Abstract

The ratiometric wavelength-measurement system is modeled and an optimal design of transmission response of the employed edge filter is demonstrated in the context of a limited signal-to-noise ratio of the signal source. The corresponding experimental investigation is presented. The impact of the limited signal-to-noise ratio of the signal source on determining the optimal transmission response of edge filters for a wavelength-measurement application is shown theoretically and experimentally.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Mora, J. Luis Cruz, M. V. Andres, R. Duchowicz, “Simple high-resolution wavelength monitor based on a fiber Bragg grating,” Appl. Opt. 43, 744–749 (2004).
    [CrossRef] [PubMed]
  2. S. M. Melle, K. Liu, R. M. Measures, “A passive wavelength demodulation system for guided-wave Bragg grating sensors,” IEEE Photonics Technol. Lett. 4, 516–518 (1992).
    [CrossRef]
  3. M. A. Davis, A. D. Kersey, “All fiber Bragg grating strain-sensor demodulation technique using a wavelength division coupler,” Electron. Lett. 30, 75–76 (1994).
    [CrossRef]
  4. A. B. L. Ribeiro, L. A. Ferreira, M. Tsvekov, J. L. Santos, “All-fiber interrogation technique for fiber Bragg sensors using a biconical fiber filter,” Electron. Lett. 32, 382–383 (1996).
    [CrossRef]
  5. Y. Liu, L. Zhang, I. Bennion, “Fabricating fibre edge filters with arbitrary spectral response based on titled chirped grating structures,” Meas. Sci. Technol. 10, L1–L3 (1999).
    [CrossRef]
  6. B. Mason, S. P. Denbarrs, L. A. Coldren, “Tunable sampled-grating DBR lasers with integrated wavelength monitors,” IEEE Photonics Technol. Lett. 10, 1085–1087 (1998).
    [CrossRef]
  7. J. J. Lepley, A. S. Siddiqui, “Primary referenced DWDM frequency comb generator,” IEE Proc. Optoelectron. 146, 121–124 (1999).
    [CrossRef]
  8. M. Bass, E. W. Van Stryland, D. R. William, W. L. Wolfe, Handbook of Optics, 2nd ed. (McGraw-Hill, 1995), Vol. 1, Part 4.
  9. M. G. Xu, H. Geiger, J. P. Dakin, “Modeling and performance analysis of a fiber Bragg grating interrogation system using an acousto-optic tunable filter,” J. Lightwave Technol. 14, 391–396 (1996).
    [CrossRef]
  10. Q. Wang, G. Farrell, T. Freir, “Theoretical and experimental investigations of macrobend losses for standard single mode fibers,” Opt. Exp. 13, 4476–4484 (2005).
    [CrossRef]

2005 (1)

Q. Wang, G. Farrell, T. Freir, “Theoretical and experimental investigations of macrobend losses for standard single mode fibers,” Opt. Exp. 13, 4476–4484 (2005).
[CrossRef]

2004 (1)

1999 (2)

J. J. Lepley, A. S. Siddiqui, “Primary referenced DWDM frequency comb generator,” IEE Proc. Optoelectron. 146, 121–124 (1999).
[CrossRef]

Y. Liu, L. Zhang, I. Bennion, “Fabricating fibre edge filters with arbitrary spectral response based on titled chirped grating structures,” Meas. Sci. Technol. 10, L1–L3 (1999).
[CrossRef]

1998 (1)

B. Mason, S. P. Denbarrs, L. A. Coldren, “Tunable sampled-grating DBR lasers with integrated wavelength monitors,” IEEE Photonics Technol. Lett. 10, 1085–1087 (1998).
[CrossRef]

1996 (2)

M. G. Xu, H. Geiger, J. P. Dakin, “Modeling and performance analysis of a fiber Bragg grating interrogation system using an acousto-optic tunable filter,” J. Lightwave Technol. 14, 391–396 (1996).
[CrossRef]

A. B. L. Ribeiro, L. A. Ferreira, M. Tsvekov, J. L. Santos, “All-fiber interrogation technique for fiber Bragg sensors using a biconical fiber filter,” Electron. Lett. 32, 382–383 (1996).
[CrossRef]

1994 (1)

M. A. Davis, A. D. Kersey, “All fiber Bragg grating strain-sensor demodulation technique using a wavelength division coupler,” Electron. Lett. 30, 75–76 (1994).
[CrossRef]

1992 (1)

S. M. Melle, K. Liu, R. M. Measures, “A passive wavelength demodulation system for guided-wave Bragg grating sensors,” IEEE Photonics Technol. Lett. 4, 516–518 (1992).
[CrossRef]

Andres, M. V.

Bass, M.

M. Bass, E. W. Van Stryland, D. R. William, W. L. Wolfe, Handbook of Optics, 2nd ed. (McGraw-Hill, 1995), Vol. 1, Part 4.

Bennion, I.

Y. Liu, L. Zhang, I. Bennion, “Fabricating fibre edge filters with arbitrary spectral response based on titled chirped grating structures,” Meas. Sci. Technol. 10, L1–L3 (1999).
[CrossRef]

Coldren, L. A.

B. Mason, S. P. Denbarrs, L. A. Coldren, “Tunable sampled-grating DBR lasers with integrated wavelength monitors,” IEEE Photonics Technol. Lett. 10, 1085–1087 (1998).
[CrossRef]

Dakin, J. P.

M. G. Xu, H. Geiger, J. P. Dakin, “Modeling and performance analysis of a fiber Bragg grating interrogation system using an acousto-optic tunable filter,” J. Lightwave Technol. 14, 391–396 (1996).
[CrossRef]

Davis, M. A.

M. A. Davis, A. D. Kersey, “All fiber Bragg grating strain-sensor demodulation technique using a wavelength division coupler,” Electron. Lett. 30, 75–76 (1994).
[CrossRef]

Denbarrs, S. P.

B. Mason, S. P. Denbarrs, L. A. Coldren, “Tunable sampled-grating DBR lasers with integrated wavelength monitors,” IEEE Photonics Technol. Lett. 10, 1085–1087 (1998).
[CrossRef]

Duchowicz, R.

Farrell, G.

Q. Wang, G. Farrell, T. Freir, “Theoretical and experimental investigations of macrobend losses for standard single mode fibers,” Opt. Exp. 13, 4476–4484 (2005).
[CrossRef]

Ferreira, L. A.

A. B. L. Ribeiro, L. A. Ferreira, M. Tsvekov, J. L. Santos, “All-fiber interrogation technique for fiber Bragg sensors using a biconical fiber filter,” Electron. Lett. 32, 382–383 (1996).
[CrossRef]

Freir, T.

Q. Wang, G. Farrell, T. Freir, “Theoretical and experimental investigations of macrobend losses for standard single mode fibers,” Opt. Exp. 13, 4476–4484 (2005).
[CrossRef]

Geiger, H.

M. G. Xu, H. Geiger, J. P. Dakin, “Modeling and performance analysis of a fiber Bragg grating interrogation system using an acousto-optic tunable filter,” J. Lightwave Technol. 14, 391–396 (1996).
[CrossRef]

Kersey, A. D.

M. A. Davis, A. D. Kersey, “All fiber Bragg grating strain-sensor demodulation technique using a wavelength division coupler,” Electron. Lett. 30, 75–76 (1994).
[CrossRef]

Lepley, J. J.

J. J. Lepley, A. S. Siddiqui, “Primary referenced DWDM frequency comb generator,” IEE Proc. Optoelectron. 146, 121–124 (1999).
[CrossRef]

Liu, K.

S. M. Melle, K. Liu, R. M. Measures, “A passive wavelength demodulation system for guided-wave Bragg grating sensors,” IEEE Photonics Technol. Lett. 4, 516–518 (1992).
[CrossRef]

Liu, Y.

Y. Liu, L. Zhang, I. Bennion, “Fabricating fibre edge filters with arbitrary spectral response based on titled chirped grating structures,” Meas. Sci. Technol. 10, L1–L3 (1999).
[CrossRef]

Luis Cruz, J.

Mason, B.

B. Mason, S. P. Denbarrs, L. A. Coldren, “Tunable sampled-grating DBR lasers with integrated wavelength monitors,” IEEE Photonics Technol. Lett. 10, 1085–1087 (1998).
[CrossRef]

Measures, R. M.

S. M. Melle, K. Liu, R. M. Measures, “A passive wavelength demodulation system for guided-wave Bragg grating sensors,” IEEE Photonics Technol. Lett. 4, 516–518 (1992).
[CrossRef]

Melle, S. M.

S. M. Melle, K. Liu, R. M. Measures, “A passive wavelength demodulation system for guided-wave Bragg grating sensors,” IEEE Photonics Technol. Lett. 4, 516–518 (1992).
[CrossRef]

Mora, J.

Ribeiro, A. B. L.

A. B. L. Ribeiro, L. A. Ferreira, M. Tsvekov, J. L. Santos, “All-fiber interrogation technique for fiber Bragg sensors using a biconical fiber filter,” Electron. Lett. 32, 382–383 (1996).
[CrossRef]

Santos, J. L.

A. B. L. Ribeiro, L. A. Ferreira, M. Tsvekov, J. L. Santos, “All-fiber interrogation technique for fiber Bragg sensors using a biconical fiber filter,” Electron. Lett. 32, 382–383 (1996).
[CrossRef]

Siddiqui, A. S.

J. J. Lepley, A. S. Siddiqui, “Primary referenced DWDM frequency comb generator,” IEE Proc. Optoelectron. 146, 121–124 (1999).
[CrossRef]

Tsvekov, M.

A. B. L. Ribeiro, L. A. Ferreira, M. Tsvekov, J. L. Santos, “All-fiber interrogation technique for fiber Bragg sensors using a biconical fiber filter,” Electron. Lett. 32, 382–383 (1996).
[CrossRef]

Van Stryland, E. W.

M. Bass, E. W. Van Stryland, D. R. William, W. L. Wolfe, Handbook of Optics, 2nd ed. (McGraw-Hill, 1995), Vol. 1, Part 4.

Wang, Q.

Q. Wang, G. Farrell, T. Freir, “Theoretical and experimental investigations of macrobend losses for standard single mode fibers,” Opt. Exp. 13, 4476–4484 (2005).
[CrossRef]

William, D. R.

M. Bass, E. W. Van Stryland, D. R. William, W. L. Wolfe, Handbook of Optics, 2nd ed. (McGraw-Hill, 1995), Vol. 1, Part 4.

Wolfe, W. L.

M. Bass, E. W. Van Stryland, D. R. William, W. L. Wolfe, Handbook of Optics, 2nd ed. (McGraw-Hill, 1995), Vol. 1, Part 4.

Xu, M. G.

M. G. Xu, H. Geiger, J. P. Dakin, “Modeling and performance analysis of a fiber Bragg grating interrogation system using an acousto-optic tunable filter,” J. Lightwave Technol. 14, 391–396 (1996).
[CrossRef]

Zhang, L.

Y. Liu, L. Zhang, I. Bennion, “Fabricating fibre edge filters with arbitrary spectral response based on titled chirped grating structures,” Meas. Sci. Technol. 10, L1–L3 (1999).
[CrossRef]

Appl. Opt. (1)

Electron. Lett. (2)

M. A. Davis, A. D. Kersey, “All fiber Bragg grating strain-sensor demodulation technique using a wavelength division coupler,” Electron. Lett. 30, 75–76 (1994).
[CrossRef]

A. B. L. Ribeiro, L. A. Ferreira, M. Tsvekov, J. L. Santos, “All-fiber interrogation technique for fiber Bragg sensors using a biconical fiber filter,” Electron. Lett. 32, 382–383 (1996).
[CrossRef]

IEE Proc. Optoelectron. (1)

J. J. Lepley, A. S. Siddiqui, “Primary referenced DWDM frequency comb generator,” IEE Proc. Optoelectron. 146, 121–124 (1999).
[CrossRef]

IEEE Photonics Technol. Lett. (2)

S. M. Melle, K. Liu, R. M. Measures, “A passive wavelength demodulation system for guided-wave Bragg grating sensors,” IEEE Photonics Technol. Lett. 4, 516–518 (1992).
[CrossRef]

B. Mason, S. P. Denbarrs, L. A. Coldren, “Tunable sampled-grating DBR lasers with integrated wavelength monitors,” IEEE Photonics Technol. Lett. 10, 1085–1087 (1998).
[CrossRef]

J. Lightwave Technol. (1)

M. G. Xu, H. Geiger, J. P. Dakin, “Modeling and performance analysis of a fiber Bragg grating interrogation system using an acousto-optic tunable filter,” J. Lightwave Technol. 14, 391–396 (1996).
[CrossRef]

Meas. Sci. Technol. (1)

Y. Liu, L. Zhang, I. Bennion, “Fabricating fibre edge filters with arbitrary spectral response based on titled chirped grating structures,” Meas. Sci. Technol. 10, L1–L3 (1999).
[CrossRef]

Opt. Exp. (1)

Q. Wang, G. Farrell, T. Freir, “Theoretical and experimental investigations of macrobend losses for standard single mode fibers,” Opt. Exp. 13, 4476–4484 (2005).
[CrossRef]

Other (1)

M. Bass, E. W. Van Stryland, D. R. William, W. L. Wolfe, Handbook of Optics, 2nd ed. (McGraw-Hill, 1995), Vol. 1, Part 4.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic configuration of edge-filter-based ratiometric wavelength-measurement system.

Fig. 2
Fig. 2

Measured intensity distributions for a tunable laser in the wavelength range from 1500 to 1600 nm.

Fig. 3
Fig. 3

Transmission responses of edge filters and corresponding ratios R of systems.

Fig. 4
Fig. 4

Differences between transmission response and output ratio of the system at (a) λ2 = 1600 nm and (b) λ2 = 1550 nm.

Fig. 5
Fig. 5

(a) Measured transmission responses of the edge filters and calculated ratios of the system, (b) measured transmission responses of the edge filters and measured ratios of the system.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

10 log 10 [ I λ 0 ( λ ) ] = { 10 log 10 { exp [ 4 ln 2 ( λ λ 0 ) 2 Δ λ 0 2 ] } , | λ λ 0 | Ω S + R ( λ 0 ) , | λ λ 0 | > Ω ,
R ( λ 0 ) = 10 log 10 [ I λ 0 ( λ ) T f ( λ ) d λ I λ 0 ( λ ) d λ ] .
T ¯ f ( λ ) = T ¯ f ( λ 1 ) + [ T ¯ f ( λ 2 ) T ¯ f ( λ 1 ) ] ( λ 2 λ 1 ) ( λ λ 1 ) .

Metrics