Abstract

We investigate the thermal stability of Mo/SiC multilayer coatings at elevated temperatures. Transmission electron microscopy and x-ray diffraction studies show that, upon annealing, a thermally induced structural relaxation occurs that transforms the polycrystalline Mo and amorphous SiC layers in as-deposited multilayers into an amorphous Mo-Si-C alloy and crystalline SiC, respectively. After this relaxation process is complete, the multilayer is stable at temperatures up to 400 °C.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Takenaka, T. Kawamura, “Thermal stability of Mo/C/ Si/C multilayer soft x-ray mirrors,” J. Electron Spectrosc. Relat. Phenom. 80, 381–384 (1996).
    [CrossRef]
  2. S. Bajt, J. B. Alameda, T. W. Barbee, W. M. Clift, J. A. Folta, B. Kaufmann, E. A. Spiller, “Improved reflectance and stability of Mo-Si multilayers,” Opt. Eng. 41, 1797–1804 (2002).
    [CrossRef]
  3. Z. Jiang, X. Jiang, W. Liu, Z. Wu, “Thermal stability of multilayer films Pt/Si, W/Si, Mo/Si, and W/Si,” J. Appl. Phys. 65, 196–200 (1989).
    [CrossRef]
  4. A. Kloidt, K. Nolting, U. Kleineberg, B. Schmiedéskamp, U. Heinzmann, P. Müller, M. Kühne, “Enhancement of the reflectivity of Mo/Si multilayer mirrors by thermal treatment,” Appl. Phys. Lett. 58, 2601–2603 (1991).
    [CrossRef]
  5. R. R. Kola, D. L. Windt, W. K. Waskiewicz, B. E. Weir, R. Hull, G. K. Celler, C. A. Volkert, “Stress relaxation in Mo/Si multilayer structures,” Appl. Phys. Lett. 60, 3120–3122 (1992).
    [CrossRef]
  6. Y. Ijdiyaou, M. Azizan, E. L. Ameziane, M. Brunel, T. A. Nguyen Tan, “On the formation of molybdenum silicides in Mo-Si multilayers: the effect of Mo thickness and annealing temperature,” Appl. Surf. Sci. 55, 165–171 (1992).
    [CrossRef]
  7. R. S. Rosen, D. G. Stearns, M. A. Villiardos, M. E. Kassner, S. P. Vernon, Y. Cheng, “Silicide layer growth rates in Mo/Si multilayers,” Appl. Opt. 32, 6975–6980 (1993).
    [CrossRef] [PubMed]
  8. V. V. Kontradenko, Yu. P. Pershin, O. V. Poltseva, A. I. Fedorenko, E. N. Zubarev, S. A. Yulin, I. V. Kozhevnikov, S. I. Saitov, V. A. Chirkov, V. E. Levashov, A. V. Vinogradov, “Thermal stability of soft x-ray Mo-Si and MoSi2-Si multilayer mirrors,” Appl. Opt. 32, 1811–1816 (1993).
    [CrossRef]
  9. H. Azuma, A. Takeichi, I. Konomi, Y. Watanabe, S. Noda, “Thermally induced structural modification of nanometer-order Mo/Si multilayers by the spectral reflectance of laser-plasma soft X-rays,” Jpn. J. Appl. Phys. 43, 2078–2082 (1993).
    [CrossRef]
  10. J. M. Liang, L. J. Chen, “Interfacial reactions and thermal stability of ultrahigh vacuum deposited multilayered Mo/Si structures,” J. Appl. Phys. 79, 4072–4077 (1996).
    [CrossRef]
  11. E. Ziegler, “Multilayers for high heat load synchrotron applications,” Opt. Eng. 34, 445–452 (1995).
    [CrossRef]
  12. H.-J. Voorma, E. Louis, N. B. Koster, F. Bijkerk, “Temperature induced diffusion in Mo/Si multilayer mirrors,” J. Appl. Phys. 83, 4700–4708 (1998).
    [CrossRef]
  13. D. L. Windt, “Stress, microstructure, and stability of Mo/Si, W/Si, and Mo/C multilayer films,” J. Vac. Sci. Technol. A 18, 980–991 (2000).
    [CrossRef]
  14. C. Montcalm, “Reduction of residual stress in extreme ultraviolet Mo/Si multilayer mirrors with postdeposition thermal treatments,” Opt. Eng. 40, 469–477 (2001).
    [CrossRef]
  15. T. Feigel, H. Lauth, S. Yulin, N. Kaiser, “Heat resistance of EUV multilayer mirrors for long-time applications,” Microelectron. Eng. 57–58, 3–8 (2001).
    [CrossRef]
  16. T. Feigl, S. Yulin, T. Kuhlmann, N. Kaiser, “Damage resistant and low stress EUV multilayer mirrors,” Jpn. J. Appl. Phys. 41, 4082–4085 (2002).
    [CrossRef]
  17. T. Leisegang, D. C. Meyer, A. A. Levin, S. Braun, P. Paufler, “On the interplay of internal/external stress and thermal stability of Mo/Si multilayers,” Appl. Phys. A 77, 965–972 (2003).
    [CrossRef]
  18. D. L. Windt, S. Donguy, J. Seely, B. Kjomrattanawanich, “Experimental comparison of extreme-ultraviolet multilayers for solar physics,” Appl. Opt. 43, 1835–1848 (2004).
    [CrossRef] [PubMed]
  19. T. Böttger, D. C. Meyer, P. Paufler, S. Braun, M. Moss, H. Mai, E. Beyer, “Thermal stability of Mo/Si multilayers with boron carbide interlayers,” Thin Solid Films 444, 165–173 (2003).
    [CrossRef]
  20. H. Takenaka, H. Io, T. Haga, T. Kawamura, “Design and fabrication of highly heat-resistant Mo/Si multilayer soft x-ray mirrors with interleaved barrier layers,” J. Synchrotron Radiat. 5, 708–710 (1998).
    [CrossRef]
  21. S. Bajt, “High-reflectance interface-engineered multilayers,” invited talk at Physics of X-Ray Multilayer Structures, Chamonix, France, 3–7 March 2002, http://cletus.phys.columbia.edu/pxrms/archives/pxrms02/index.html .
  22. S. Braun, H. Mai, M. Moss, R. Scholz, A. Leson, “Mo/Si multilayers with different barrier layers for applications as extreme ultraviolet mirrors,” Jpn. J. Appl. Phys. 41, 4074–4081 (2002).
    [CrossRef]
  23. A. Patelli, J. Ravagnan, V. Rigato, G. Salmaso, D. Silvestrini, E. Bontempi, L. E. Depero, “Structure and interface properties of Mo/B4C/Si multilayers deposited by rf-magnetron sputtering,” Appl. Surf. Sci. 238, 262–268 (2004).
    [CrossRef]
  24. M. Ishino, O. Yoda, H. Takenaka, K. Sano, M. Koike, “Heat stability of Mo/Si multilayers inserted with compound layers,” Surf. Coat. Technol. 169–170, 628–631 (2003).
    [CrossRef]
  25. D. L. Windt, “IMD software for modeling the optical properties of multilayer films,” Comput. Phys. 12, 360–370 (1998).
    [CrossRef]
  26. See“X-ray interactions with matter” at http://www.cxro.lbl.gov/opticalconstants/ , managed by E. M. Gullikson.
  27. J. H. Underwood, E. M. Gullikson, K. Nguyen, “Tarnishing of Mo/Si multilayer x-ray mirrors,” Appl. Opt. 32, 6985–6990 (1993).
    [CrossRef] [PubMed]
  28. J. H. Underwood, E. M. Gullikson, “High-resolution, high-flux, user friendly VLS beamline at the ALS for the 50-1300 eV energy region,” J. Electron Spectrosc. Relat. Phenom. 92, 265–272 (1998).
    [CrossRef]
  29. S. Govindarajan, J. J. Moore, J. Disam, “Synthesis of nanocomposite thin films based on the Mo-Si-C ternary system and compositional tailoring through controlled ion bombardment,” Metall. Mater. Trans. A 29, 1719–1725 (1998).
    [CrossRef]
  30. X. Fan, K. Hack, T. Ishigaki, “Calculated C-MoSi2 and B-Mo5Si3 pseudo-binary phase diagrams for the use in advanced materials processing,” Mater. Sci. Eng. A278, 46–53 (2000).
    [CrossRef]
  31. U. Gosele, K. N. Tu, “Growth kinetics of planar binary diffusion couples—thin-film case versus bulk cases,” J. Appl. Phys. 53, 3252–3260 (1982).
    [CrossRef]
  32. W. H. Zachariasen, Theory of X-ray Diffraction in Crystals (Wiley, 1945), p. 102.

2004 (2)

A. Patelli, J. Ravagnan, V. Rigato, G. Salmaso, D. Silvestrini, E. Bontempi, L. E. Depero, “Structure and interface properties of Mo/B4C/Si multilayers deposited by rf-magnetron sputtering,” Appl. Surf. Sci. 238, 262–268 (2004).
[CrossRef]

D. L. Windt, S. Donguy, J. Seely, B. Kjomrattanawanich, “Experimental comparison of extreme-ultraviolet multilayers for solar physics,” Appl. Opt. 43, 1835–1848 (2004).
[CrossRef] [PubMed]

2003 (3)

M. Ishino, O. Yoda, H. Takenaka, K. Sano, M. Koike, “Heat stability of Mo/Si multilayers inserted with compound layers,” Surf. Coat. Technol. 169–170, 628–631 (2003).
[CrossRef]

T. Leisegang, D. C. Meyer, A. A. Levin, S. Braun, P. Paufler, “On the interplay of internal/external stress and thermal stability of Mo/Si multilayers,” Appl. Phys. A 77, 965–972 (2003).
[CrossRef]

T. Böttger, D. C. Meyer, P. Paufler, S. Braun, M. Moss, H. Mai, E. Beyer, “Thermal stability of Mo/Si multilayers with boron carbide interlayers,” Thin Solid Films 444, 165–173 (2003).
[CrossRef]

2002 (3)

T. Feigl, S. Yulin, T. Kuhlmann, N. Kaiser, “Damage resistant and low stress EUV multilayer mirrors,” Jpn. J. Appl. Phys. 41, 4082–4085 (2002).
[CrossRef]

S. Bajt, J. B. Alameda, T. W. Barbee, W. M. Clift, J. A. Folta, B. Kaufmann, E. A. Spiller, “Improved reflectance and stability of Mo-Si multilayers,” Opt. Eng. 41, 1797–1804 (2002).
[CrossRef]

S. Braun, H. Mai, M. Moss, R. Scholz, A. Leson, “Mo/Si multilayers with different barrier layers for applications as extreme ultraviolet mirrors,” Jpn. J. Appl. Phys. 41, 4074–4081 (2002).
[CrossRef]

2001 (2)

C. Montcalm, “Reduction of residual stress in extreme ultraviolet Mo/Si multilayer mirrors with postdeposition thermal treatments,” Opt. Eng. 40, 469–477 (2001).
[CrossRef]

T. Feigel, H. Lauth, S. Yulin, N. Kaiser, “Heat resistance of EUV multilayer mirrors for long-time applications,” Microelectron. Eng. 57–58, 3–8 (2001).
[CrossRef]

2000 (2)

D. L. Windt, “Stress, microstructure, and stability of Mo/Si, W/Si, and Mo/C multilayer films,” J. Vac. Sci. Technol. A 18, 980–991 (2000).
[CrossRef]

X. Fan, K. Hack, T. Ishigaki, “Calculated C-MoSi2 and B-Mo5Si3 pseudo-binary phase diagrams for the use in advanced materials processing,” Mater. Sci. Eng. A278, 46–53 (2000).
[CrossRef]

1998 (5)

D. L. Windt, “IMD software for modeling the optical properties of multilayer films,” Comput. Phys. 12, 360–370 (1998).
[CrossRef]

J. H. Underwood, E. M. Gullikson, “High-resolution, high-flux, user friendly VLS beamline at the ALS for the 50-1300 eV energy region,” J. Electron Spectrosc. Relat. Phenom. 92, 265–272 (1998).
[CrossRef]

S. Govindarajan, J. J. Moore, J. Disam, “Synthesis of nanocomposite thin films based on the Mo-Si-C ternary system and compositional tailoring through controlled ion bombardment,” Metall. Mater. Trans. A 29, 1719–1725 (1998).
[CrossRef]

H. Takenaka, H. Io, T. Haga, T. Kawamura, “Design and fabrication of highly heat-resistant Mo/Si multilayer soft x-ray mirrors with interleaved barrier layers,” J. Synchrotron Radiat. 5, 708–710 (1998).
[CrossRef]

H.-J. Voorma, E. Louis, N. B. Koster, F. Bijkerk, “Temperature induced diffusion in Mo/Si multilayer mirrors,” J. Appl. Phys. 83, 4700–4708 (1998).
[CrossRef]

1996 (2)

H. Takenaka, T. Kawamura, “Thermal stability of Mo/C/ Si/C multilayer soft x-ray mirrors,” J. Electron Spectrosc. Relat. Phenom. 80, 381–384 (1996).
[CrossRef]

J. M. Liang, L. J. Chen, “Interfacial reactions and thermal stability of ultrahigh vacuum deposited multilayered Mo/Si structures,” J. Appl. Phys. 79, 4072–4077 (1996).
[CrossRef]

1995 (1)

E. Ziegler, “Multilayers for high heat load synchrotron applications,” Opt. Eng. 34, 445–452 (1995).
[CrossRef]

1993 (4)

1992 (2)

R. R. Kola, D. L. Windt, W. K. Waskiewicz, B. E. Weir, R. Hull, G. K. Celler, C. A. Volkert, “Stress relaxation in Mo/Si multilayer structures,” Appl. Phys. Lett. 60, 3120–3122 (1992).
[CrossRef]

Y. Ijdiyaou, M. Azizan, E. L. Ameziane, M. Brunel, T. A. Nguyen Tan, “On the formation of molybdenum silicides in Mo-Si multilayers: the effect of Mo thickness and annealing temperature,” Appl. Surf. Sci. 55, 165–171 (1992).
[CrossRef]

1991 (1)

A. Kloidt, K. Nolting, U. Kleineberg, B. Schmiedéskamp, U. Heinzmann, P. Müller, M. Kühne, “Enhancement of the reflectivity of Mo/Si multilayer mirrors by thermal treatment,” Appl. Phys. Lett. 58, 2601–2603 (1991).
[CrossRef]

1989 (1)

Z. Jiang, X. Jiang, W. Liu, Z. Wu, “Thermal stability of multilayer films Pt/Si, W/Si, Mo/Si, and W/Si,” J. Appl. Phys. 65, 196–200 (1989).
[CrossRef]

1982 (1)

U. Gosele, K. N. Tu, “Growth kinetics of planar binary diffusion couples—thin-film case versus bulk cases,” J. Appl. Phys. 53, 3252–3260 (1982).
[CrossRef]

Alameda, J. B.

S. Bajt, J. B. Alameda, T. W. Barbee, W. M. Clift, J. A. Folta, B. Kaufmann, E. A. Spiller, “Improved reflectance and stability of Mo-Si multilayers,” Opt. Eng. 41, 1797–1804 (2002).
[CrossRef]

Ameziane, E. L.

Y. Ijdiyaou, M. Azizan, E. L. Ameziane, M. Brunel, T. A. Nguyen Tan, “On the formation of molybdenum silicides in Mo-Si multilayers: the effect of Mo thickness and annealing temperature,” Appl. Surf. Sci. 55, 165–171 (1992).
[CrossRef]

Azizan, M.

Y. Ijdiyaou, M. Azizan, E. L. Ameziane, M. Brunel, T. A. Nguyen Tan, “On the formation of molybdenum silicides in Mo-Si multilayers: the effect of Mo thickness and annealing temperature,” Appl. Surf. Sci. 55, 165–171 (1992).
[CrossRef]

Azuma, H.

H. Azuma, A. Takeichi, I. Konomi, Y. Watanabe, S. Noda, “Thermally induced structural modification of nanometer-order Mo/Si multilayers by the spectral reflectance of laser-plasma soft X-rays,” Jpn. J. Appl. Phys. 43, 2078–2082 (1993).
[CrossRef]

Bajt, S.

S. Bajt, J. B. Alameda, T. W. Barbee, W. M. Clift, J. A. Folta, B. Kaufmann, E. A. Spiller, “Improved reflectance and stability of Mo-Si multilayers,” Opt. Eng. 41, 1797–1804 (2002).
[CrossRef]

S. Bajt, “High-reflectance interface-engineered multilayers,” invited talk at Physics of X-Ray Multilayer Structures, Chamonix, France, 3–7 March 2002, http://cletus.phys.columbia.edu/pxrms/archives/pxrms02/index.html .

Barbee, T. W.

S. Bajt, J. B. Alameda, T. W. Barbee, W. M. Clift, J. A. Folta, B. Kaufmann, E. A. Spiller, “Improved reflectance and stability of Mo-Si multilayers,” Opt. Eng. 41, 1797–1804 (2002).
[CrossRef]

Beyer, E.

T. Böttger, D. C. Meyer, P. Paufler, S. Braun, M. Moss, H. Mai, E. Beyer, “Thermal stability of Mo/Si multilayers with boron carbide interlayers,” Thin Solid Films 444, 165–173 (2003).
[CrossRef]

Bijkerk, F.

H.-J. Voorma, E. Louis, N. B. Koster, F. Bijkerk, “Temperature induced diffusion in Mo/Si multilayer mirrors,” J. Appl. Phys. 83, 4700–4708 (1998).
[CrossRef]

Bontempi, E.

A. Patelli, J. Ravagnan, V. Rigato, G. Salmaso, D. Silvestrini, E. Bontempi, L. E. Depero, “Structure and interface properties of Mo/B4C/Si multilayers deposited by rf-magnetron sputtering,” Appl. Surf. Sci. 238, 262–268 (2004).
[CrossRef]

Böttger, T.

T. Böttger, D. C. Meyer, P. Paufler, S. Braun, M. Moss, H. Mai, E. Beyer, “Thermal stability of Mo/Si multilayers with boron carbide interlayers,” Thin Solid Films 444, 165–173 (2003).
[CrossRef]

Braun, S.

T. Leisegang, D. C. Meyer, A. A. Levin, S. Braun, P. Paufler, “On the interplay of internal/external stress and thermal stability of Mo/Si multilayers,” Appl. Phys. A 77, 965–972 (2003).
[CrossRef]

T. Böttger, D. C. Meyer, P. Paufler, S. Braun, M. Moss, H. Mai, E. Beyer, “Thermal stability of Mo/Si multilayers with boron carbide interlayers,” Thin Solid Films 444, 165–173 (2003).
[CrossRef]

S. Braun, H. Mai, M. Moss, R. Scholz, A. Leson, “Mo/Si multilayers with different barrier layers for applications as extreme ultraviolet mirrors,” Jpn. J. Appl. Phys. 41, 4074–4081 (2002).
[CrossRef]

Brunel, M.

Y. Ijdiyaou, M. Azizan, E. L. Ameziane, M. Brunel, T. A. Nguyen Tan, “On the formation of molybdenum silicides in Mo-Si multilayers: the effect of Mo thickness and annealing temperature,” Appl. Surf. Sci. 55, 165–171 (1992).
[CrossRef]

Celler, G. K.

R. R. Kola, D. L. Windt, W. K. Waskiewicz, B. E. Weir, R. Hull, G. K. Celler, C. A. Volkert, “Stress relaxation in Mo/Si multilayer structures,” Appl. Phys. Lett. 60, 3120–3122 (1992).
[CrossRef]

Chen, L. J.

J. M. Liang, L. J. Chen, “Interfacial reactions and thermal stability of ultrahigh vacuum deposited multilayered Mo/Si structures,” J. Appl. Phys. 79, 4072–4077 (1996).
[CrossRef]

Cheng, Y.

Chirkov, V. A.

Clift, W. M.

S. Bajt, J. B. Alameda, T. W. Barbee, W. M. Clift, J. A. Folta, B. Kaufmann, E. A. Spiller, “Improved reflectance and stability of Mo-Si multilayers,” Opt. Eng. 41, 1797–1804 (2002).
[CrossRef]

Depero, L. E.

A. Patelli, J. Ravagnan, V. Rigato, G. Salmaso, D. Silvestrini, E. Bontempi, L. E. Depero, “Structure and interface properties of Mo/B4C/Si multilayers deposited by rf-magnetron sputtering,” Appl. Surf. Sci. 238, 262–268 (2004).
[CrossRef]

Disam, J.

S. Govindarajan, J. J. Moore, J. Disam, “Synthesis of nanocomposite thin films based on the Mo-Si-C ternary system and compositional tailoring through controlled ion bombardment,” Metall. Mater. Trans. A 29, 1719–1725 (1998).
[CrossRef]

Donguy, S.

Fan, X.

X. Fan, K. Hack, T. Ishigaki, “Calculated C-MoSi2 and B-Mo5Si3 pseudo-binary phase diagrams for the use in advanced materials processing,” Mater. Sci. Eng. A278, 46–53 (2000).
[CrossRef]

Fedorenko, A. I.

Feigel, T.

T. Feigel, H. Lauth, S. Yulin, N. Kaiser, “Heat resistance of EUV multilayer mirrors for long-time applications,” Microelectron. Eng. 57–58, 3–8 (2001).
[CrossRef]

Feigl, T.

T. Feigl, S. Yulin, T. Kuhlmann, N. Kaiser, “Damage resistant and low stress EUV multilayer mirrors,” Jpn. J. Appl. Phys. 41, 4082–4085 (2002).
[CrossRef]

Folta, J. A.

S. Bajt, J. B. Alameda, T. W. Barbee, W. M. Clift, J. A. Folta, B. Kaufmann, E. A. Spiller, “Improved reflectance and stability of Mo-Si multilayers,” Opt. Eng. 41, 1797–1804 (2002).
[CrossRef]

Gosele, U.

U. Gosele, K. N. Tu, “Growth kinetics of planar binary diffusion couples—thin-film case versus bulk cases,” J. Appl. Phys. 53, 3252–3260 (1982).
[CrossRef]

Govindarajan, S.

S. Govindarajan, J. J. Moore, J. Disam, “Synthesis of nanocomposite thin films based on the Mo-Si-C ternary system and compositional tailoring through controlled ion bombardment,” Metall. Mater. Trans. A 29, 1719–1725 (1998).
[CrossRef]

Gullikson, E. M.

J. H. Underwood, E. M. Gullikson, “High-resolution, high-flux, user friendly VLS beamline at the ALS for the 50-1300 eV energy region,” J. Electron Spectrosc. Relat. Phenom. 92, 265–272 (1998).
[CrossRef]

J. H. Underwood, E. M. Gullikson, K. Nguyen, “Tarnishing of Mo/Si multilayer x-ray mirrors,” Appl. Opt. 32, 6985–6990 (1993).
[CrossRef] [PubMed]

Hack, K.

X. Fan, K. Hack, T. Ishigaki, “Calculated C-MoSi2 and B-Mo5Si3 pseudo-binary phase diagrams for the use in advanced materials processing,” Mater. Sci. Eng. A278, 46–53 (2000).
[CrossRef]

Haga, T.

H. Takenaka, H. Io, T. Haga, T. Kawamura, “Design and fabrication of highly heat-resistant Mo/Si multilayer soft x-ray mirrors with interleaved barrier layers,” J. Synchrotron Radiat. 5, 708–710 (1998).
[CrossRef]

Heinzmann, U.

A. Kloidt, K. Nolting, U. Kleineberg, B. Schmiedéskamp, U. Heinzmann, P. Müller, M. Kühne, “Enhancement of the reflectivity of Mo/Si multilayer mirrors by thermal treatment,” Appl. Phys. Lett. 58, 2601–2603 (1991).
[CrossRef]

Hull, R.

R. R. Kola, D. L. Windt, W. K. Waskiewicz, B. E. Weir, R. Hull, G. K. Celler, C. A. Volkert, “Stress relaxation in Mo/Si multilayer structures,” Appl. Phys. Lett. 60, 3120–3122 (1992).
[CrossRef]

Ijdiyaou, Y.

Y. Ijdiyaou, M. Azizan, E. L. Ameziane, M. Brunel, T. A. Nguyen Tan, “On the formation of molybdenum silicides in Mo-Si multilayers: the effect of Mo thickness and annealing temperature,” Appl. Surf. Sci. 55, 165–171 (1992).
[CrossRef]

Io, H.

H. Takenaka, H. Io, T. Haga, T. Kawamura, “Design and fabrication of highly heat-resistant Mo/Si multilayer soft x-ray mirrors with interleaved barrier layers,” J. Synchrotron Radiat. 5, 708–710 (1998).
[CrossRef]

Ishigaki, T.

X. Fan, K. Hack, T. Ishigaki, “Calculated C-MoSi2 and B-Mo5Si3 pseudo-binary phase diagrams for the use in advanced materials processing,” Mater. Sci. Eng. A278, 46–53 (2000).
[CrossRef]

Ishino, M.

M. Ishino, O. Yoda, H. Takenaka, K. Sano, M. Koike, “Heat stability of Mo/Si multilayers inserted with compound layers,” Surf. Coat. Technol. 169–170, 628–631 (2003).
[CrossRef]

Jiang, X.

Z. Jiang, X. Jiang, W. Liu, Z. Wu, “Thermal stability of multilayer films Pt/Si, W/Si, Mo/Si, and W/Si,” J. Appl. Phys. 65, 196–200 (1989).
[CrossRef]

Jiang, Z.

Z. Jiang, X. Jiang, W. Liu, Z. Wu, “Thermal stability of multilayer films Pt/Si, W/Si, Mo/Si, and W/Si,” J. Appl. Phys. 65, 196–200 (1989).
[CrossRef]

Kaiser, N.

T. Feigl, S. Yulin, T. Kuhlmann, N. Kaiser, “Damage resistant and low stress EUV multilayer mirrors,” Jpn. J. Appl. Phys. 41, 4082–4085 (2002).
[CrossRef]

T. Feigel, H. Lauth, S. Yulin, N. Kaiser, “Heat resistance of EUV multilayer mirrors for long-time applications,” Microelectron. Eng. 57–58, 3–8 (2001).
[CrossRef]

Kassner, M. E.

Kaufmann, B.

S. Bajt, J. B. Alameda, T. W. Barbee, W. M. Clift, J. A. Folta, B. Kaufmann, E. A. Spiller, “Improved reflectance and stability of Mo-Si multilayers,” Opt. Eng. 41, 1797–1804 (2002).
[CrossRef]

Kawamura, T.

H. Takenaka, H. Io, T. Haga, T. Kawamura, “Design and fabrication of highly heat-resistant Mo/Si multilayer soft x-ray mirrors with interleaved barrier layers,” J. Synchrotron Radiat. 5, 708–710 (1998).
[CrossRef]

H. Takenaka, T. Kawamura, “Thermal stability of Mo/C/ Si/C multilayer soft x-ray mirrors,” J. Electron Spectrosc. Relat. Phenom. 80, 381–384 (1996).
[CrossRef]

Kjomrattanawanich, B.

Kleineberg, U.

A. Kloidt, K. Nolting, U. Kleineberg, B. Schmiedéskamp, U. Heinzmann, P. Müller, M. Kühne, “Enhancement of the reflectivity of Mo/Si multilayer mirrors by thermal treatment,” Appl. Phys. Lett. 58, 2601–2603 (1991).
[CrossRef]

Kloidt, A.

A. Kloidt, K. Nolting, U. Kleineberg, B. Schmiedéskamp, U. Heinzmann, P. Müller, M. Kühne, “Enhancement of the reflectivity of Mo/Si multilayer mirrors by thermal treatment,” Appl. Phys. Lett. 58, 2601–2603 (1991).
[CrossRef]

Koike, M.

M. Ishino, O. Yoda, H. Takenaka, K. Sano, M. Koike, “Heat stability of Mo/Si multilayers inserted with compound layers,” Surf. Coat. Technol. 169–170, 628–631 (2003).
[CrossRef]

Kola, R. R.

R. R. Kola, D. L. Windt, W. K. Waskiewicz, B. E. Weir, R. Hull, G. K. Celler, C. A. Volkert, “Stress relaxation in Mo/Si multilayer structures,” Appl. Phys. Lett. 60, 3120–3122 (1992).
[CrossRef]

Konomi, I.

H. Azuma, A. Takeichi, I. Konomi, Y. Watanabe, S. Noda, “Thermally induced structural modification of nanometer-order Mo/Si multilayers by the spectral reflectance of laser-plasma soft X-rays,” Jpn. J. Appl. Phys. 43, 2078–2082 (1993).
[CrossRef]

Kontradenko, V. V.

Koster, N. B.

H.-J. Voorma, E. Louis, N. B. Koster, F. Bijkerk, “Temperature induced diffusion in Mo/Si multilayer mirrors,” J. Appl. Phys. 83, 4700–4708 (1998).
[CrossRef]

Kozhevnikov, I. V.

Kuhlmann, T.

T. Feigl, S. Yulin, T. Kuhlmann, N. Kaiser, “Damage resistant and low stress EUV multilayer mirrors,” Jpn. J. Appl. Phys. 41, 4082–4085 (2002).
[CrossRef]

Kühne, M.

A. Kloidt, K. Nolting, U. Kleineberg, B. Schmiedéskamp, U. Heinzmann, P. Müller, M. Kühne, “Enhancement of the reflectivity of Mo/Si multilayer mirrors by thermal treatment,” Appl. Phys. Lett. 58, 2601–2603 (1991).
[CrossRef]

Lauth, H.

T. Feigel, H. Lauth, S. Yulin, N. Kaiser, “Heat resistance of EUV multilayer mirrors for long-time applications,” Microelectron. Eng. 57–58, 3–8 (2001).
[CrossRef]

Leisegang, T.

T. Leisegang, D. C. Meyer, A. A. Levin, S. Braun, P. Paufler, “On the interplay of internal/external stress and thermal stability of Mo/Si multilayers,” Appl. Phys. A 77, 965–972 (2003).
[CrossRef]

Leson, A.

S. Braun, H. Mai, M. Moss, R. Scholz, A. Leson, “Mo/Si multilayers with different barrier layers for applications as extreme ultraviolet mirrors,” Jpn. J. Appl. Phys. 41, 4074–4081 (2002).
[CrossRef]

Levashov, V. E.

Levin, A. A.

T. Leisegang, D. C. Meyer, A. A. Levin, S. Braun, P. Paufler, “On the interplay of internal/external stress and thermal stability of Mo/Si multilayers,” Appl. Phys. A 77, 965–972 (2003).
[CrossRef]

Liang, J. M.

J. M. Liang, L. J. Chen, “Interfacial reactions and thermal stability of ultrahigh vacuum deposited multilayered Mo/Si structures,” J. Appl. Phys. 79, 4072–4077 (1996).
[CrossRef]

Liu, W.

Z. Jiang, X. Jiang, W. Liu, Z. Wu, “Thermal stability of multilayer films Pt/Si, W/Si, Mo/Si, and W/Si,” J. Appl. Phys. 65, 196–200 (1989).
[CrossRef]

Louis, E.

H.-J. Voorma, E. Louis, N. B. Koster, F. Bijkerk, “Temperature induced diffusion in Mo/Si multilayer mirrors,” J. Appl. Phys. 83, 4700–4708 (1998).
[CrossRef]

Mai, H.

T. Böttger, D. C. Meyer, P. Paufler, S. Braun, M. Moss, H. Mai, E. Beyer, “Thermal stability of Mo/Si multilayers with boron carbide interlayers,” Thin Solid Films 444, 165–173 (2003).
[CrossRef]

S. Braun, H. Mai, M. Moss, R. Scholz, A. Leson, “Mo/Si multilayers with different barrier layers for applications as extreme ultraviolet mirrors,” Jpn. J. Appl. Phys. 41, 4074–4081 (2002).
[CrossRef]

Meyer, D. C.

T. Böttger, D. C. Meyer, P. Paufler, S. Braun, M. Moss, H. Mai, E. Beyer, “Thermal stability of Mo/Si multilayers with boron carbide interlayers,” Thin Solid Films 444, 165–173 (2003).
[CrossRef]

T. Leisegang, D. C. Meyer, A. A. Levin, S. Braun, P. Paufler, “On the interplay of internal/external stress and thermal stability of Mo/Si multilayers,” Appl. Phys. A 77, 965–972 (2003).
[CrossRef]

Montcalm, C.

C. Montcalm, “Reduction of residual stress in extreme ultraviolet Mo/Si multilayer mirrors with postdeposition thermal treatments,” Opt. Eng. 40, 469–477 (2001).
[CrossRef]

Moore, J. J.

S. Govindarajan, J. J. Moore, J. Disam, “Synthesis of nanocomposite thin films based on the Mo-Si-C ternary system and compositional tailoring through controlled ion bombardment,” Metall. Mater. Trans. A 29, 1719–1725 (1998).
[CrossRef]

Moss, M.

T. Böttger, D. C. Meyer, P. Paufler, S. Braun, M. Moss, H. Mai, E. Beyer, “Thermal stability of Mo/Si multilayers with boron carbide interlayers,” Thin Solid Films 444, 165–173 (2003).
[CrossRef]

S. Braun, H. Mai, M. Moss, R. Scholz, A. Leson, “Mo/Si multilayers with different barrier layers for applications as extreme ultraviolet mirrors,” Jpn. J. Appl. Phys. 41, 4074–4081 (2002).
[CrossRef]

Müller, P.

A. Kloidt, K. Nolting, U. Kleineberg, B. Schmiedéskamp, U. Heinzmann, P. Müller, M. Kühne, “Enhancement of the reflectivity of Mo/Si multilayer mirrors by thermal treatment,” Appl. Phys. Lett. 58, 2601–2603 (1991).
[CrossRef]

Nguyen, K.

Nguyen Tan, T. A.

Y. Ijdiyaou, M. Azizan, E. L. Ameziane, M. Brunel, T. A. Nguyen Tan, “On the formation of molybdenum silicides in Mo-Si multilayers: the effect of Mo thickness and annealing temperature,” Appl. Surf. Sci. 55, 165–171 (1992).
[CrossRef]

Noda, S.

H. Azuma, A. Takeichi, I. Konomi, Y. Watanabe, S. Noda, “Thermally induced structural modification of nanometer-order Mo/Si multilayers by the spectral reflectance of laser-plasma soft X-rays,” Jpn. J. Appl. Phys. 43, 2078–2082 (1993).
[CrossRef]

Nolting, K.

A. Kloidt, K. Nolting, U. Kleineberg, B. Schmiedéskamp, U. Heinzmann, P. Müller, M. Kühne, “Enhancement of the reflectivity of Mo/Si multilayer mirrors by thermal treatment,” Appl. Phys. Lett. 58, 2601–2603 (1991).
[CrossRef]

Patelli, A.

A. Patelli, J. Ravagnan, V. Rigato, G. Salmaso, D. Silvestrini, E. Bontempi, L. E. Depero, “Structure and interface properties of Mo/B4C/Si multilayers deposited by rf-magnetron sputtering,” Appl. Surf. Sci. 238, 262–268 (2004).
[CrossRef]

Paufler, P.

T. Böttger, D. C. Meyer, P. Paufler, S. Braun, M. Moss, H. Mai, E. Beyer, “Thermal stability of Mo/Si multilayers with boron carbide interlayers,” Thin Solid Films 444, 165–173 (2003).
[CrossRef]

T. Leisegang, D. C. Meyer, A. A. Levin, S. Braun, P. Paufler, “On the interplay of internal/external stress and thermal stability of Mo/Si multilayers,” Appl. Phys. A 77, 965–972 (2003).
[CrossRef]

Pershin, Yu. P.

Poltseva, O. V.

Ravagnan, J.

A. Patelli, J. Ravagnan, V. Rigato, G. Salmaso, D. Silvestrini, E. Bontempi, L. E. Depero, “Structure and interface properties of Mo/B4C/Si multilayers deposited by rf-magnetron sputtering,” Appl. Surf. Sci. 238, 262–268 (2004).
[CrossRef]

Rigato, V.

A. Patelli, J. Ravagnan, V. Rigato, G. Salmaso, D. Silvestrini, E. Bontempi, L. E. Depero, “Structure and interface properties of Mo/B4C/Si multilayers deposited by rf-magnetron sputtering,” Appl. Surf. Sci. 238, 262–268 (2004).
[CrossRef]

Rosen, R. S.

Saitov, S. I.

Salmaso, G.

A. Patelli, J. Ravagnan, V. Rigato, G. Salmaso, D. Silvestrini, E. Bontempi, L. E. Depero, “Structure and interface properties of Mo/B4C/Si multilayers deposited by rf-magnetron sputtering,” Appl. Surf. Sci. 238, 262–268 (2004).
[CrossRef]

Sano, K.

M. Ishino, O. Yoda, H. Takenaka, K. Sano, M. Koike, “Heat stability of Mo/Si multilayers inserted with compound layers,” Surf. Coat. Technol. 169–170, 628–631 (2003).
[CrossRef]

Schmiedéskamp, B.

A. Kloidt, K. Nolting, U. Kleineberg, B. Schmiedéskamp, U. Heinzmann, P. Müller, M. Kühne, “Enhancement of the reflectivity of Mo/Si multilayer mirrors by thermal treatment,” Appl. Phys. Lett. 58, 2601–2603 (1991).
[CrossRef]

Scholz, R.

S. Braun, H. Mai, M. Moss, R. Scholz, A. Leson, “Mo/Si multilayers with different barrier layers for applications as extreme ultraviolet mirrors,” Jpn. J. Appl. Phys. 41, 4074–4081 (2002).
[CrossRef]

Seely, J.

Silvestrini, D.

A. Patelli, J. Ravagnan, V. Rigato, G. Salmaso, D. Silvestrini, E. Bontempi, L. E. Depero, “Structure and interface properties of Mo/B4C/Si multilayers deposited by rf-magnetron sputtering,” Appl. Surf. Sci. 238, 262–268 (2004).
[CrossRef]

Spiller, E. A.

S. Bajt, J. B. Alameda, T. W. Barbee, W. M. Clift, J. A. Folta, B. Kaufmann, E. A. Spiller, “Improved reflectance and stability of Mo-Si multilayers,” Opt. Eng. 41, 1797–1804 (2002).
[CrossRef]

Stearns, D. G.

Takeichi, A.

H. Azuma, A. Takeichi, I. Konomi, Y. Watanabe, S. Noda, “Thermally induced structural modification of nanometer-order Mo/Si multilayers by the spectral reflectance of laser-plasma soft X-rays,” Jpn. J. Appl. Phys. 43, 2078–2082 (1993).
[CrossRef]

Takenaka, H.

M. Ishino, O. Yoda, H. Takenaka, K. Sano, M. Koike, “Heat stability of Mo/Si multilayers inserted with compound layers,” Surf. Coat. Technol. 169–170, 628–631 (2003).
[CrossRef]

H. Takenaka, H. Io, T. Haga, T. Kawamura, “Design and fabrication of highly heat-resistant Mo/Si multilayer soft x-ray mirrors with interleaved barrier layers,” J. Synchrotron Radiat. 5, 708–710 (1998).
[CrossRef]

H. Takenaka, T. Kawamura, “Thermal stability of Mo/C/ Si/C multilayer soft x-ray mirrors,” J. Electron Spectrosc. Relat. Phenom. 80, 381–384 (1996).
[CrossRef]

Tu, K. N.

U. Gosele, K. N. Tu, “Growth kinetics of planar binary diffusion couples—thin-film case versus bulk cases,” J. Appl. Phys. 53, 3252–3260 (1982).
[CrossRef]

Underwood, J. H.

J. H. Underwood, E. M. Gullikson, “High-resolution, high-flux, user friendly VLS beamline at the ALS for the 50-1300 eV energy region,” J. Electron Spectrosc. Relat. Phenom. 92, 265–272 (1998).
[CrossRef]

J. H. Underwood, E. M. Gullikson, K. Nguyen, “Tarnishing of Mo/Si multilayer x-ray mirrors,” Appl. Opt. 32, 6985–6990 (1993).
[CrossRef] [PubMed]

Vernon, S. P.

Villiardos, M. A.

Vinogradov, A. V.

Volkert, C. A.

R. R. Kola, D. L. Windt, W. K. Waskiewicz, B. E. Weir, R. Hull, G. K. Celler, C. A. Volkert, “Stress relaxation in Mo/Si multilayer structures,” Appl. Phys. Lett. 60, 3120–3122 (1992).
[CrossRef]

Voorma, H.-J.

H.-J. Voorma, E. Louis, N. B. Koster, F. Bijkerk, “Temperature induced diffusion in Mo/Si multilayer mirrors,” J. Appl. Phys. 83, 4700–4708 (1998).
[CrossRef]

Waskiewicz, W. K.

R. R. Kola, D. L. Windt, W. K. Waskiewicz, B. E. Weir, R. Hull, G. K. Celler, C. A. Volkert, “Stress relaxation in Mo/Si multilayer structures,” Appl. Phys. Lett. 60, 3120–3122 (1992).
[CrossRef]

Watanabe, Y.

H. Azuma, A. Takeichi, I. Konomi, Y. Watanabe, S. Noda, “Thermally induced structural modification of nanometer-order Mo/Si multilayers by the spectral reflectance of laser-plasma soft X-rays,” Jpn. J. Appl. Phys. 43, 2078–2082 (1993).
[CrossRef]

Weir, B. E.

R. R. Kola, D. L. Windt, W. K. Waskiewicz, B. E. Weir, R. Hull, G. K. Celler, C. A. Volkert, “Stress relaxation in Mo/Si multilayer structures,” Appl. Phys. Lett. 60, 3120–3122 (1992).
[CrossRef]

Windt, D. L.

D. L. Windt, S. Donguy, J. Seely, B. Kjomrattanawanich, “Experimental comparison of extreme-ultraviolet multilayers for solar physics,” Appl. Opt. 43, 1835–1848 (2004).
[CrossRef] [PubMed]

D. L. Windt, “Stress, microstructure, and stability of Mo/Si, W/Si, and Mo/C multilayer films,” J. Vac. Sci. Technol. A 18, 980–991 (2000).
[CrossRef]

D. L. Windt, “IMD software for modeling the optical properties of multilayer films,” Comput. Phys. 12, 360–370 (1998).
[CrossRef]

R. R. Kola, D. L. Windt, W. K. Waskiewicz, B. E. Weir, R. Hull, G. K. Celler, C. A. Volkert, “Stress relaxation in Mo/Si multilayer structures,” Appl. Phys. Lett. 60, 3120–3122 (1992).
[CrossRef]

Wu, Z.

Z. Jiang, X. Jiang, W. Liu, Z. Wu, “Thermal stability of multilayer films Pt/Si, W/Si, Mo/Si, and W/Si,” J. Appl. Phys. 65, 196–200 (1989).
[CrossRef]

Yoda, O.

M. Ishino, O. Yoda, H. Takenaka, K. Sano, M. Koike, “Heat stability of Mo/Si multilayers inserted with compound layers,” Surf. Coat. Technol. 169–170, 628–631 (2003).
[CrossRef]

Yulin, S.

T. Feigl, S. Yulin, T. Kuhlmann, N. Kaiser, “Damage resistant and low stress EUV multilayer mirrors,” Jpn. J. Appl. Phys. 41, 4082–4085 (2002).
[CrossRef]

T. Feigel, H. Lauth, S. Yulin, N. Kaiser, “Heat resistance of EUV multilayer mirrors for long-time applications,” Microelectron. Eng. 57–58, 3–8 (2001).
[CrossRef]

Yulin, S. A.

Zachariasen, W. H.

W. H. Zachariasen, Theory of X-ray Diffraction in Crystals (Wiley, 1945), p. 102.

Ziegler, E.

E. Ziegler, “Multilayers for high heat load synchrotron applications,” Opt. Eng. 34, 445–452 (1995).
[CrossRef]

Zubarev, E. N.

Appl. Opt. (4)

Appl. Phys. A (1)

T. Leisegang, D. C. Meyer, A. A. Levin, S. Braun, P. Paufler, “On the interplay of internal/external stress and thermal stability of Mo/Si multilayers,” Appl. Phys. A 77, 965–972 (2003).
[CrossRef]

Appl. Phys. Lett. (2)

A. Kloidt, K. Nolting, U. Kleineberg, B. Schmiedéskamp, U. Heinzmann, P. Müller, M. Kühne, “Enhancement of the reflectivity of Mo/Si multilayer mirrors by thermal treatment,” Appl. Phys. Lett. 58, 2601–2603 (1991).
[CrossRef]

R. R. Kola, D. L. Windt, W. K. Waskiewicz, B. E. Weir, R. Hull, G. K. Celler, C. A. Volkert, “Stress relaxation in Mo/Si multilayer structures,” Appl. Phys. Lett. 60, 3120–3122 (1992).
[CrossRef]

Appl. Surf. Sci. (2)

Y. Ijdiyaou, M. Azizan, E. L. Ameziane, M. Brunel, T. A. Nguyen Tan, “On the formation of molybdenum silicides in Mo-Si multilayers: the effect of Mo thickness and annealing temperature,” Appl. Surf. Sci. 55, 165–171 (1992).
[CrossRef]

A. Patelli, J. Ravagnan, V. Rigato, G. Salmaso, D. Silvestrini, E. Bontempi, L. E. Depero, “Structure and interface properties of Mo/B4C/Si multilayers deposited by rf-magnetron sputtering,” Appl. Surf. Sci. 238, 262–268 (2004).
[CrossRef]

Comput. Phys. (1)

D. L. Windt, “IMD software for modeling the optical properties of multilayer films,” Comput. Phys. 12, 360–370 (1998).
[CrossRef]

J. Appl. Phys. (4)

U. Gosele, K. N. Tu, “Growth kinetics of planar binary diffusion couples—thin-film case versus bulk cases,” J. Appl. Phys. 53, 3252–3260 (1982).
[CrossRef]

J. M. Liang, L. J. Chen, “Interfacial reactions and thermal stability of ultrahigh vacuum deposited multilayered Mo/Si structures,” J. Appl. Phys. 79, 4072–4077 (1996).
[CrossRef]

H.-J. Voorma, E. Louis, N. B. Koster, F. Bijkerk, “Temperature induced diffusion in Mo/Si multilayer mirrors,” J. Appl. Phys. 83, 4700–4708 (1998).
[CrossRef]

Z. Jiang, X. Jiang, W. Liu, Z. Wu, “Thermal stability of multilayer films Pt/Si, W/Si, Mo/Si, and W/Si,” J. Appl. Phys. 65, 196–200 (1989).
[CrossRef]

J. Electron Spectrosc. Relat. Phenom. (2)

H. Takenaka, T. Kawamura, “Thermal stability of Mo/C/ Si/C multilayer soft x-ray mirrors,” J. Electron Spectrosc. Relat. Phenom. 80, 381–384 (1996).
[CrossRef]

J. H. Underwood, E. M. Gullikson, “High-resolution, high-flux, user friendly VLS beamline at the ALS for the 50-1300 eV energy region,” J. Electron Spectrosc. Relat. Phenom. 92, 265–272 (1998).
[CrossRef]

J. Synchrotron Radiat. (1)

H. Takenaka, H. Io, T. Haga, T. Kawamura, “Design and fabrication of highly heat-resistant Mo/Si multilayer soft x-ray mirrors with interleaved barrier layers,” J. Synchrotron Radiat. 5, 708–710 (1998).
[CrossRef]

J. Vac. Sci. Technol. A (1)

D. L. Windt, “Stress, microstructure, and stability of Mo/Si, W/Si, and Mo/C multilayer films,” J. Vac. Sci. Technol. A 18, 980–991 (2000).
[CrossRef]

Jpn. J. Appl. Phys. (3)

H. Azuma, A. Takeichi, I. Konomi, Y. Watanabe, S. Noda, “Thermally induced structural modification of nanometer-order Mo/Si multilayers by the spectral reflectance of laser-plasma soft X-rays,” Jpn. J. Appl. Phys. 43, 2078–2082 (1993).
[CrossRef]

T. Feigl, S. Yulin, T. Kuhlmann, N. Kaiser, “Damage resistant and low stress EUV multilayer mirrors,” Jpn. J. Appl. Phys. 41, 4082–4085 (2002).
[CrossRef]

S. Braun, H. Mai, M. Moss, R. Scholz, A. Leson, “Mo/Si multilayers with different barrier layers for applications as extreme ultraviolet mirrors,” Jpn. J. Appl. Phys. 41, 4074–4081 (2002).
[CrossRef]

Mater. Sci. Eng. (1)

X. Fan, K. Hack, T. Ishigaki, “Calculated C-MoSi2 and B-Mo5Si3 pseudo-binary phase diagrams for the use in advanced materials processing,” Mater. Sci. Eng. A278, 46–53 (2000).
[CrossRef]

Metall. Mater. Trans. A (1)

S. Govindarajan, J. J. Moore, J. Disam, “Synthesis of nanocomposite thin films based on the Mo-Si-C ternary system and compositional tailoring through controlled ion bombardment,” Metall. Mater. Trans. A 29, 1719–1725 (1998).
[CrossRef]

Microelectron. Eng. (1)

T. Feigel, H. Lauth, S. Yulin, N. Kaiser, “Heat resistance of EUV multilayer mirrors for long-time applications,” Microelectron. Eng. 57–58, 3–8 (2001).
[CrossRef]

Opt. Eng. (3)

C. Montcalm, “Reduction of residual stress in extreme ultraviolet Mo/Si multilayer mirrors with postdeposition thermal treatments,” Opt. Eng. 40, 469–477 (2001).
[CrossRef]

S. Bajt, J. B. Alameda, T. W. Barbee, W. M. Clift, J. A. Folta, B. Kaufmann, E. A. Spiller, “Improved reflectance and stability of Mo-Si multilayers,” Opt. Eng. 41, 1797–1804 (2002).
[CrossRef]

E. Ziegler, “Multilayers for high heat load synchrotron applications,” Opt. Eng. 34, 445–452 (1995).
[CrossRef]

Surf. Coat. Technol. (1)

M. Ishino, O. Yoda, H. Takenaka, K. Sano, M. Koike, “Heat stability of Mo/Si multilayers inserted with compound layers,” Surf. Coat. Technol. 169–170, 628–631 (2003).
[CrossRef]

Thin Solid Films (1)

T. Böttger, D. C. Meyer, P. Paufler, S. Braun, M. Moss, H. Mai, E. Beyer, “Thermal stability of Mo/Si multilayers with boron carbide interlayers,” Thin Solid Films 444, 165–173 (2003).
[CrossRef]

Other (3)

S. Bajt, “High-reflectance interface-engineered multilayers,” invited talk at Physics of X-Ray Multilayer Structures, Chamonix, France, 3–7 March 2002, http://cletus.phys.columbia.edu/pxrms/archives/pxrms02/index.html .

See“X-ray interactions with matter” at http://www.cxro.lbl.gov/opticalconstants/ , managed by E. M. Gullikson.

W. H. Zachariasen, Theory of X-ray Diffraction in Crystals (Wiley, 1945), p. 102.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Cross-sectional TEM image of the as-deposited Mo/SiC multilayer coating. The plot at the bottom shows the layer profile obtained from the image by averaging over ∼20 nm in the plane of the layers.

Fig. 2
Fig. 2

Cross-sectional TEM image of the Mo/SiC multilayer coating annealed at 400 °C for 48 h. The plot at the bottom shows the layer profile obtained from the image by averaging over ∼20 nm in the plane of the layers.

Fig. 3
Fig. 3

SAED pattern for the as-deposited Mo/SiC multilayer coating. The direction normal to the film is vertical. The profile shown at the bottom was taken along the white line.

Fig. 4
Fig. 4

SAED pattern for the annealed Mo/SiC multilayer coating. The direction normal to the film is vertical. The profile shown at the bottom was taken along the white line.

Fig. 5
Fig. 5

Normal-incidence reflectivity calculated for a 60-period Mo/SiC multilayer coating in the as-deposited state (solid curve) and after completion of the alpha stage relaxation (dashed curve).

Fig. 6
Fig. 6

XRD measurements of the Mo/SiC multilayer films annealed for a series of times at temperatures of 350°, 375°, and 400 °C. The as-deposited films show a strong Mo <110> peak at 2θ = 40°. The peak broadens and shifts to lower angle with increasing annealing time. The crystallization of the SiC layers is indicated by the appearance of the SiC <111> peak at 2θ = 35°.

Fig. 7
Fig. 7

Plots showing a linear relationship between the square of the decrease in the Mo layer thickness and the annealing time. The slope of the line is proportional to the interdiffusion coefficient.

Fig. 8
Fig. 8

Arrhenius plot showing the temperature dependence of the measured interdiffusion (D) coefficient. The slope of the line is the activation energy and the ordinate intercept is D0.

Fig. 9
Fig. 9

Predicted temperature dependence of the stabilization time, defined as the time required to complete the alpha stage relaxation in the Mo/SiC multilayer structure. Here we have assumed that the initial thickness of the crystalline Mo layers is 3 nm.

Fig. 10
Fig. 10

Reflectivity and wavelength change due to 100 h anneal at 500 °C. Two pieces of the same coating have been characterized with a reflectometer before and after annealing. One piece has been initially cured for 100 h at 400 °C. Both pieces were then annealed at 500 °C for a cumulative time of 100 h(1h + 9h + 90 h). Independent of the procedure, both pieces ended up having the same final reflectivity and wavelength.

Tables (2)

Tables Icon

Table 1 Values of the Layer Thicknesses, Bilayer Spacing, and Gamma Determined from the TEM Images

Tables Icon

Table 2 Values of the Interdiffusion Coefficient Determined for the Alpha Stage Relaxation of Mo/SiC Multilayers

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

N Mo = τ Mo ρ Mo A w Mo = 2.4 × 10 16 atoms / cm 2 .
N SiC = ( τ SiC ( i ) τ SiC ( f ) ) ρ SiC A w SiC = 4.0 × 10 15 mol / cm 2 .
β = N Mo N Mo + N SiC = 0.85 .
ρ MoSiC = w Mo N Mo + w SiC N SiC τ MoSiC A = 9.1 g / cm 3 .
d w d t = D ( T ) β ( 1 β ) w .
D ( T ) = D 0 exp ( E A / k T ) .
w 2 = 2 D t β ( 1 β ) .
Δ τ Mo = 2 β w .
Δ τ Mo 2 = 8 β 1 β D t .
I ( 2 θ ) = I 0 exp [ ( 2 θ 2 θ < 110 > ) 2 2 σ 2 ] .
τ Mo = 2 π λ 2 σ cos θ < 110 > .
t s = ( 1 β ) τ Mo 2 8 β D 0 exp ( E A / k T ) .

Metrics