Abstract

A liquid-crystal optical phased-array technology that uses stressed liquid crystals provides a new type of tip-tilt wavefront corrector. It demonstrates a very fast time response (10 kHz) and high beam-steering efficiency (∼91%). The new technology presented here will allow for a nonmechanical, high-speed correction with simple device construction.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. D. Love, J. V. Major, A. Purvis, “Liquid crystal prisms for tip-tilt adaptive optics,” Opt. Lett. 19, 1170–1172 (1994).
    [Crossref] [PubMed]
  2. M. S. Zakynthinaki, Y. G. Saridakis, “Stochastic optimization for a tip-tilt adaptive correcting system,” Comp. Phys. Commun. 150, 274–292 (2003).
    [Crossref]
  3. L. A. Thompson, “Adaptive optics in astronomy,” Phys. Today 47(12), 24–31 (1994).
    [Crossref]
  4. J. P. Siegenthaler, S. Gordeyev, E. J. Jumper, “Mapping the optically aberrating environment in a partially quieted Mach 0.6 free shear layer,” paper AIAA-2003-3607, presented at the 34th AIAA Plasmadynamics and Lasers Conference, Orlando, Fla., 23–26 June, 2003 (American Institute for Aeronautics and Astronautics, Reston: Va., 2003).
  5. V. A. Dorezyuk, A. F. Naumov, V. I. Shmal’gauzen, “Control of liquid crystal correctors in adaptive optical systems,” Sov. Tech. Phys. 34, 1389–1393 (1989).
  6. G. D. Love, T. J. D. Oag, A. K. Kirby, “Common path interferometric wavefront sensor for extreme adaptive optics,” Opt. Express 13, 3491–3499 (2005).
    [Crossref] [PubMed]
  7. A. V. Kudryashov, J. Gonglewski, S. Browne, R. Highland, “Liquid crystal phase modulator for adaptive optics. Temporal performance characterization,” Opt. Commun. 141, 247–253 (1997).
    [Crossref]
  8. G. D. Love, “Liquid-crystal phase modulator for unpolarized light,” Appl. Opt. 32, 2222–2223 (1993).
    [Crossref] [PubMed]
  9. S. T. Kowel, P. Kornreich, A. Nouhi, “Adaptive spherical lens,” Appl. Opt. 23, 2774–2777 (1984).
    [Crossref] [PubMed]
  10. S. T. Wu, C. S. Wu, “Small angle relaxation of highly deformed nematic liquid crystals,” Appl. Phys. Lett. 53, 1794–1796 (1988).
    [Crossref]
  11. P. J. Bos, K. R. Koehler-Beran, “The pi-cell: a fast liquid-crystal optical switching device,” Mol. Cryst. Liq. Cryst. 113, 329–339 (1984).
    [Crossref]
  12. A. K. Kirby, G. D. Love, “Fast, large and controllable phase modulation using dual frequency liquid crystals,” Opt. Express 12, 1470–1475 (2004).
    [Crossref] [PubMed]
  13. D. Dayton, S. Browne, J. Gonglewski, S. Restaino, “Characterization and control of a multielement dual-frequency liquid-crystal device for high-speed adaptive optical wavefront correction,” Appl. Opt. 40, 2345–2355 (2001).
    [Crossref]
  14. S. R. Restaino, D. Dayton, S. Browne, J. Gonglewski, J. Baker, S. Rogers, S. McDermott, J. Gallegos, M. Shilko, “On the use of dual frequency nematic material for adaptive optics systems: first results of a closed-loop experiment,” Opt. Express 6, 2–6 (2000).
    [Crossref] [PubMed]
  15. G. D. Love, N. Andrews, P. Birch, D. Buscher, P. Doel, C. Dunlop, J. Major, R. Myers, A. Purvis, R. Sharples, A. Vick, A. Zadrozny, S. R. Restaino, A. Glindemann, “Binary adaptive optics: atmospheric wave-front correction with a half-wave phase shifter,” Appl. Opt. 34, 6058–6066 (1995).
    [Crossref] [PubMed]
  16. J. L. West, G. Zhang, A. Glushchenko, Yuri Reznikov, “Fast birefringent mode stressed liquid crystal,” Appl. Phys. Lett. 86, 031111 (2005).
    [Crossref]
  17. P. S. Drzaic, Liquid Crystal Dispersions (World Scientific, 1995).
    [Crossref]
  18. J. W. Doane, N. A. Vaz, B. G. Wu, S. Zumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett. 48, 269–271 (1986).
    [Crossref]
  19. O. A. Aphonin, “Orientational ordering of bipolar nematic droplets in a stretched PVA matrix,” Mol. Cryst. Liq. Cryst. 281, 105–122 (1996).
    [Crossref]
  20. H. S. Kitzerow, H. Molsen, G. Heppke, “Linear electro-optic effects in polymer-dispersed ferroelectric liquid crystals,” Appl. Phys. Lett. 60, 3093–3095 (1992).
    [Crossref]
  21. C. M. Leader, W. Zheng, J. Tipping, H. J. Coles, “Shear aligned polymer dispersed ferroelectric liquid crystal devices,” Liq. Cryst. 19, 415–419 (1995).
    [Crossref]
  22. P. F. McManamon, E. A. Watson, T. A. Dorschner, L. J. Friedman, “Applications look at the use of liquid crytal writable gratings for steering passive radiation,” Opt. Eng. 32, 2657–2664 (1993).
    [Crossref]
  23. P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268–298 (1996).
    [Crossref]

2005 (2)

J. L. West, G. Zhang, A. Glushchenko, Yuri Reznikov, “Fast birefringent mode stressed liquid crystal,” Appl. Phys. Lett. 86, 031111 (2005).
[Crossref]

G. D. Love, T. J. D. Oag, A. K. Kirby, “Common path interferometric wavefront sensor for extreme adaptive optics,” Opt. Express 13, 3491–3499 (2005).
[Crossref] [PubMed]

2004 (1)

2003 (1)

M. S. Zakynthinaki, Y. G. Saridakis, “Stochastic optimization for a tip-tilt adaptive correcting system,” Comp. Phys. Commun. 150, 274–292 (2003).
[Crossref]

2001 (1)

2000 (1)

1997 (1)

A. V. Kudryashov, J. Gonglewski, S. Browne, R. Highland, “Liquid crystal phase modulator for adaptive optics. Temporal performance characterization,” Opt. Commun. 141, 247–253 (1997).
[Crossref]

1996 (2)

O. A. Aphonin, “Orientational ordering of bipolar nematic droplets in a stretched PVA matrix,” Mol. Cryst. Liq. Cryst. 281, 105–122 (1996).
[Crossref]

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268–298 (1996).
[Crossref]

1995 (2)

1994 (2)

1993 (2)

P. F. McManamon, E. A. Watson, T. A. Dorschner, L. J. Friedman, “Applications look at the use of liquid crytal writable gratings for steering passive radiation,” Opt. Eng. 32, 2657–2664 (1993).
[Crossref]

G. D. Love, “Liquid-crystal phase modulator for unpolarized light,” Appl. Opt. 32, 2222–2223 (1993).
[Crossref] [PubMed]

1992 (1)

H. S. Kitzerow, H. Molsen, G. Heppke, “Linear electro-optic effects in polymer-dispersed ferroelectric liquid crystals,” Appl. Phys. Lett. 60, 3093–3095 (1992).
[Crossref]

1989 (1)

V. A. Dorezyuk, A. F. Naumov, V. I. Shmal’gauzen, “Control of liquid crystal correctors in adaptive optical systems,” Sov. Tech. Phys. 34, 1389–1393 (1989).

1988 (1)

S. T. Wu, C. S. Wu, “Small angle relaxation of highly deformed nematic liquid crystals,” Appl. Phys. Lett. 53, 1794–1796 (1988).
[Crossref]

1986 (1)

J. W. Doane, N. A. Vaz, B. G. Wu, S. Zumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett. 48, 269–271 (1986).
[Crossref]

1984 (2)

P. J. Bos, K. R. Koehler-Beran, “The pi-cell: a fast liquid-crystal optical switching device,” Mol. Cryst. Liq. Cryst. 113, 329–339 (1984).
[Crossref]

S. T. Kowel, P. Kornreich, A. Nouhi, “Adaptive spherical lens,” Appl. Opt. 23, 2774–2777 (1984).
[Crossref] [PubMed]

Andrews, N.

Aphonin, O. A.

O. A. Aphonin, “Orientational ordering of bipolar nematic droplets in a stretched PVA matrix,” Mol. Cryst. Liq. Cryst. 281, 105–122 (1996).
[Crossref]

Baker, J.

Birch, P.

Bos, P. J.

P. J. Bos, K. R. Koehler-Beran, “The pi-cell: a fast liquid-crystal optical switching device,” Mol. Cryst. Liq. Cryst. 113, 329–339 (1984).
[Crossref]

Browne, S.

Buscher, D.

Coles, H. J.

C. M. Leader, W. Zheng, J. Tipping, H. J. Coles, “Shear aligned polymer dispersed ferroelectric liquid crystal devices,” Liq. Cryst. 19, 415–419 (1995).
[Crossref]

Corkum, D. L.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268–298 (1996).
[Crossref]

Dayton, D.

Doane, J. W.

J. W. Doane, N. A. Vaz, B. G. Wu, S. Zumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett. 48, 269–271 (1986).
[Crossref]

Doel, P.

Dorezyuk, V. A.

V. A. Dorezyuk, A. F. Naumov, V. I. Shmal’gauzen, “Control of liquid crystal correctors in adaptive optical systems,” Sov. Tech. Phys. 34, 1389–1393 (1989).

Dorschner, T. A.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268–298 (1996).
[Crossref]

P. F. McManamon, E. A. Watson, T. A. Dorschner, L. J. Friedman, “Applications look at the use of liquid crytal writable gratings for steering passive radiation,” Opt. Eng. 32, 2657–2664 (1993).
[Crossref]

Drzaic, P. S.

P. S. Drzaic, Liquid Crystal Dispersions (World Scientific, 1995).
[Crossref]

Dunlop, C.

Friedman, L. J.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268–298 (1996).
[Crossref]

P. F. McManamon, E. A. Watson, T. A. Dorschner, L. J. Friedman, “Applications look at the use of liquid crytal writable gratings for steering passive radiation,” Opt. Eng. 32, 2657–2664 (1993).
[Crossref]

Gallegos, J.

Glindemann, A.

Glushchenko, A.

J. L. West, G. Zhang, A. Glushchenko, Yuri Reznikov, “Fast birefringent mode stressed liquid crystal,” Appl. Phys. Lett. 86, 031111 (2005).
[Crossref]

Gonglewski, J.

Gordeyev, S.

J. P. Siegenthaler, S. Gordeyev, E. J. Jumper, “Mapping the optically aberrating environment in a partially quieted Mach 0.6 free shear layer,” paper AIAA-2003-3607, presented at the 34th AIAA Plasmadynamics and Lasers Conference, Orlando, Fla., 23–26 June, 2003 (American Institute for Aeronautics and Astronautics, Reston: Va., 2003).

Heppke, G.

H. S. Kitzerow, H. Molsen, G. Heppke, “Linear electro-optic effects in polymer-dispersed ferroelectric liquid crystals,” Appl. Phys. Lett. 60, 3093–3095 (1992).
[Crossref]

Highland, R.

A. V. Kudryashov, J. Gonglewski, S. Browne, R. Highland, “Liquid crystal phase modulator for adaptive optics. Temporal performance characterization,” Opt. Commun. 141, 247–253 (1997).
[Crossref]

Hobbs, D. S.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268–298 (1996).
[Crossref]

Holz, M.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268–298 (1996).
[Crossref]

Jumper, E. J.

J. P. Siegenthaler, S. Gordeyev, E. J. Jumper, “Mapping the optically aberrating environment in a partially quieted Mach 0.6 free shear layer,” paper AIAA-2003-3607, presented at the 34th AIAA Plasmadynamics and Lasers Conference, Orlando, Fla., 23–26 June, 2003 (American Institute for Aeronautics and Astronautics, Reston: Va., 2003).

Kirby, A. K.

Kitzerow, H. S.

H. S. Kitzerow, H. Molsen, G. Heppke, “Linear electro-optic effects in polymer-dispersed ferroelectric liquid crystals,” Appl. Phys. Lett. 60, 3093–3095 (1992).
[Crossref]

Koehler-Beran, K. R.

P. J. Bos, K. R. Koehler-Beran, “The pi-cell: a fast liquid-crystal optical switching device,” Mol. Cryst. Liq. Cryst. 113, 329–339 (1984).
[Crossref]

Kornreich, P.

Kowel, S. T.

Kudryashov, A. V.

A. V. Kudryashov, J. Gonglewski, S. Browne, R. Highland, “Liquid crystal phase modulator for adaptive optics. Temporal performance characterization,” Opt. Commun. 141, 247–253 (1997).
[Crossref]

Leader, C. M.

C. M. Leader, W. Zheng, J. Tipping, H. J. Coles, “Shear aligned polymer dispersed ferroelectric liquid crystal devices,” Liq. Cryst. 19, 415–419 (1995).
[Crossref]

Liberman, S.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268–298 (1996).
[Crossref]

Love, G. D.

Major, J.

Major, J. V.

McDermott, S.

McManamon, P. F.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268–298 (1996).
[Crossref]

P. F. McManamon, E. A. Watson, T. A. Dorschner, L. J. Friedman, “Applications look at the use of liquid crytal writable gratings for steering passive radiation,” Opt. Eng. 32, 2657–2664 (1993).
[Crossref]

Molsen, H.

H. S. Kitzerow, H. Molsen, G. Heppke, “Linear electro-optic effects in polymer-dispersed ferroelectric liquid crystals,” Appl. Phys. Lett. 60, 3093–3095 (1992).
[Crossref]

Myers, R.

Naumov, A. F.

V. A. Dorezyuk, A. F. Naumov, V. I. Shmal’gauzen, “Control of liquid crystal correctors in adaptive optical systems,” Sov. Tech. Phys. 34, 1389–1393 (1989).

Nguyen, H. Q.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268–298 (1996).
[Crossref]

Nouhi, A.

Oag, T. J. D.

Purvis, A.

Resler, D. P.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268–298 (1996).
[Crossref]

Restaino, S.

Restaino, S. R.

Reznikov, Yuri

J. L. West, G. Zhang, A. Glushchenko, Yuri Reznikov, “Fast birefringent mode stressed liquid crystal,” Appl. Phys. Lett. 86, 031111 (2005).
[Crossref]

Rogers, S.

Saridakis, Y. G.

M. S. Zakynthinaki, Y. G. Saridakis, “Stochastic optimization for a tip-tilt adaptive correcting system,” Comp. Phys. Commun. 150, 274–292 (2003).
[Crossref]

Sharp, R. C.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268–298 (1996).
[Crossref]

Sharples, R.

Shilko, M.

Shmal’gauzen, V. I.

V. A. Dorezyuk, A. F. Naumov, V. I. Shmal’gauzen, “Control of liquid crystal correctors in adaptive optical systems,” Sov. Tech. Phys. 34, 1389–1393 (1989).

Siegenthaler, J. P.

J. P. Siegenthaler, S. Gordeyev, E. J. Jumper, “Mapping the optically aberrating environment in a partially quieted Mach 0.6 free shear layer,” paper AIAA-2003-3607, presented at the 34th AIAA Plasmadynamics and Lasers Conference, Orlando, Fla., 23–26 June, 2003 (American Institute for Aeronautics and Astronautics, Reston: Va., 2003).

Thompson, L. A.

L. A. Thompson, “Adaptive optics in astronomy,” Phys. Today 47(12), 24–31 (1994).
[Crossref]

Tipping, J.

C. M. Leader, W. Zheng, J. Tipping, H. J. Coles, “Shear aligned polymer dispersed ferroelectric liquid crystal devices,” Liq. Cryst. 19, 415–419 (1995).
[Crossref]

Vaz, N. A.

J. W. Doane, N. A. Vaz, B. G. Wu, S. Zumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett. 48, 269–271 (1986).
[Crossref]

Vick, A.

Watson, E. A.

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268–298 (1996).
[Crossref]

P. F. McManamon, E. A. Watson, T. A. Dorschner, L. J. Friedman, “Applications look at the use of liquid crytal writable gratings for steering passive radiation,” Opt. Eng. 32, 2657–2664 (1993).
[Crossref]

West, J. L.

J. L. West, G. Zhang, A. Glushchenko, Yuri Reznikov, “Fast birefringent mode stressed liquid crystal,” Appl. Phys. Lett. 86, 031111 (2005).
[Crossref]

Wu, B. G.

J. W. Doane, N. A. Vaz, B. G. Wu, S. Zumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett. 48, 269–271 (1986).
[Crossref]

Wu, C. S.

S. T. Wu, C. S. Wu, “Small angle relaxation of highly deformed nematic liquid crystals,” Appl. Phys. Lett. 53, 1794–1796 (1988).
[Crossref]

Wu, S. T.

S. T. Wu, C. S. Wu, “Small angle relaxation of highly deformed nematic liquid crystals,” Appl. Phys. Lett. 53, 1794–1796 (1988).
[Crossref]

Zadrozny, A.

Zakynthinaki, M. S.

M. S. Zakynthinaki, Y. G. Saridakis, “Stochastic optimization for a tip-tilt adaptive correcting system,” Comp. Phys. Commun. 150, 274–292 (2003).
[Crossref]

Zhang, G.

J. L. West, G. Zhang, A. Glushchenko, Yuri Reznikov, “Fast birefringent mode stressed liquid crystal,” Appl. Phys. Lett. 86, 031111 (2005).
[Crossref]

Zheng, W.

C. M. Leader, W. Zheng, J. Tipping, H. J. Coles, “Shear aligned polymer dispersed ferroelectric liquid crystal devices,” Liq. Cryst. 19, 415–419 (1995).
[Crossref]

Zumer, S.

J. W. Doane, N. A. Vaz, B. G. Wu, S. Zumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett. 48, 269–271 (1986).
[Crossref]

Appl. Opt. (4)

Appl. Phys. Lett. (4)

J. L. West, G. Zhang, A. Glushchenko, Yuri Reznikov, “Fast birefringent mode stressed liquid crystal,” Appl. Phys. Lett. 86, 031111 (2005).
[Crossref]

J. W. Doane, N. A. Vaz, B. G. Wu, S. Zumer, “Field controlled light scattering from nematic microdroplets,” Appl. Phys. Lett. 48, 269–271 (1986).
[Crossref]

S. T. Wu, C. S. Wu, “Small angle relaxation of highly deformed nematic liquid crystals,” Appl. Phys. Lett. 53, 1794–1796 (1988).
[Crossref]

H. S. Kitzerow, H. Molsen, G. Heppke, “Linear electro-optic effects in polymer-dispersed ferroelectric liquid crystals,” Appl. Phys. Lett. 60, 3093–3095 (1992).
[Crossref]

Comp. Phys. Commun. (1)

M. S. Zakynthinaki, Y. G. Saridakis, “Stochastic optimization for a tip-tilt adaptive correcting system,” Comp. Phys. Commun. 150, 274–292 (2003).
[Crossref]

Liq. Cryst. (1)

C. M. Leader, W. Zheng, J. Tipping, H. J. Coles, “Shear aligned polymer dispersed ferroelectric liquid crystal devices,” Liq. Cryst. 19, 415–419 (1995).
[Crossref]

Mol. Cryst. Liq. Cryst. (2)

P. J. Bos, K. R. Koehler-Beran, “The pi-cell: a fast liquid-crystal optical switching device,” Mol. Cryst. Liq. Cryst. 113, 329–339 (1984).
[Crossref]

O. A. Aphonin, “Orientational ordering of bipolar nematic droplets in a stretched PVA matrix,” Mol. Cryst. Liq. Cryst. 281, 105–122 (1996).
[Crossref]

Opt. Commun. (1)

A. V. Kudryashov, J. Gonglewski, S. Browne, R. Highland, “Liquid crystal phase modulator for adaptive optics. Temporal performance characterization,” Opt. Commun. 141, 247–253 (1997).
[Crossref]

Opt. Eng. (1)

P. F. McManamon, E. A. Watson, T. A. Dorschner, L. J. Friedman, “Applications look at the use of liquid crytal writable gratings for steering passive radiation,” Opt. Eng. 32, 2657–2664 (1993).
[Crossref]

Opt. Express (3)

Opt. Lett. (1)

Phys. Today (1)

L. A. Thompson, “Adaptive optics in astronomy,” Phys. Today 47(12), 24–31 (1994).
[Crossref]

Proc. IEEE (1)

P. F. McManamon, T. A. Dorschner, D. L. Corkum, L. J. Friedman, D. S. Hobbs, M. Holz, S. Liberman, H. Q. Nguyen, D. P. Resler, R. C. Sharp, E. A. Watson, “Optical phased array technology,” Proc. IEEE 84, 268–298 (1996).
[Crossref]

Sov. Tech. Phys. (1)

V. A. Dorezyuk, A. F. Naumov, V. I. Shmal’gauzen, “Control of liquid crystal correctors in adaptive optical systems,” Sov. Tech. Phys. 34, 1389–1393 (1989).

Other (2)

J. P. Siegenthaler, S. Gordeyev, E. J. Jumper, “Mapping the optically aberrating environment in a partially quieted Mach 0.6 free shear layer,” paper AIAA-2003-3607, presented at the 34th AIAA Plasmadynamics and Lasers Conference, Orlando, Fla., 23–26 June, 2003 (American Institute for Aeronautics and Astronautics, Reston: Va., 2003).

P. S. Drzaic, Liquid Crystal Dispersions (World Scientific, 1995).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic drawings of a stressed LC cell: (a) after polymerization, (b) after shearing, (c) after an electric field has been applied.

Fig. 2
Fig. 2

Structure of the SLC tip-tilt corrector with a 24 strip interdigitally patterned ITO bottom substrate and a nonpatterned ITO top substrate. The width of an ITO strip is 412 µm; a line gap is 5 µm.

Fig. 3
Fig. 3

(Color online) SLC tip-tilt corrector transmittance before and after shearing referenced to the transmission of a NOA65 cell to correct for reflection loss.

Fig. 4
Fig. 4

Schematic drawing of the SLC tip-tilt corrector’s electro-optical characterization setup.

Fig. 5
Fig. 5

(Color online) Measured switching times of the SLC tip-tilt corrector. λ = 1.55 µm and V = 200.0 V.

Fig. 6
Fig. 6

Measured retardation of the SLC tip-tilt corrector as function of voltage. The linear range is roughly 67.0–191.0 V.

Fig. 7
Fig. 7

(Color online) Measured transmission spectra of the SLC tip-tilt corrector referenced to a NOA65 cell.

Fig. 8
Fig. 8

Measured phase shift of a 540 µm thick SLC device as function of voltage in the transmission mode.

Fig. 9
Fig. 9

(Color online) Schematic drawings of the beam-steering effect of a LC cell in several voltage driving conditions. Left, LC director configurations; right, corresponding optical phase profiles. ↔ indicates the beam polarization direction and ↑ indicates the beam propagation direction. (a) No voltage applied. (b) linear voltage ramp applied. Left, low voltage; right, high voltage. (c) Linear voltage ramp applied. Left side, high voltage; right side, low voltage.

Fig. 10
Fig. 10

(Color online) (a) Schematic drawing of the setup for beam profile and switching speed measurements. (b) Three possible positions to which the beam can be steered.

Fig. 11
Fig. 11

(a), (b) Beam profiles from a reflected reference cell in the Z and Y directions. (c) SLC steered and nonsteered beam profiles in the Z direction. To facilitate comparison of the beam intensity, the two peaks of the beams are aligned. (d) SLC steered and nonsteered beam profiles in the Y direction.

Fig. 12
Fig. 12

Measured response time of the SLC tip-tilt corrector. The waveform at the top is the time response of the SLC device; the waveform at the bottom is the driving waveform. The base frequency of the driving waveform is 10.0 kHz, and amplitudes are ±67.0 and ±191.0 V, respectively.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

sin θ = Δ n d L ,

Metrics