Abstract

We clarify the definition of the polarization extinction ratio—also called polarization cross talk—of fiber-based devices. Its strong wavelength dependence, even for simple devices such as a single-fiber patchcord, is highlighted. Thus white sources may not be used for most measurements. We also explain the weakness of measurements with a rotating polarizer and a monochromatic source. Only a polarimeter may be used if accuracy is required. We report measurements of connections (including two connectors and one mating sleeve) and show the importance of the mating sleeve in the result. Finally, we define the validity domain of the standardized method, which uses both a white source and a rotating polarizer.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. R. Haigh, S. Kemsley, “Aspect of PER measurements,” presented at the Optical Fiber Measurement Conference, Cambridge, UK, 26–28 September 2001; http://www.npl.co.uk/photonics/news/polarisation.html .
  2. R. Stevens, “Polarisation extinction ratio—measurement requirements for optical communication systems,” (National Physical Laboratory, 2002).
  3. R. M. Craig, “Interlaboratory comparison of polarization crosstalk measurement methods in terminated high-birefringence optical fiber,” in Optical Fiber Communication Conference (OFC), Vol. 2 of 1998 OSA Technical Digest Series (Optical Society of America, 1998), pp. 180–181.
  4. M. K. Davis, A. Echavarria, D. A. S. Loeber, “Polarization extinction ratio impact on spectral stability of Bragg grating stabilized laser diodes,” IEEE Photon. Technol. Lett. 16, 2003–2005 (2004).
    [CrossRef]
  5. G. Cancellieri, P. Fantini, U. Pesciarelli, “Effects of joints on single-mode single-polarization optical fiber links,” Appl. Opt. 24, 964–969 (1985).
    [CrossRef] [PubMed]
  6. G. Cancellieri, P. Fantini, M. Tilio, “Single-mode single-polarization fibers: Effects of residual polarization coupling,” J. Opt. Soc. Am. A, 2, 1885–1890 (1985).
    [CrossRef]
  7. J. E. Rothenberg, D. F. Browning, R. B. Wilcox, “Issue of FM to AM conversion on the National Ignition Facility,” in Proceedings of the Third International Conference on Solid State Lasers for Application to Inertial Confinement Fusion, W. H. Lowdermilk, ed., Proc. SPIE3492, 51–61 (1999).
    [CrossRef]
  8. M. Monnerie, “Polarization-maintaining single-mode fiber cables: Influence of joins,” Appl. Opt. 20, 2400–2406 (1981).
    [CrossRef]
  9. www.lmj-cea.fr and www.llnl.gov/nif/project
  10. W. Zheng, “Automated fusion-splicing of polarization maintaining fibers,” J. Lightwave Technol. 15, 125–134 (1997).
    [CrossRef]
  11. S. L. A. Carrara, “Birefringent-fiber splice alignment,” in Fiber Optic Sensors IV, R. T. Kersten, ed., Proc. SPIE1267, 24–28 (1990).
    [CrossRef]
  12. Y.-Z. Dai, “Relation between external stresses and the degradation of extinction ratio of polarization maintaining fibers,” presented at the National Fiber Optic Engineers Conference, Denver, Col., 28–30 August 2000.
  13. F. M. Sears, “Polarization-maintenance limits in polarization-maintaining fibers and measurements,” J. Lightwave Technol. 8, 684–690 (1990).
    [CrossRef]
  14. R. M. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (Elsevier, 1989).
  15. “FOTP-199: In-line polarization-crosstalk measurement method for polarization-maintaining optical fibers, components, and systems,” (Telecommunications Industry Association, 2002).
  16. “FOTP-193: Polarization crosstalk method for polarization maintaining optical fiber and components,” (Telecommunications Industry Association, 1999).

2004 (1)

M. K. Davis, A. Echavarria, D. A. S. Loeber, “Polarization extinction ratio impact on spectral stability of Bragg grating stabilized laser diodes,” IEEE Photon. Technol. Lett. 16, 2003–2005 (2004).
[CrossRef]

1997 (1)

W. Zheng, “Automated fusion-splicing of polarization maintaining fibers,” J. Lightwave Technol. 15, 125–134 (1997).
[CrossRef]

1990 (1)

F. M. Sears, “Polarization-maintenance limits in polarization-maintaining fibers and measurements,” J. Lightwave Technol. 8, 684–690 (1990).
[CrossRef]

1985 (2)

1981 (1)

Azzam, R. M.

R. M. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (Elsevier, 1989).

Bashara, N. M.

R. M. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (Elsevier, 1989).

Browning, D. F.

J. E. Rothenberg, D. F. Browning, R. B. Wilcox, “Issue of FM to AM conversion on the National Ignition Facility,” in Proceedings of the Third International Conference on Solid State Lasers for Application to Inertial Confinement Fusion, W. H. Lowdermilk, ed., Proc. SPIE3492, 51–61 (1999).
[CrossRef]

Cancellieri, G.

Carrara, S. L. A.

S. L. A. Carrara, “Birefringent-fiber splice alignment,” in Fiber Optic Sensors IV, R. T. Kersten, ed., Proc. SPIE1267, 24–28 (1990).
[CrossRef]

Craig, R. M.

R. M. Craig, “Interlaboratory comparison of polarization crosstalk measurement methods in terminated high-birefringence optical fiber,” in Optical Fiber Communication Conference (OFC), Vol. 2 of 1998 OSA Technical Digest Series (Optical Society of America, 1998), pp. 180–181.

Dai, Y.-Z.

Y.-Z. Dai, “Relation between external stresses and the degradation of extinction ratio of polarization maintaining fibers,” presented at the National Fiber Optic Engineers Conference, Denver, Col., 28–30 August 2000.

Davis, M. K.

M. K. Davis, A. Echavarria, D. A. S. Loeber, “Polarization extinction ratio impact on spectral stability of Bragg grating stabilized laser diodes,” IEEE Photon. Technol. Lett. 16, 2003–2005 (2004).
[CrossRef]

Echavarria, A.

M. K. Davis, A. Echavarria, D. A. S. Loeber, “Polarization extinction ratio impact on spectral stability of Bragg grating stabilized laser diodes,” IEEE Photon. Technol. Lett. 16, 2003–2005 (2004).
[CrossRef]

Fantini, P.

Haigh, N. R.

N. R. Haigh, S. Kemsley, “Aspect of PER measurements,” presented at the Optical Fiber Measurement Conference, Cambridge, UK, 26–28 September 2001; http://www.npl.co.uk/photonics/news/polarisation.html .

Kemsley, S.

N. R. Haigh, S. Kemsley, “Aspect of PER measurements,” presented at the Optical Fiber Measurement Conference, Cambridge, UK, 26–28 September 2001; http://www.npl.co.uk/photonics/news/polarisation.html .

Loeber, D. A. S.

M. K. Davis, A. Echavarria, D. A. S. Loeber, “Polarization extinction ratio impact on spectral stability of Bragg grating stabilized laser diodes,” IEEE Photon. Technol. Lett. 16, 2003–2005 (2004).
[CrossRef]

Monnerie, M.

Pesciarelli, U.

Rothenberg, J. E.

J. E. Rothenberg, D. F. Browning, R. B. Wilcox, “Issue of FM to AM conversion on the National Ignition Facility,” in Proceedings of the Third International Conference on Solid State Lasers for Application to Inertial Confinement Fusion, W. H. Lowdermilk, ed., Proc. SPIE3492, 51–61 (1999).
[CrossRef]

Sears, F. M.

F. M. Sears, “Polarization-maintenance limits in polarization-maintaining fibers and measurements,” J. Lightwave Technol. 8, 684–690 (1990).
[CrossRef]

Stevens, R.

R. Stevens, “Polarisation extinction ratio—measurement requirements for optical communication systems,” (National Physical Laboratory, 2002).

Tilio, M.

Wilcox, R. B.

J. E. Rothenberg, D. F. Browning, R. B. Wilcox, “Issue of FM to AM conversion on the National Ignition Facility,” in Proceedings of the Third International Conference on Solid State Lasers for Application to Inertial Confinement Fusion, W. H. Lowdermilk, ed., Proc. SPIE3492, 51–61 (1999).
[CrossRef]

Zheng, W.

W. Zheng, “Automated fusion-splicing of polarization maintaining fibers,” J. Lightwave Technol. 15, 125–134 (1997).
[CrossRef]

Appl. Opt. (2)

IEEE Photon. Technol. Lett. (1)

M. K. Davis, A. Echavarria, D. A. S. Loeber, “Polarization extinction ratio impact on spectral stability of Bragg grating stabilized laser diodes,” IEEE Photon. Technol. Lett. 16, 2003–2005 (2004).
[CrossRef]

J. Lightwave Technol. (2)

F. M. Sears, “Polarization-maintenance limits in polarization-maintaining fibers and measurements,” J. Lightwave Technol. 8, 684–690 (1990).
[CrossRef]

W. Zheng, “Automated fusion-splicing of polarization maintaining fibers,” J. Lightwave Technol. 15, 125–134 (1997).
[CrossRef]

J. Opt. Soc. Am. A (1)

Other (10)

J. E. Rothenberg, D. F. Browning, R. B. Wilcox, “Issue of FM to AM conversion on the National Ignition Facility,” in Proceedings of the Third International Conference on Solid State Lasers for Application to Inertial Confinement Fusion, W. H. Lowdermilk, ed., Proc. SPIE3492, 51–61 (1999).
[CrossRef]

N. R. Haigh, S. Kemsley, “Aspect of PER measurements,” presented at the Optical Fiber Measurement Conference, Cambridge, UK, 26–28 September 2001; http://www.npl.co.uk/photonics/news/polarisation.html .

R. Stevens, “Polarisation extinction ratio—measurement requirements for optical communication systems,” (National Physical Laboratory, 2002).

R. M. Craig, “Interlaboratory comparison of polarization crosstalk measurement methods in terminated high-birefringence optical fiber,” in Optical Fiber Communication Conference (OFC), Vol. 2 of 1998 OSA Technical Digest Series (Optical Society of America, 1998), pp. 180–181.

S. L. A. Carrara, “Birefringent-fiber splice alignment,” in Fiber Optic Sensors IV, R. T. Kersten, ed., Proc. SPIE1267, 24–28 (1990).
[CrossRef]

Y.-Z. Dai, “Relation between external stresses and the degradation of extinction ratio of polarization maintaining fibers,” presented at the National Fiber Optic Engineers Conference, Denver, Col., 28–30 August 2000.

www.lmj-cea.fr and www.llnl.gov/nif/project

R. M. Azzam, N. M. Bashara, Ellipsometry and Polarized Light (Elsevier, 1989).

“FOTP-199: In-line polarization-crosstalk measurement method for polarization-maintaining optical fibers, components, and systems,” (Telecommunications Industry Association, 2002).

“FOTP-193: Polarization crosstalk method for polarization maintaining optical fiber and components,” (Telecommunications Industry Association, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(Color online) Pulse propagation in a patchcord composed of two connectors and a PMF.

Fig. 2
Fig. 2

PER of a patchcord composed of a PMF having 10-ps DGD (∼7 m long) with connectors having a frequency-independent 20-dB PER.

Fig. 3
Fig. 3

(Color online) Connector PER measurement setup with a monochromatic source and a rotating polarizer.

Fig. 4
Fig. 4

(Color online) Poincare spheres showing (a) the input SOP Sin of the fiber in the frame of the fiber axes and (b) the output SOP Sout in the frame determined by the output connector key in the case in which the connectors induce only a geometrical rotation of the axes (theoretical case).

Fig. 5
Fig. 5

(Color online) Same as Fig. 4 but in the case in which the connectors induce a full polarization transformation because of a twisting constraint (practical case).

Fig. 6
Fig. 6

(Color online) Connector PER measurement setup with a monochromatic source and a polarimeter.

Fig. 7
Fig. 7

(Color online) Histogram of connection D1 PER and Poincaré sphere showing the output Stokes vector in the frame defined by the output connector D2 key.

Fig. 8
Fig. 8

Estimated connection D1 PER with D2 positions shown in Fig. 7 versus the actual measured values of the same connections D1. The correlation factor is equal to 76%. This measurement bias used to plot this figure is θbias = −0.9°, ɛbias = +1.5°. The inset is the same plot on the same scale without measurement bias. The correlation factor is only 27%.

Fig. 9
Fig. 9

PER of connection D1 versus DOP when measurement is performed with a white source and the setup of Fig. 6.

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

( P x P y ) = [ cos 2 θ 2 sin 2 θ 2 sin 2 θ 2 cos 2 θ 2 ] [ cos 2 θ 1 sin 2 θ 1 sin 2 θ 1 cos 2 θ 1 ] ( P x 0 0 ) ,
PER Int = cos 2 θ 1 cos 2 θ 2 + sin 2 θ 1 sin 2 θ 2 cos 2 θ 1 sin 2 θ 2 + sin 2 θ 1 cos 2 θ 2 .
[ P x exp ( i φ x ) P y exp ( i φ y ) ] = [ cos θ 2 sin θ 2 sin θ 2 cos θ 2 ] × [ exp ( i φ / 2 ) 0 0 exp ( i φ / 2 ) ] × [ cos θ 1 sin θ 1 sin θ 1 cos θ 1 ] ( P x 0 0 ) .
PER φ = 1 2 π cos 2 θ 1 cos 2 θ 2 + sin 2 θ 1 sin 2 θ 2 2 cos θ 1 cos θ 2 sin θ 1 sin θ 2 cos φ cos 2 θ 1 sin 2 θ 2 + sin 2 θ 1 cos 2 θ 2 2 cos θ 1 cos θ 2 sin θ 1 sin θ 2 cos φ d φ .
( cos 2 θ 1 cos 2 θ 2 + sin 2 θ 1 sin 2 θ 2 2 cos θ 1 cos θ 2 sin θ 1 sin θ 2 cos φ ) d φ ( cos 2 θ 1 sin 2 θ 2 + sin 2 θ 1 cos 2 θ 2 2 cos θ 1 cos θ 2 sin θ 1 sin θ 2 cos φ ) d φ = PER Int .
M ( f ) = [ cos ρ 2 sin ρ 2 sin ρ 2 cos ρ 2 ] [ exp [ + i ( π f DGD + φ / 2 ) ] 0 0 exp [ i ( π f DGD + φ / 2 ) ] ] [ cos ρ 1 sin ρ 1 sin ρ 1 cos ρ 1 ] ,
PER i = 1 tan 2 ( ρ i ) .
{ P x ( f ) exp [ i φ x ( f ) ] P y ( f ) exp [ i φ y ( f ) ] } = M ( f ) ( P x 0 0 ) .
PER = cos 2 ρ 1 cos 2 ρ 2 + sin 2 ρ 1 sin 2 ρ 2 2 cos ρ 1 cos ρ 1 sin ρ 1 sin ρ 2 cos ( 2 π f DGD + φ ) cos 2 ρ 1 sin 2 ρ 2 + sin 2 ρ 1 cos 2 ρ 2 + 2 cos ρ 1 cos ρ 1 sin ρ 1 sin ρ 2 cos ( 2 π f DGD + φ ) .
1 PER 1 PER 1 + 1 PER 2 + 2 PER 1 PER 2 × cos ( 2 π f DGD + φ ) .
PER = 1 tan 2 ρ = 1 + cos ( 2 ρ ) 1 cos ( 2 ρ ) = 1 + cos ( 2 θ ) cos ( 2 ɛ ) 1 cos ( 2 θ ) cos ( 2 ɛ ) ,
PER dB = 10 log 10 ( 1 + S A · S B 1 S A · S B ) .
PER = 1 + DOP 1 DOP .

Metrics