. Stejskal, “Using helium as a standard of refractive index: correcting errors in a gas refractometer,” Metrologia 41, 189–197 (2004).
[CrossRef]

J. A. Stone, A. Stejskal, “Wavelength-tracking capabilities of a Fabry–Perot cavity,” in Recent Developments in Traceable Measurements II, J. Decker, N. Brown, eds., Proc. SPIE5190, 327–338 (2003).
[CrossRef]

Stone, J. A.

J. A. Stone, A. Stejskal, “Using helium as a standard of refractive index: correcting errors in a gas refractometer,” Metrologia 41, 189–197 (2004).
[CrossRef]

J. A. Stone, A. Stejskal, “Wavelength-tracking capabilities of a Fabry–Perot cavity,” in Recent Developments in Traceable Measurements II, J. Decker, N. Brown, eds., Proc. SPIE5190, 327–338 (2003).
[CrossRef]

Swann, W. C.

S. Gilbert, W. C. Swann, T. Dennis, “Wavelength standards for optical communications,” in Laser Frequency Stabilization, Standards, Measurements, and Applications, J. L. Hall, J. Ye, eds., Proc. SPIE4269, 184–191 (2001).
[CrossRef]

Tamm, Chr.

Chr. Tamm, D. Engelke, V. Buhner, “Spectroscopy of the electric-quadrupole transition 2S1/2(F= 0)−2D3/2(F= 2) in trapped 171Yb+,” Phys. Rev. A 61, 053405 (2000).
[CrossRef]

Targove, J. D.

Thibout, R.

R. Thibout, S. Topcu, Y. Alayli, P. Juncar, “A transfer standard of the metre: an air wavelength reference,” European Phys. J. Appl. Phys. 16, 239–245 (2001).
[CrossRef]

Topcu, S.

S. Topcu, Y. Alayli, J.-P. Wallerand, P. Juncar, “Heterodyne refractometers and air wavelength reference at 633 nm,” European Phys. J. Appl. Phys. 24, 8590 (2003).
[CrossRef]

R. Thibout, S. Topcu, Y. Alayli, P. Juncar, “A transfer standard of the metre: an air wavelength reference,” European Phys. J. Appl. Phys. 16, 239–245 (2001).
[CrossRef]

Trepagnier, P.

P. D. Henshaw, P. Trepagnier, R. Dillon, W. Pril, B. Hultermans, “Stage accuracy results using interferometers compensated for refractivity fluctuations,” In Optical Microlithography XVI, A. Yen, ed., Proc. SPIE5040, 1672–1681 (2003).
[CrossRef]

Wallerand, J.-P.

S. Topcu, Y. Alayli, J.-P. Wallerand, P. Juncar, “Heterodyne refractometers and air wavelength reference at 633 nm,” European Phys. J. Appl. Phys. 24, 8590 (2003).
[CrossRef]

Walls, F. L.

S. R. Jefferts, J. Shirley, T. E. Parker, T. P. Heavner, D. M. Meekhof, C. Nelson, F. Levi, G. Costanzo, A. De Marchi, R. Drullinger, L. Hollberg, W. D. Lee, F. L. Walls, “Accuracy evaluation of NIST-F1,” Metrologia 39, 321–336 (2002).
[CrossRef]

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Washburn, B. R.

Watson, M.

Whitford, B. G.

L. Marmet, A. A. Madej, K. J. Siemsen, J. E. Bernard, B. G. Whitford, “Precision frequency measurement of the 2S1/2−2D5/2 transition of Sr+ with a 674-nm diode laser locked to an ultrastable cavity,” IEEE Trans. Instrum. Meas. 46, 169–173 (1997).
[CrossRef]

Yan, M. F.

Ye, J.

J. L. Hall, J. Ye, “Optical frequency standards and measurement,” IEEE Trans. Instrum. Meas. 52, 227–231 (2003).
[CrossRef]

Appl. Opt.

Appl. Phys. B

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Class. Quantum Grav.

P. H. Sneddon, S. Bull, G. Cagnoli, D. R. M. Crooks, E. J. Elliffe, J. E. Faller, M. M. Fejer, J. Hough, S. Rowan, “The intrinsic mechanical loss factor of hydroxy-catalysis bonds for use in the mirror suspensions of gravitational wave detectors,” Class. Quantum Grav. 20, 5025–5037 (2003).
[CrossRef]

European Phys. J. Appl. Phys.

R. Thibout, S. Topcu, Y. Alayli, P. Juncar, “A transfer standard of the metre: an air wavelength reference,” European Phys. J. Appl. Phys. 16, 239–245 (2001).
[CrossRef]

S. Topcu, Y. Alayli, J.-P. Wallerand, P. Juncar, “Heterodyne refractometers and air wavelength reference at 633 nm,” European Phys. J. Appl. Phys. 24, 8590 (2003).
[CrossRef]

IEEE Trans. Instrum. Meas.

L. Marmet, A. A. Madej, K. J. Siemsen, J. E. Bernard, B. G. Whitford, “Precision frequency measurement of the 2S1/2−2D5/2 transition of Sr+ with a 674-nm diode laser locked to an ultrastable cavity,” IEEE Trans. Instrum. Meas. 46, 169–173 (1997).
[CrossRef]

J. L. Hall, J. Ye, “Optical frequency standards and measurement,” IEEE Trans. Instrum. Meas. 52, 227–231 (2003).
[CrossRef]

J. Opt. Soc. Am

R. W. Boyd, “Intuitive explanation of the phase anomaly of focused light beams,” J. Opt. Soc. Am 70, 877–880 (1980).
[CrossRef]

Meas. Sci. Technol.

F. Riehle, “Use of optical frequency standards for measurements of dimensional stability,” Meas. Sci. Technol. 9, 1042–1048 (1998).
[CrossRef]

Metrologia

S. R. Jefferts, J. Shirley, T. E. Parker, T. P. Heavner, D. M. Meekhof, C. Nelson, F. Levi, G. Costanzo, A. De Marchi, R. Drullinger, L. Hollberg, W. D. Lee, F. L. Walls, “Accuracy evaluation of NIST-F1,” Metrologia 39, 321–336 (2002).
[CrossRef]

J. A. Stone, A. Stejskal, “Using helium as a standard of refractive index: correcting errors in a gas refractometer,” Metrologia 41, 189–197 (2004).
[CrossRef]

NIST Tech. Note

R. Fox, K. Corwin, L. Hollberg, “Stable optical cavities for wavelength references,” NIST Tech. Note 1533 (2004).

Opt. Lett.

Phys. Rev. A

Chr. Tamm, D. Engelke, V. Buhner, “Spectroscopy of the electric-quadrupole transition 2S1/2(F= 0)−2D3/2(F= 2) in trapped 171Yb+,” Phys. Rev. A 61, 053405 (2000).
[CrossRef]

Science

S. A. Diddams, J. C. Bergquist, S. R. Jefferts, C. W. Oates, “Standards of time and frequency at the outset of the 21st century,” Science 306, 1318–1324 (2004).
[CrossRef] [PubMed]

Other

P. D. Henshaw, P. Trepagnier, R. Dillon, W. Pril, B. Hultermans, “Stage accuracy results using interferometers compensated for refractivity fluctuations,” In Optical Microlithography XVI, A. Yen, ed., Proc. SPIE5040, 1672–1681 (2003).
[CrossRef]

C. R. Steinmetz, “Displacement measurement repeatability in tens of nanometers with laser interferometry,” In Integrated Circuit Metrology, Inspection, and Process Control II, K. V. Monahan, ed., Proc. SPIE921, 406–420 (1988).
[CrossRef]

J. A. Stone, A. Stejskal, “Wavelength-tracking capabilities of a Fabry–Perot cavity,” in Recent Developments in Traceable Measurements II, J. Decker, N. Brown, eds., Proc. SPIE5190, 327–338 (2003).
[CrossRef]

Product of Schott Glass. The mention of specific product names in this paper is for technical clarity and is not an endorsement.

Product of Corning Glass. The mention of specific product names in this paper is for technical clarity and is not an endorsement.

R. W. Fox, C. W. Oates, L. Hollberg, “Stabilizing diode lasers to high finesse cavities,” in Cavity-Enhanced Spectroscopies, Vol. 40 of Experimental Methods in the Physical Sciences, R. D. Van Zee, J. Looney, eds. (Syracuse U. Press, 2001).

S. Gilbert, W. C. Swann, T. Dennis, “Wavelength standards for optical communications,” in Laser Frequency Stabilization, Standards, Measurements, and Applications, J. L. Hall, J. Ye, eds., Proc. SPIE4269, 184–191 (2001).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Example of a cavity wavelength reference used with a homodyne Michelson interferometer. A portion of the interferometer source illuminates a triangular three-mirror air-spaced reference cavity, and the tunable laser is electronically servocontrolled to remain locked to a cavity mode that has a known wavelength. The reference cavity is placed in close vicinity to the interferometer beams to maximize the correlation between the refractive index of the air in the cavity and in the interferometer path.

Fig. 2
Fig. 2

Beam path and locations of the temperature sensors are superimposed upon this photo of the Zerodur optical cavity wavelength reference. A moderately sized cavity (25.2 cm round-trip path) was chosen to reduce the influence of mirror contamination. Six temperature sensors were bonded with thermally conductive epoxy to monitor the effective temperature of the cavity. The Zerodur base is 7.6 mm thick, and the sidewalls are 5 mm thick. All the inside corners were filleted and, following standard glass-fabrication procedures, the part was acid treated after milling to improve the glass strength. The average temperature (to 1 mK resolution) of the six sensors was recorded during each frequency measurement.

Fig. 3
Fig. 3

Experimental diagram showing the cavity in a vacuum chamber with external alignment mirrors. The cavity was placed in the chamber unclamped upon a thin Teflon surface to prevent distortion caused by stress and temperature differences, with repeatable positioning to ease beam alignment provided by a metal stop. A DFB laser was locked to a cavity mode by injection current modulation by the Pound–Drever–Hall technique.20 A fraction of the light was transmitted via fiber to a femtosecond laser comb some 200 m away for an optical frequency measurement.

Fig. 4
Fig. 4

Typical rf heterodyne beat note between the laser (locked to a cavity mode in vacuum) and a femtosecond laser comb mode. The spectrum analyzer averaged 300 readings (100 kHz resolution bandwidth) in approximately 6 s. We fitted the center portion of the beat note to a Lorentzian curve to extract the line center. The repeatability of this process was ±10 kHz, equivalent to Δλ/λ ≤ 1.5×10−11.

Fig. 5
Fig. 5

This plot of all the frequency measurements performed versus time makes little intuitive sense, as there was no temperature control and, at least at first, there was rapid aging.

Fig. 6
Fig. 6

Data from Fig. 5 corrected for the cavity’s temperature by use of Eq. (3). The apparent logarithmic behavor is due to aging, and the data scatter is likely due to a poor approximation of the effective temperature of the optical path by the six point sensors, and also to thermal hysteresis of the Zerodur. The solid curve is an exponential fit to the data. The slope at day 240 has slowed down to 7.5 kHz/day, or Δν/ν = +1.35 × 10−8/year.

Fig. 7
Fig. 7

Residuals after normalizing for temperature and aging. The data from Fig. 6 were normalized to day 240 by use of the best-fit exponential given in the text. The resultant frequency stability is ±4 MHz at 3σ, or Δν/ν ≡ 2 × 10−8 (3σ).

Fig. 8
Fig. 8

Subset of ten measurements from Figs. 57 that were performed immediately before and after cleaning a cavity mirror (circles, before the cleaning; squares, after). All the measured frequencies have been normalized for temperature and time to 23°C and day 240, respectively. Arrows show a frequency difference equivalent to Δλ/λ = 10−8. As the frequencies appear more-or-less randomly perturbed, it is possible that the changes in the measured frequencies are simply the residuals after temperature correction and are not related to the cleaning process.

Tables (1)

Tables Icon

Table 1 Summary of Data Used to Calculate the Atmospheric Pressure Compression of the Zerodur Cavitya

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

λ m = L / [ m φ ( λ ) + ψ G 2 π ] ,
ν DFB = N f REP ± f CEO ± f BEAT .
ν TempCorr = ν Meas [ 1 + α ( T T 0 ) + β ( T T 0 ) 2 ] .
ν Age & TempCorr = ν TempCorr K 0 [ exp ( γ t 0 ) exp ( γ × days ) ]
λ 2 = c n ν 2 .

Metrics