Abstract

We present the characteristics of integral imaging systems with large depth of focus (DOF) by use of two kinds of illumination: plane illumination and diffusing illumination. For each system, we perform ray analysis based on ray optics. To check the visual quality through optical experiments, we use an average image of observed images picked up at various positions within a large DOF. The synthesized elemental images for a three-dimensional (3-D) object with two character patterns were displayed in an optical system and its reconstruction experiments are performed. Experimental results show that use of diffusing illumination can improve visual quality of reconstruction 3-D images in depth-priority integral imaging.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Lippmann, “La photographie integrale,” C. R. Acad. Sci. 146, 446–451 (1908).
  2. H. E. Ives, “Optical properties of a Lippmann lenticulated sheet,” J. Opt. Soc. Am. 21, 171–176 (1931).
    [CrossRef]
  3. N. Davies, M. McCormick, M. Brewin, “Design and analysis of an image transfer system using microlens arrays,” Opt. Eng. 33, 3624–3633 (1994).
    [CrossRef]
  4. F. Okano, H. Hoshino, J. Arai, I. Yuyama, “Real-time pickup method for a three-dimensional image based on integral photography,” Appl. Opt. 36, 1598–1603 (1997).
    [CrossRef] [PubMed]
  5. S.-W. Min, B. Javidi, B. Lee, “Enhanced three-dimensional integral imaging system by use of double display devices,” Appl. Opt. 42, 4186–4195 (2003).
    [CrossRef] [PubMed]
  6. L. Erdmann, K. J. Gabriel, “High-resolution digital integral photography by use of a scanning microlens array,” Appl. Opt. 40, 5592–5599 (2001).
    [CrossRef]
  7. J.-S. Jang, B. Javidi, “Improved viewing resolution of three-dimensional integral imaging with nonstationary micro-optics,” Opt. Lett. 27, 324–326 (2002).
    [CrossRef]
  8. H. Liao, M. Iwahara, N. Hata, T. Dohi, “High-quality integral videography using a multiprojector,” Opt. Express 12, 1067–1076 (2004).
    [CrossRef] [PubMed]
  9. J.-S. Jang, F. Jin, B. Javidi, “Three-dimensional integral imaging with large depth of focus using real and virtual image fields,” Opt. Lett. 28, 1421–1423 (2003).
    [CrossRef] [PubMed]
  10. F. Jin, J.-S. Jang, B. Javidi, “Effects of device resolution on three-dimensional integral imaging,” Opt. Lett. 29, 1345–1347 (2004).
    [CrossRef] [PubMed]
  11. Y. Jeong, S. Jung, J.-H. Park, B. Lee, “A reflection-type integral imaging scheme for displaying three-dimensional images,” Opt. Lett. 27, 704–706 (2002).
    [CrossRef]
  12. J.-S. Jang, B. Javidi, “Three-dimensional integral imaging of micro-objects,” Opt. Lett. 29, 1230–1232 (2004).
    [CrossRef] [PubMed]
  13. Y. Kim, J.-H. Park, S.-W. Min, S. Jung, H. Choi, B. Lee, “Wide-viewing-angle integral three-dimensional imaging system by curving a screen and a lens array,” Appl. Opt. 44, 546–552 (2005).
    [CrossRef] [PubMed]
  14. J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).
  15. S.-H. Hong, B. Javidi, “Improved resolution 3D object reconstruction using computational integral imaging with time multiplexing,” Opt. Express 12, 4579–4588 (2004).
    [CrossRef] [PubMed]

2005 (1)

2004 (4)

2003 (2)

2002 (2)

2001 (1)

1997 (1)

1994 (1)

N. Davies, M. McCormick, M. Brewin, “Design and analysis of an image transfer system using microlens arrays,” Opt. Eng. 33, 3624–3633 (1994).
[CrossRef]

1931 (1)

1908 (1)

G. Lippmann, “La photographie integrale,” C. R. Acad. Sci. 146, 446–451 (1908).

Arai, J.

Brewin, M.

N. Davies, M. McCormick, M. Brewin, “Design and analysis of an image transfer system using microlens arrays,” Opt. Eng. 33, 3624–3633 (1994).
[CrossRef]

Choi, H.

Davies, N.

N. Davies, M. McCormick, M. Brewin, “Design and analysis of an image transfer system using microlens arrays,” Opt. Eng. 33, 3624–3633 (1994).
[CrossRef]

Dohi, T.

Erdmann, L.

Gabriel, K. J.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).

Hata, N.

Hong, S.-H.

Hoshino, H.

Ives, H. E.

Iwahara, M.

Jang, J.-S.

Javidi, B.

Jeong, Y.

Jin, F.

Jung, S.

Kim, Y.

Lee, B.

Liao, H.

Lippmann, G.

G. Lippmann, “La photographie integrale,” C. R. Acad. Sci. 146, 446–451 (1908).

McCormick, M.

N. Davies, M. McCormick, M. Brewin, “Design and analysis of an image transfer system using microlens arrays,” Opt. Eng. 33, 3624–3633 (1994).
[CrossRef]

Min, S.-W.

Okano, F.

Park, J.-H.

Yuyama, I.

Appl. Opt. (4)

C. R. Acad. Sci. (1)

G. Lippmann, “La photographie integrale,” C. R. Acad. Sci. 146, 446–451 (1908).

J. Opt. Soc. Am. (1)

Opt. Eng. (1)

N. Davies, M. McCormick, M. Brewin, “Design and analysis of an image transfer system using microlens arrays,” Opt. Eng. 33, 3624–3633 (1994).
[CrossRef]

Opt. Express (2)

Opt. Lett. (5)

Other (1)

J. W. Goodman, Introduction to Fourier Optics, 2nd ed. (McGraw-Hill, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Ray analysis of a single lenslet in the DPII system (a) with plane illumination and (b) with diffusing illumination.

Fig. 2
Fig. 2

Integrated image point in the DPII system (a) with plane illumination and (b) with diffusing illumination.

Fig. 3
Fig. 3

Experimental structure.

Fig. 4
Fig. 4

Elemental images used in the experiment.

Fig. 5
Fig. 5

Optically reconstructed images in the system with plane illumination at (a) z = 3 mm, (b) z = 23 mm, and (c) z = 33 mm and with diffusing illumination at (d) z = 3 mm, (e) z = 23 mm, and (f) z = 33 mm.

Fig. 6
Fig. 6

Captured images when plane illumination is used: (a) the first frame image, (b) the 50th frame image, (c) the 200th frame image. Captured images when diffusing illumination is used: (d) the first frame image, (e) the 50th frame image, (f) the 200th frame image.

Fig. 7
Fig. 7

Viewing images from the observer. (a) The system with plane illumination, (b) the system with diffusing illumination.

Metrics