Abstract

We investigate the thermal stability of Mo/SiC multilayer coatings at elevated temperatures. Transmission electron microscopy and x-ray diffraction studies show that, upon annealing, a thermally induced structural relaxation occurs that transforms the polycrystalline Mo and amorphous SiC layers in as-deposited multilayers into an amorphous Mo-Si-C alloy and crystalline SiC, respectively. After this relaxation process is complete, the multilayer is stable at temperatures up to 400 °C.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Takenaka, T. Kawamura, “Thermal stability of Mo/C/ Si/C multilayer soft x-ray mirrors,” J. Electron Spectrosc. Relat. Phenom. 80, 381–384 (1996).
    [CrossRef]
  2. S. Bajt, J. B. Alameda, T. W. Barbee, W. M. Clift, J. A. Folta, B. Kaufmann, E. A. Spiller, “Improved reflectance and stability of Mo-Si multilayers,” Opt. Eng. 41, 1797–1804 (2002).
    [CrossRef]
  3. Z. Jiang, X. Jiang, W. Liu, Z. Wu, “Thermal stability of multilayer films Pt/Si, W/Si, Mo/Si, and W/Si,” J. Appl. Phys. 65, 196–200 (1989).
    [CrossRef]
  4. A. Kloidt, K. Nolting, U. Kleineberg, B. Schmiedéskamp, U. Heinzmann, P. Müller, M. Kühne, “Enhancement of the reflectivity of Mo/Si multilayer mirrors by thermal treatment,” Appl. Phys. Lett. 58, 2601–2603 (1991).
    [CrossRef]
  5. R. R. Kola, D. L. Windt, W. K. Waskiewicz, B. E. Weir, R. Hull, G. K. Celler, C. A. Volkert, “Stress relaxation in Mo/Si multilayer structures,” Appl. Phys. Lett. 60, 3120–3122 (1992).
    [CrossRef]
  6. Y. Ijdiyaou, M. Azizan, E. L. Ameziane, M. Brunel, T. A. Nguyen Tan, “On the formation of molybdenum silicides in Mo-Si multilayers: the effect of Mo thickness and annealing temperature,” Appl. Surf. Sci. 55, 165–171 (1992).
    [CrossRef]
  7. R. S. Rosen, D. G. Stearns, M. A. Villiardos, M. E. Kassner, S. P. Vernon, Y. Cheng, “Silicide layer growth rates in Mo/Si multilayers,” Appl. Opt. 32, 6975–6980 (1993).
    [CrossRef] [PubMed]
  8. V. V. Kontradenko, Yu. P. Pershin, O. V. Poltseva, A. I. Fedorenko, E. N. Zubarev, S. A. Yulin, I. V. Kozhevnikov, S. I. Saitov, V. A. Chirkov, V. E. Levashov, A. V. Vinogradov, “Thermal stability of soft x-ray Mo-Si and MoSi2-Si multilayer mirrors,” Appl. Opt. 32, 1811–1816 (1993).
    [CrossRef]
  9. H. Azuma, A. Takeichi, I. Konomi, Y. Watanabe, S. Noda, “Thermally induced structural modification of nanometer-order Mo/Si multilayers by the spectral reflectance of laser-plasma soft X-rays,” Jpn. J. Appl. Phys. 43, 2078–2082 (1993).
    [CrossRef]
  10. J. M. Liang, L. J. Chen, “Interfacial reactions and thermal stability of ultrahigh vacuum deposited multilayered Mo/Si structures,” J. Appl. Phys. 79, 4072–4077 (1996).
    [CrossRef]
  11. E. Ziegler, “Multilayers for high heat load synchrotron applications,” Opt. Eng. 34, 445–452 (1995).
    [CrossRef]
  12. H.-J. Voorma, E. Louis, N. B. Koster, F. Bijkerk, “Temperature induced diffusion in Mo/Si multilayer mirrors,” J. Appl. Phys. 83, 4700–4708 (1998).
    [CrossRef]
  13. D. L. Windt, “Stress, microstructure, and stability of Mo/Si, W/Si, and Mo/C multilayer films,” J. Vac. Sci. Technol. A 18, 980–991 (2000).
    [CrossRef]
  14. C. Montcalm, “Reduction of residual stress in extreme ultraviolet Mo/Si multilayer mirrors with postdeposition thermal treatments,” Opt. Eng. 40, 469–477 (2001).
    [CrossRef]
  15. T. Feigel, H. Lauth, S. Yulin, N. Kaiser, “Heat resistance of EUV multilayer mirrors for long-time applications,” Microelectron. Eng. 57–58, 3–8 (2001).
    [CrossRef]
  16. T. Feigl, S. Yulin, T. Kuhlmann, N. Kaiser, “Damage resistant and low stress EUV multilayer mirrors,” Jpn. J. Appl. Phys. 41, 4082–4085 (2002).
    [CrossRef]
  17. T. Leisegang, D. C. Meyer, A. A. Levin, S. Braun, P. Paufler, “On the interplay of internal/external stress and thermal stability of Mo/Si multilayers,” Appl. Phys. A 77, 965–972 (2003).
    [CrossRef]
  18. D. L. Windt, S. Donguy, J. Seely, B. Kjomrattanawanich, “Experimental comparison of extreme-ultraviolet multilayers for solar physics,” Appl. Opt. 43, 1835–1848 (2004).
    [CrossRef] [PubMed]
  19. T. Böttger, D. C. Meyer, P. Paufler, S. Braun, M. Moss, H. Mai, E. Beyer, “Thermal stability of Mo/Si multilayers with boron carbide interlayers,” Thin Solid Films 444, 165–173 (2003).
    [CrossRef]
  20. H. Takenaka, H. Io, T. Haga, T. Kawamura, “Design and fabrication of highly heat-resistant Mo/Si multilayer soft x-ray mirrors with interleaved barrier layers,” J. Synchrotron Radiat. 5, 708–710 (1998).
    [CrossRef]
  21. S. Bajt, “High-reflectance interface-engineered multilayers,” invited talk at Physics of X-Ray Multilayer Structures, Chamonix, France, 3–7 March 2002, http://cletus.phys.columbia.edu/pxrms/archives/pxrms02/index.html .
  22. S. Braun, H. Mai, M. Moss, R. Scholz, A. Leson, “Mo/Si multilayers with different barrier layers for applications as extreme ultraviolet mirrors,” Jpn. J. Appl. Phys. 41, 4074–4081 (2002).
    [CrossRef]
  23. A. Patelli, J. Ravagnan, V. Rigato, G. Salmaso, D. Silvestrini, E. Bontempi, L. E. Depero, “Structure and interface properties of Mo/B4C/Si multilayers deposited by rf-magnetron sputtering,” Appl. Surf. Sci. 238, 262–268 (2004).
    [CrossRef]
  24. M. Ishino, O. Yoda, H. Takenaka, K. Sano, M. Koike, “Heat stability of Mo/Si multilayers inserted with compound layers,” Surf. Coat. Technol. 169–170, 628–631 (2003).
    [CrossRef]
  25. D. L. Windt, “IMD software for modeling the optical properties of multilayer films,” Comput. Phys. 12, 360–370 (1998).
    [CrossRef]
  26. See“X-ray interactions with matter” at http://www.cxro.lbl.gov/opticalconstants/ , managed by E. M. Gullikson.
  27. J. H. Underwood, E. M. Gullikson, K. Nguyen, “Tarnishing of Mo/Si multilayer x-ray mirrors,” Appl. Opt. 32, 6985–6990 (1993).
    [CrossRef] [PubMed]
  28. J. H. Underwood, E. M. Gullikson, “High-resolution, high-flux, user friendly VLS beamline at the ALS for the 50-1300 eV energy region,” J. Electron Spectrosc. Relat. Phenom. 92, 265–272 (1998).
    [CrossRef]
  29. S. Govindarajan, J. J. Moore, J. Disam, “Synthesis of nanocomposite thin films based on the Mo-Si-C ternary system and compositional tailoring through controlled ion bombardment,” Metall. Mater. Trans. A 29, 1719–1725 (1998).
    [CrossRef]
  30. X. Fan, K. Hack, T. Ishigaki, “Calculated C-MoSi2 and B-Mo5Si3 pseudo-binary phase diagrams for the use in advanced materials processing,” Mater. Sci. Eng. A278, 46–53 (2000).
    [CrossRef]
  31. U. Gosele, K. N. Tu, “Growth kinetics of planar binary diffusion couples—thin-film case versus bulk cases,” J. Appl. Phys. 53, 3252–3260 (1982).
    [CrossRef]
  32. W. H. Zachariasen, Theory of X-ray Diffraction in Crystals (Wiley, 1945), p. 102.

2004

A. Patelli, J. Ravagnan, V. Rigato, G. Salmaso, D. Silvestrini, E. Bontempi, L. E. Depero, “Structure and interface properties of Mo/B4C/Si multilayers deposited by rf-magnetron sputtering,” Appl. Surf. Sci. 238, 262–268 (2004).
[CrossRef]

D. L. Windt, S. Donguy, J. Seely, B. Kjomrattanawanich, “Experimental comparison of extreme-ultraviolet multilayers for solar physics,” Appl. Opt. 43, 1835–1848 (2004).
[CrossRef] [PubMed]

2003

M. Ishino, O. Yoda, H. Takenaka, K. Sano, M. Koike, “Heat stability of Mo/Si multilayers inserted with compound layers,” Surf. Coat. Technol. 169–170, 628–631 (2003).
[CrossRef]

T. Leisegang, D. C. Meyer, A. A. Levin, S. Braun, P. Paufler, “On the interplay of internal/external stress and thermal stability of Mo/Si multilayers,” Appl. Phys. A 77, 965–972 (2003).
[CrossRef]

T. Böttger, D. C. Meyer, P. Paufler, S. Braun, M. Moss, H. Mai, E. Beyer, “Thermal stability of Mo/Si multilayers with boron carbide interlayers,” Thin Solid Films 444, 165–173 (2003).
[CrossRef]

2002

T. Feigl, S. Yulin, T. Kuhlmann, N. Kaiser, “Damage resistant and low stress EUV multilayer mirrors,” Jpn. J. Appl. Phys. 41, 4082–4085 (2002).
[CrossRef]

S. Bajt, J. B. Alameda, T. W. Barbee, W. M. Clift, J. A. Folta, B. Kaufmann, E. A. Spiller, “Improved reflectance and stability of Mo-Si multilayers,” Opt. Eng. 41, 1797–1804 (2002).
[CrossRef]

S. Braun, H. Mai, M. Moss, R. Scholz, A. Leson, “Mo/Si multilayers with different barrier layers for applications as extreme ultraviolet mirrors,” Jpn. J. Appl. Phys. 41, 4074–4081 (2002).
[CrossRef]

2001

C. Montcalm, “Reduction of residual stress in extreme ultraviolet Mo/Si multilayer mirrors with postdeposition thermal treatments,” Opt. Eng. 40, 469–477 (2001).
[CrossRef]

T. Feigel, H. Lauth, S. Yulin, N. Kaiser, “Heat resistance of EUV multilayer mirrors for long-time applications,” Microelectron. Eng. 57–58, 3–8 (2001).
[CrossRef]

2000

D. L. Windt, “Stress, microstructure, and stability of Mo/Si, W/Si, and Mo/C multilayer films,” J. Vac. Sci. Technol. A 18, 980–991 (2000).
[CrossRef]

X. Fan, K. Hack, T. Ishigaki, “Calculated C-MoSi2 and B-Mo5Si3 pseudo-binary phase diagrams for the use in advanced materials processing,” Mater. Sci. Eng. A278, 46–53 (2000).
[CrossRef]

1998

D. L. Windt, “IMD software for modeling the optical properties of multilayer films,” Comput. Phys. 12, 360–370 (1998).
[CrossRef]

J. H. Underwood, E. M. Gullikson, “High-resolution, high-flux, user friendly VLS beamline at the ALS for the 50-1300 eV energy region,” J. Electron Spectrosc. Relat. Phenom. 92, 265–272 (1998).
[CrossRef]

S. Govindarajan, J. J. Moore, J. Disam, “Synthesis of nanocomposite thin films based on the Mo-Si-C ternary system and compositional tailoring through controlled ion bombardment,” Metall. Mater. Trans. A 29, 1719–1725 (1998).
[CrossRef]

H. Takenaka, H. Io, T. Haga, T. Kawamura, “Design and fabrication of highly heat-resistant Mo/Si multilayer soft x-ray mirrors with interleaved barrier layers,” J. Synchrotron Radiat. 5, 708–710 (1998).
[CrossRef]

H.-J. Voorma, E. Louis, N. B. Koster, F. Bijkerk, “Temperature induced diffusion in Mo/Si multilayer mirrors,” J. Appl. Phys. 83, 4700–4708 (1998).
[CrossRef]

1996

H. Takenaka, T. Kawamura, “Thermal stability of Mo/C/ Si/C multilayer soft x-ray mirrors,” J. Electron Spectrosc. Relat. Phenom. 80, 381–384 (1996).
[CrossRef]

J. M. Liang, L. J. Chen, “Interfacial reactions and thermal stability of ultrahigh vacuum deposited multilayered Mo/Si structures,” J. Appl. Phys. 79, 4072–4077 (1996).
[CrossRef]

1995

E. Ziegler, “Multilayers for high heat load synchrotron applications,” Opt. Eng. 34, 445–452 (1995).
[CrossRef]

1993

1992

R. R. Kola, D. L. Windt, W. K. Waskiewicz, B. E. Weir, R. Hull, G. K. Celler, C. A. Volkert, “Stress relaxation in Mo/Si multilayer structures,” Appl. Phys. Lett. 60, 3120–3122 (1992).
[CrossRef]

Y. Ijdiyaou, M. Azizan, E. L. Ameziane, M. Brunel, T. A. Nguyen Tan, “On the formation of molybdenum silicides in Mo-Si multilayers: the effect of Mo thickness and annealing temperature,” Appl. Surf. Sci. 55, 165–171 (1992).
[CrossRef]

1991

A. Kloidt, K. Nolting, U. Kleineberg, B. Schmiedéskamp, U. Heinzmann, P. Müller, M. Kühne, “Enhancement of the reflectivity of Mo/Si multilayer mirrors by thermal treatment,” Appl. Phys. Lett. 58, 2601–2603 (1991).
[CrossRef]

1989

Z. Jiang, X. Jiang, W. Liu, Z. Wu, “Thermal stability of multilayer films Pt/Si, W/Si, Mo/Si, and W/Si,” J. Appl. Phys. 65, 196–200 (1989).
[CrossRef]

1982

U. Gosele, K. N. Tu, “Growth kinetics of planar binary diffusion couples—thin-film case versus bulk cases,” J. Appl. Phys. 53, 3252–3260 (1982).
[CrossRef]

Alameda, J. B.

S. Bajt, J. B. Alameda, T. W. Barbee, W. M. Clift, J. A. Folta, B. Kaufmann, E. A. Spiller, “Improved reflectance and stability of Mo-Si multilayers,” Opt. Eng. 41, 1797–1804 (2002).
[CrossRef]

Ameziane, E. L.

Y. Ijdiyaou, M. Azizan, E. L. Ameziane, M. Brunel, T. A. Nguyen Tan, “On the formation of molybdenum silicides in Mo-Si multilayers: the effect of Mo thickness and annealing temperature,” Appl. Surf. Sci. 55, 165–171 (1992).
[CrossRef]

Azizan, M.

Y. Ijdiyaou, M. Azizan, E. L. Ameziane, M. Brunel, T. A. Nguyen Tan, “On the formation of molybdenum silicides in Mo-Si multilayers: the effect of Mo thickness and annealing temperature,” Appl. Surf. Sci. 55, 165–171 (1992).
[CrossRef]

Azuma, H.

H. Azuma, A. Takeichi, I. Konomi, Y. Watanabe, S. Noda, “Thermally induced structural modification of nanometer-order Mo/Si multilayers by the spectral reflectance of laser-plasma soft X-rays,” Jpn. J. Appl. Phys. 43, 2078–2082 (1993).
[CrossRef]

Bajt, S.

S. Bajt, J. B. Alameda, T. W. Barbee, W. M. Clift, J. A. Folta, B. Kaufmann, E. A. Spiller, “Improved reflectance and stability of Mo-Si multilayers,” Opt. Eng. 41, 1797–1804 (2002).
[CrossRef]

S. Bajt, “High-reflectance interface-engineered multilayers,” invited talk at Physics of X-Ray Multilayer Structures, Chamonix, France, 3–7 March 2002, http://cletus.phys.columbia.edu/pxrms/archives/pxrms02/index.html .

Barbee, T. W.

S. Bajt, J. B. Alameda, T. W. Barbee, W. M. Clift, J. A. Folta, B. Kaufmann, E. A. Spiller, “Improved reflectance and stability of Mo-Si multilayers,” Opt. Eng. 41, 1797–1804 (2002).
[CrossRef]

Beyer, E.

T. Böttger, D. C. Meyer, P. Paufler, S. Braun, M. Moss, H. Mai, E. Beyer, “Thermal stability of Mo/Si multilayers with boron carbide interlayers,” Thin Solid Films 444, 165–173 (2003).
[CrossRef]

Bijkerk, F.

H.-J. Voorma, E. Louis, N. B. Koster, F. Bijkerk, “Temperature induced diffusion in Mo/Si multilayer mirrors,” J. Appl. Phys. 83, 4700–4708 (1998).
[CrossRef]

Bontempi, E.

A. Patelli, J. Ravagnan, V. Rigato, G. Salmaso, D. Silvestrini, E. Bontempi, L. E. Depero, “Structure and interface properties of Mo/B4C/Si multilayers deposited by rf-magnetron sputtering,” Appl. Surf. Sci. 238, 262–268 (2004).
[CrossRef]

Böttger, T.

T. Böttger, D. C. Meyer, P. Paufler, S. Braun, M. Moss, H. Mai, E. Beyer, “Thermal stability of Mo/Si multilayers with boron carbide interlayers,” Thin Solid Films 444, 165–173 (2003).
[CrossRef]

Braun, S.

T. Leisegang, D. C. Meyer, A. A. Levin, S. Braun, P. Paufler, “On the interplay of internal/external stress and thermal stability of Mo/Si multilayers,” Appl. Phys. A 77, 965–972 (2003).
[CrossRef]

T. Böttger, D. C. Meyer, P. Paufler, S. Braun, M. Moss, H. Mai, E. Beyer, “Thermal stability of Mo/Si multilayers with boron carbide interlayers,” Thin Solid Films 444, 165–173 (2003).
[CrossRef]

S. Braun, H. Mai, M. Moss, R. Scholz, A. Leson, “Mo/Si multilayers with different barrier layers for applications as extreme ultraviolet mirrors,” Jpn. J. Appl. Phys. 41, 4074–4081 (2002).
[CrossRef]

Brunel, M.

Y. Ijdiyaou, M. Azizan, E. L. Ameziane, M. Brunel, T. A. Nguyen Tan, “On the formation of molybdenum silicides in Mo-Si multilayers: the effect of Mo thickness and annealing temperature,” Appl. Surf. Sci. 55, 165–171 (1992).
[CrossRef]

Celler, G. K.

R. R. Kola, D. L. Windt, W. K. Waskiewicz, B. E. Weir, R. Hull, G. K. Celler, C. A. Volkert, “Stress relaxation in Mo/Si multilayer structures,” Appl. Phys. Lett. 60, 3120–3122 (1992).
[CrossRef]

Chen, L. J.

J. M. Liang, L. J. Chen, “Interfacial reactions and thermal stability of ultrahigh vacuum deposited multilayered Mo/Si structures,” J. Appl. Phys. 79, 4072–4077 (1996).
[CrossRef]

Cheng, Y.

Chirkov, V. A.

Clift, W. M.

S. Bajt, J. B. Alameda, T. W. Barbee, W. M. Clift, J. A. Folta, B. Kaufmann, E. A. Spiller, “Improved reflectance and stability of Mo-Si multilayers,” Opt. Eng. 41, 1797–1804 (2002).
[CrossRef]

Depero, L. E.

A. Patelli, J. Ravagnan, V. Rigato, G. Salmaso, D. Silvestrini, E. Bontempi, L. E. Depero, “Structure and interface properties of Mo/B4C/Si multilayers deposited by rf-magnetron sputtering,” Appl. Surf. Sci. 238, 262–268 (2004).
[CrossRef]

Disam, J.

S. Govindarajan, J. J. Moore, J. Disam, “Synthesis of nanocomposite thin films based on the Mo-Si-C ternary system and compositional tailoring through controlled ion bombardment,” Metall. Mater. Trans. A 29, 1719–1725 (1998).
[CrossRef]

Donguy, S.

Fan, X.

X. Fan, K. Hack, T. Ishigaki, “Calculated C-MoSi2 and B-Mo5Si3 pseudo-binary phase diagrams for the use in advanced materials processing,” Mater. Sci. Eng. A278, 46–53 (2000).
[CrossRef]

Fedorenko, A. I.

Feigel, T.

T. Feigel, H. Lauth, S. Yulin, N. Kaiser, “Heat resistance of EUV multilayer mirrors for long-time applications,” Microelectron. Eng. 57–58, 3–8 (2001).
[CrossRef]

Feigl, T.

T. Feigl, S. Yulin, T. Kuhlmann, N. Kaiser, “Damage resistant and low stress EUV multilayer mirrors,” Jpn. J. Appl. Phys. 41, 4082–4085 (2002).
[CrossRef]

Folta, J. A.

S. Bajt, J. B. Alameda, T. W. Barbee, W. M. Clift, J. A. Folta, B. Kaufmann, E. A. Spiller, “Improved reflectance and stability of Mo-Si multilayers,” Opt. Eng. 41, 1797–1804 (2002).
[CrossRef]

Gosele, U.

U. Gosele, K. N. Tu, “Growth kinetics of planar binary diffusion couples—thin-film case versus bulk cases,” J. Appl. Phys. 53, 3252–3260 (1982).
[CrossRef]

Govindarajan, S.

S. Govindarajan, J. J. Moore, J. Disam, “Synthesis of nanocomposite thin films based on the Mo-Si-C ternary system and compositional tailoring through controlled ion bombardment,” Metall. Mater. Trans. A 29, 1719–1725 (1998).
[CrossRef]

Gullikson, E. M.

J. H. Underwood, E. M. Gullikson, “High-resolution, high-flux, user friendly VLS beamline at the ALS for the 50-1300 eV energy region,” J. Electron Spectrosc. Relat. Phenom. 92, 265–272 (1998).
[CrossRef]

J. H. Underwood, E. M. Gullikson, K. Nguyen, “Tarnishing of Mo/Si multilayer x-ray mirrors,” Appl. Opt. 32, 6985–6990 (1993).
[CrossRef] [PubMed]

Hack, K.

X. Fan, K. Hack, T. Ishigaki, “Calculated C-MoSi2 and B-Mo5Si3 pseudo-binary phase diagrams for the use in advanced materials processing,” Mater. Sci. Eng. A278, 46–53 (2000).
[CrossRef]

Haga, T.

H. Takenaka, H. Io, T. Haga, T. Kawamura, “Design and fabrication of highly heat-resistant Mo/Si multilayer soft x-ray mirrors with interleaved barrier layers,” J. Synchrotron Radiat. 5, 708–710 (1998).
[CrossRef]

Heinzmann, U.

A. Kloidt, K. Nolting, U. Kleineberg, B. Schmiedéskamp, U. Heinzmann, P. Müller, M. Kühne, “Enhancement of the reflectivity of Mo/Si multilayer mirrors by thermal treatment,” Appl. Phys. Lett. 58, 2601–2603 (1991).
[CrossRef]

Hull, R.

R. R. Kola, D. L. Windt, W. K. Waskiewicz, B. E. Weir, R. Hull, G. K. Celler, C. A. Volkert, “Stress relaxation in Mo/Si multilayer structures,” Appl. Phys. Lett. 60, 3120–3122 (1992).
[CrossRef]

Ijdiyaou, Y.

Y. Ijdiyaou, M. Azizan, E. L. Ameziane, M. Brunel, T. A. Nguyen Tan, “On the formation of molybdenum silicides in Mo-Si multilayers: the effect of Mo thickness and annealing temperature,” Appl. Surf. Sci. 55, 165–171 (1992).
[CrossRef]

Io, H.

H. Takenaka, H. Io, T. Haga, T. Kawamura, “Design and fabrication of highly heat-resistant Mo/Si multilayer soft x-ray mirrors with interleaved barrier layers,” J. Synchrotron Radiat. 5, 708–710 (1998).
[CrossRef]

Ishigaki, T.

X. Fan, K. Hack, T. Ishigaki, “Calculated C-MoSi2 and B-Mo5Si3 pseudo-binary phase diagrams for the use in advanced materials processing,” Mater. Sci. Eng. A278, 46–53 (2000).
[CrossRef]

Ishino, M.

M. Ishino, O. Yoda, H. Takenaka, K. Sano, M. Koike, “Heat stability of Mo/Si multilayers inserted with compound layers,” Surf. Coat. Technol. 169–170, 628–631 (2003).
[CrossRef]

Jiang, X.

Z. Jiang, X. Jiang, W. Liu, Z. Wu, “Thermal stability of multilayer films Pt/Si, W/Si, Mo/Si, and W/Si,” J. Appl. Phys. 65, 196–200 (1989).
[CrossRef]

Jiang, Z.

Z. Jiang, X. Jiang, W. Liu, Z. Wu, “Thermal stability of multilayer films Pt/Si, W/Si, Mo/Si, and W/Si,” J. Appl. Phys. 65, 196–200 (1989).
[CrossRef]

Kaiser, N.

T. Feigl, S. Yulin, T. Kuhlmann, N. Kaiser, “Damage resistant and low stress EUV multilayer mirrors,” Jpn. J. Appl. Phys. 41, 4082–4085 (2002).
[CrossRef]

T. Feigel, H. Lauth, S. Yulin, N. Kaiser, “Heat resistance of EUV multilayer mirrors for long-time applications,” Microelectron. Eng. 57–58, 3–8 (2001).
[CrossRef]

Kassner, M. E.

Kaufmann, B.

S. Bajt, J. B. Alameda, T. W. Barbee, W. M. Clift, J. A. Folta, B. Kaufmann, E. A. Spiller, “Improved reflectance and stability of Mo-Si multilayers,” Opt. Eng. 41, 1797–1804 (2002).
[CrossRef]

Kawamura, T.

H. Takenaka, H. Io, T. Haga, T. Kawamura, “Design and fabrication of highly heat-resistant Mo/Si multilayer soft x-ray mirrors with interleaved barrier layers,” J. Synchrotron Radiat. 5, 708–710 (1998).
[CrossRef]

H. Takenaka, T. Kawamura, “Thermal stability of Mo/C/ Si/C multilayer soft x-ray mirrors,” J. Electron Spectrosc. Relat. Phenom. 80, 381–384 (1996).
[CrossRef]

Kjomrattanawanich, B.

Kleineberg, U.

A. Kloidt, K. Nolting, U. Kleineberg, B. Schmiedéskamp, U. Heinzmann, P. Müller, M. Kühne, “Enhancement of the reflectivity of Mo/Si multilayer mirrors by thermal treatment,” Appl. Phys. Lett. 58, 2601–2603 (1991).
[CrossRef]

Kloidt, A.

A. Kloidt, K. Nolting, U. Kleineberg, B. Schmiedéskamp, U. Heinzmann, P. Müller, M. Kühne, “Enhancement of the reflectivity of Mo/Si multilayer mirrors by thermal treatment,” Appl. Phys. Lett. 58, 2601–2603 (1991).
[CrossRef]

Koike, M.

M. Ishino, O. Yoda, H. Takenaka, K. Sano, M. Koike, “Heat stability of Mo/Si multilayers inserted with compound layers,” Surf. Coat. Technol. 169–170, 628–631 (2003).
[CrossRef]

Kola, R. R.

R. R. Kola, D. L. Windt, W. K. Waskiewicz, B. E. Weir, R. Hull, G. K. Celler, C. A. Volkert, “Stress relaxation in Mo/Si multilayer structures,” Appl. Phys. Lett. 60, 3120–3122 (1992).
[CrossRef]

Konomi, I.

H. Azuma, A. Takeichi, I. Konomi, Y. Watanabe, S. Noda, “Thermally induced structural modification of nanometer-order Mo/Si multilayers by the spectral reflectance of laser-plasma soft X-rays,” Jpn. J. Appl. Phys. 43, 2078–2082 (1993).
[CrossRef]

Kontradenko, V. V.

Koster, N. B.

H.-J. Voorma, E. Louis, N. B. Koster, F. Bijkerk, “Temperature induced diffusion in Mo/Si multilayer mirrors,” J. Appl. Phys. 83, 4700–4708 (1998).
[CrossRef]

Kozhevnikov, I. V.

Kuhlmann, T.

T. Feigl, S. Yulin, T. Kuhlmann, N. Kaiser, “Damage resistant and low stress EUV multilayer mirrors,” Jpn. J. Appl. Phys. 41, 4082–4085 (2002).
[CrossRef]

Kühne, M.

A. Kloidt, K. Nolting, U. Kleineberg, B. Schmiedéskamp, U. Heinzmann, P. Müller, M. Kühne, “Enhancement of the reflectivity of Mo/Si multilayer mirrors by thermal treatment,” Appl. Phys. Lett. 58, 2601–2603 (1991).
[CrossRef]

Lauth, H.

T. Feigel, H. Lauth, S. Yulin, N. Kaiser, “Heat resistance of EUV multilayer mirrors for long-time applications,” Microelectron. Eng. 57–58, 3–8 (2001).
[CrossRef]

Leisegang, T.

T. Leisegang, D. C. Meyer, A. A. Levin, S. Braun, P. Paufler, “On the interplay of internal/external stress and thermal stability of Mo/Si multilayers,” Appl. Phys. A 77, 965–972 (2003).
[CrossRef]

Leson, A.

S. Braun, H. Mai, M. Moss, R. Scholz, A. Leson, “Mo/Si multilayers with different barrier layers for applications as extreme ultraviolet mirrors,” Jpn. J. Appl. Phys. 41, 4074–4081 (2002).
[CrossRef]

Levashov, V. E.

Levin, A. A.

T. Leisegang, D. C. Meyer, A. A. Levin, S. Braun, P. Paufler, “On the interplay of internal/external stress and thermal stability of Mo/Si multilayers,” Appl. Phys. A 77, 965–972 (2003).
[CrossRef]

Liang, J. M.

J. M. Liang, L. J. Chen, “Interfacial reactions and thermal stability of ultrahigh vacuum deposited multilayered Mo/Si structures,” J. Appl. Phys. 79, 4072–4077 (1996).
[CrossRef]

Liu, W.

Z. Jiang, X. Jiang, W. Liu, Z. Wu, “Thermal stability of multilayer films Pt/Si, W/Si, Mo/Si, and W/Si,” J. Appl. Phys. 65, 196–200 (1989).
[CrossRef]

Louis, E.

H.-J. Voorma, E. Louis, N. B. Koster, F. Bijkerk, “Temperature induced diffusion in Mo/Si multilayer mirrors,” J. Appl. Phys. 83, 4700–4708 (1998).
[CrossRef]

Mai, H.

T. Böttger, D. C. Meyer, P. Paufler, S. Braun, M. Moss, H. Mai, E. Beyer, “Thermal stability of Mo/Si multilayers with boron carbide interlayers,” Thin Solid Films 444, 165–173 (2003).
[CrossRef]

S. Braun, H. Mai, M. Moss, R. Scholz, A. Leson, “Mo/Si multilayers with different barrier layers for applications as extreme ultraviolet mirrors,” Jpn. J. Appl. Phys. 41, 4074–4081 (2002).
[CrossRef]

Meyer, D. C.

T. Böttger, D. C. Meyer, P. Paufler, S. Braun, M. Moss, H. Mai, E. Beyer, “Thermal stability of Mo/Si multilayers with boron carbide interlayers,” Thin Solid Films 444, 165–173 (2003).
[CrossRef]

T. Leisegang, D. C. Meyer, A. A. Levin, S. Braun, P. Paufler, “On the interplay of internal/external stress and thermal stability of Mo/Si multilayers,” Appl. Phys. A 77, 965–972 (2003).
[CrossRef]

Montcalm, C.

C. Montcalm, “Reduction of residual stress in extreme ultraviolet Mo/Si multilayer mirrors with postdeposition thermal treatments,” Opt. Eng. 40, 469–477 (2001).
[CrossRef]

Moore, J. J.

S. Govindarajan, J. J. Moore, J. Disam, “Synthesis of nanocomposite thin films based on the Mo-Si-C ternary system and compositional tailoring through controlled ion bombardment,” Metall. Mater. Trans. A 29, 1719–1725 (1998).
[CrossRef]

Moss, M.

T. Böttger, D. C. Meyer, P. Paufler, S. Braun, M. Moss, H. Mai, E. Beyer, “Thermal stability of Mo/Si multilayers with boron carbide interlayers,” Thin Solid Films 444, 165–173 (2003).
[CrossRef]

S. Braun, H. Mai, M. Moss, R. Scholz, A. Leson, “Mo/Si multilayers with different barrier layers for applications as extreme ultraviolet mirrors,” Jpn. J. Appl. Phys. 41, 4074–4081 (2002).
[CrossRef]

Müller, P.

A. Kloidt, K. Nolting, U. Kleineberg, B. Schmiedéskamp, U. Heinzmann, P. Müller, M. Kühne, “Enhancement of the reflectivity of Mo/Si multilayer mirrors by thermal treatment,” Appl. Phys. Lett. 58, 2601–2603 (1991).
[CrossRef]

Nguyen, K.

Nguyen Tan, T. A.

Y. Ijdiyaou, M. Azizan, E. L. Ameziane, M. Brunel, T. A. Nguyen Tan, “On the formation of molybdenum silicides in Mo-Si multilayers: the effect of Mo thickness and annealing temperature,” Appl. Surf. Sci. 55, 165–171 (1992).
[CrossRef]

Noda, S.

H. Azuma, A. Takeichi, I. Konomi, Y. Watanabe, S. Noda, “Thermally induced structural modification of nanometer-order Mo/Si multilayers by the spectral reflectance of laser-plasma soft X-rays,” Jpn. J. Appl. Phys. 43, 2078–2082 (1993).
[CrossRef]

Nolting, K.

A. Kloidt, K. Nolting, U. Kleineberg, B. Schmiedéskamp, U. Heinzmann, P. Müller, M. Kühne, “Enhancement of the reflectivity of Mo/Si multilayer mirrors by thermal treatment,” Appl. Phys. Lett. 58, 2601–2603 (1991).
[CrossRef]

Patelli, A.

A. Patelli, J. Ravagnan, V. Rigato, G. Salmaso, D. Silvestrini, E. Bontempi, L. E. Depero, “Structure and interface properties of Mo/B4C/Si multilayers deposited by rf-magnetron sputtering,” Appl. Surf. Sci. 238, 262–268 (2004).
[CrossRef]

Paufler, P.

T. Böttger, D. C. Meyer, P. Paufler, S. Braun, M. Moss, H. Mai, E. Beyer, “Thermal stability of Mo/Si multilayers with boron carbide interlayers,” Thin Solid Films 444, 165–173 (2003).
[CrossRef]

T. Leisegang, D. C. Meyer, A. A. Levin, S. Braun, P. Paufler, “On the interplay of internal/external stress and thermal stability of Mo/Si multilayers,” Appl. Phys. A 77, 965–972 (2003).
[CrossRef]

Pershin, Yu. P.

Poltseva, O. V.

Ravagnan, J.

A. Patelli, J. Ravagnan, V. Rigato, G. Salmaso, D. Silvestrini, E. Bontempi, L. E. Depero, “Structure and interface properties of Mo/B4C/Si multilayers deposited by rf-magnetron sputtering,” Appl. Surf. Sci. 238, 262–268 (2004).
[CrossRef]

Rigato, V.

A. Patelli, J. Ravagnan, V. Rigato, G. Salmaso, D. Silvestrini, E. Bontempi, L. E. Depero, “Structure and interface properties of Mo/B4C/Si multilayers deposited by rf-magnetron sputtering,” Appl. Surf. Sci. 238, 262–268 (2004).
[CrossRef]

Rosen, R. S.

Saitov, S. I.

Salmaso, G.

A. Patelli, J. Ravagnan, V. Rigato, G. Salmaso, D. Silvestrini, E. Bontempi, L. E. Depero, “Structure and interface properties of Mo/B4C/Si multilayers deposited by rf-magnetron sputtering,” Appl. Surf. Sci. 238, 262–268 (2004).
[CrossRef]

Sano, K.

M. Ishino, O. Yoda, H. Takenaka, K. Sano, M. Koike, “Heat stability of Mo/Si multilayers inserted with compound layers,” Surf. Coat. Technol. 169–170, 628–631 (2003).
[CrossRef]

Schmiedéskamp, B.

A. Kloidt, K. Nolting, U. Kleineberg, B. Schmiedéskamp, U. Heinzmann, P. Müller, M. Kühne, “Enhancement of the reflectivity of Mo/Si multilayer mirrors by thermal treatment,” Appl. Phys. Lett. 58, 2601–2603 (1991).
[CrossRef]

Scholz, R.

S. Braun, H. Mai, M. Moss, R. Scholz, A. Leson, “Mo/Si multilayers with different barrier layers for applications as extreme ultraviolet mirrors,” Jpn. J. Appl. Phys. 41, 4074–4081 (2002).
[CrossRef]

Seely, J.

Silvestrini, D.

A. Patelli, J. Ravagnan, V. Rigato, G. Salmaso, D. Silvestrini, E. Bontempi, L. E. Depero, “Structure and interface properties of Mo/B4C/Si multilayers deposited by rf-magnetron sputtering,” Appl. Surf. Sci. 238, 262–268 (2004).
[CrossRef]

Spiller, E. A.

S. Bajt, J. B. Alameda, T. W. Barbee, W. M. Clift, J. A. Folta, B. Kaufmann, E. A. Spiller, “Improved reflectance and stability of Mo-Si multilayers,” Opt. Eng. 41, 1797–1804 (2002).
[CrossRef]

Stearns, D. G.

Takeichi, A.

H. Azuma, A. Takeichi, I. Konomi, Y. Watanabe, S. Noda, “Thermally induced structural modification of nanometer-order Mo/Si multilayers by the spectral reflectance of laser-plasma soft X-rays,” Jpn. J. Appl. Phys. 43, 2078–2082 (1993).
[CrossRef]

Takenaka, H.

M. Ishino, O. Yoda, H. Takenaka, K. Sano, M. Koike, “Heat stability of Mo/Si multilayers inserted with compound layers,” Surf. Coat. Technol. 169–170, 628–631 (2003).
[CrossRef]

H. Takenaka, H. Io, T. Haga, T. Kawamura, “Design and fabrication of highly heat-resistant Mo/Si multilayer soft x-ray mirrors with interleaved barrier layers,” J. Synchrotron Radiat. 5, 708–710 (1998).
[CrossRef]

H. Takenaka, T. Kawamura, “Thermal stability of Mo/C/ Si/C multilayer soft x-ray mirrors,” J. Electron Spectrosc. Relat. Phenom. 80, 381–384 (1996).
[CrossRef]

Tu, K. N.

U. Gosele, K. N. Tu, “Growth kinetics of planar binary diffusion couples—thin-film case versus bulk cases,” J. Appl. Phys. 53, 3252–3260 (1982).
[CrossRef]

Underwood, J. H.

J. H. Underwood, E. M. Gullikson, “High-resolution, high-flux, user friendly VLS beamline at the ALS for the 50-1300 eV energy region,” J. Electron Spectrosc. Relat. Phenom. 92, 265–272 (1998).
[CrossRef]

J. H. Underwood, E. M. Gullikson, K. Nguyen, “Tarnishing of Mo/Si multilayer x-ray mirrors,” Appl. Opt. 32, 6985–6990 (1993).
[CrossRef] [PubMed]

Vernon, S. P.

Villiardos, M. A.

Vinogradov, A. V.

Volkert, C. A.

R. R. Kola, D. L. Windt, W. K. Waskiewicz, B. E. Weir, R. Hull, G. K. Celler, C. A. Volkert, “Stress relaxation in Mo/Si multilayer structures,” Appl. Phys. Lett. 60, 3120–3122 (1992).
[CrossRef]

Voorma, H.-J.

H.-J. Voorma, E. Louis, N. B. Koster, F. Bijkerk, “Temperature induced diffusion in Mo/Si multilayer mirrors,” J. Appl. Phys. 83, 4700–4708 (1998).
[CrossRef]

Waskiewicz, W. K.

R. R. Kola, D. L. Windt, W. K. Waskiewicz, B. E. Weir, R. Hull, G. K. Celler, C. A. Volkert, “Stress relaxation in Mo/Si multilayer structures,” Appl. Phys. Lett. 60, 3120–3122 (1992).
[CrossRef]

Watanabe, Y.

H. Azuma, A. Takeichi, I. Konomi, Y. Watanabe, S. Noda, “Thermally induced structural modification of nanometer-order Mo/Si multilayers by the spectral reflectance of laser-plasma soft X-rays,” Jpn. J. Appl. Phys. 43, 2078–2082 (1993).
[CrossRef]

Weir, B. E.

R. R. Kola, D. L. Windt, W. K. Waskiewicz, B. E. Weir, R. Hull, G. K. Celler, C. A. Volkert, “Stress relaxation in Mo/Si multilayer structures,” Appl. Phys. Lett. 60, 3120–3122 (1992).
[CrossRef]

Windt, D. L.

D. L. Windt, S. Donguy, J. Seely, B. Kjomrattanawanich, “Experimental comparison of extreme-ultraviolet multilayers for solar physics,” Appl. Opt. 43, 1835–1848 (2004).
[CrossRef] [PubMed]

D. L. Windt, “Stress, microstructure, and stability of Mo/Si, W/Si, and Mo/C multilayer films,” J. Vac. Sci. Technol. A 18, 980–991 (2000).
[CrossRef]

D. L. Windt, “IMD software for modeling the optical properties of multilayer films,” Comput. Phys. 12, 360–370 (1998).
[CrossRef]

R. R. Kola, D. L. Windt, W. K. Waskiewicz, B. E. Weir, R. Hull, G. K. Celler, C. A. Volkert, “Stress relaxation in Mo/Si multilayer structures,” Appl. Phys. Lett. 60, 3120–3122 (1992).
[CrossRef]

Wu, Z.

Z. Jiang, X. Jiang, W. Liu, Z. Wu, “Thermal stability of multilayer films Pt/Si, W/Si, Mo/Si, and W/Si,” J. Appl. Phys. 65, 196–200 (1989).
[CrossRef]

Yoda, O.

M. Ishino, O. Yoda, H. Takenaka, K. Sano, M. Koike, “Heat stability of Mo/Si multilayers inserted with compound layers,” Surf. Coat. Technol. 169–170, 628–631 (2003).
[CrossRef]

Yulin, S.

T. Feigl, S. Yulin, T. Kuhlmann, N. Kaiser, “Damage resistant and low stress EUV multilayer mirrors,” Jpn. J. Appl. Phys. 41, 4082–4085 (2002).
[CrossRef]

T. Feigel, H. Lauth, S. Yulin, N. Kaiser, “Heat resistance of EUV multilayer mirrors for long-time applications,” Microelectron. Eng. 57–58, 3–8 (2001).
[CrossRef]

Yulin, S. A.

Zachariasen, W. H.

W. H. Zachariasen, Theory of X-ray Diffraction in Crystals (Wiley, 1945), p. 102.

Ziegler, E.

E. Ziegler, “Multilayers for high heat load synchrotron applications,” Opt. Eng. 34, 445–452 (1995).
[CrossRef]

Zubarev, E. N.

Appl. Opt.

Appl. Phys. A

T. Leisegang, D. C. Meyer, A. A. Levin, S. Braun, P. Paufler, “On the interplay of internal/external stress and thermal stability of Mo/Si multilayers,” Appl. Phys. A 77, 965–972 (2003).
[CrossRef]

Appl. Phys. Lett.

A. Kloidt, K. Nolting, U. Kleineberg, B. Schmiedéskamp, U. Heinzmann, P. Müller, M. Kühne, “Enhancement of the reflectivity of Mo/Si multilayer mirrors by thermal treatment,” Appl. Phys. Lett. 58, 2601–2603 (1991).
[CrossRef]

R. R. Kola, D. L. Windt, W. K. Waskiewicz, B. E. Weir, R. Hull, G. K. Celler, C. A. Volkert, “Stress relaxation in Mo/Si multilayer structures,” Appl. Phys. Lett. 60, 3120–3122 (1992).
[CrossRef]

Appl. Surf. Sci.

Y. Ijdiyaou, M. Azizan, E. L. Ameziane, M. Brunel, T. A. Nguyen Tan, “On the formation of molybdenum silicides in Mo-Si multilayers: the effect of Mo thickness and annealing temperature,” Appl. Surf. Sci. 55, 165–171 (1992).
[CrossRef]

A. Patelli, J. Ravagnan, V. Rigato, G. Salmaso, D. Silvestrini, E. Bontempi, L. E. Depero, “Structure and interface properties of Mo/B4C/Si multilayers deposited by rf-magnetron sputtering,” Appl. Surf. Sci. 238, 262–268 (2004).
[CrossRef]

Comput. Phys.

D. L. Windt, “IMD software for modeling the optical properties of multilayer films,” Comput. Phys. 12, 360–370 (1998).
[CrossRef]

J. Appl. Phys.

U. Gosele, K. N. Tu, “Growth kinetics of planar binary diffusion couples—thin-film case versus bulk cases,” J. Appl. Phys. 53, 3252–3260 (1982).
[CrossRef]

J. M. Liang, L. J. Chen, “Interfacial reactions and thermal stability of ultrahigh vacuum deposited multilayered Mo/Si structures,” J. Appl. Phys. 79, 4072–4077 (1996).
[CrossRef]

H.-J. Voorma, E. Louis, N. B. Koster, F. Bijkerk, “Temperature induced diffusion in Mo/Si multilayer mirrors,” J. Appl. Phys. 83, 4700–4708 (1998).
[CrossRef]

Z. Jiang, X. Jiang, W. Liu, Z. Wu, “Thermal stability of multilayer films Pt/Si, W/Si, Mo/Si, and W/Si,” J. Appl. Phys. 65, 196–200 (1989).
[CrossRef]

J. Electron Spectrosc. Relat. Phenom.

H. Takenaka, T. Kawamura, “Thermal stability of Mo/C/ Si/C multilayer soft x-ray mirrors,” J. Electron Spectrosc. Relat. Phenom. 80, 381–384 (1996).
[CrossRef]

J. H. Underwood, E. M. Gullikson, “High-resolution, high-flux, user friendly VLS beamline at the ALS for the 50-1300 eV energy region,” J. Electron Spectrosc. Relat. Phenom. 92, 265–272 (1998).
[CrossRef]

J. Synchrotron Radiat.

H. Takenaka, H. Io, T. Haga, T. Kawamura, “Design and fabrication of highly heat-resistant Mo/Si multilayer soft x-ray mirrors with interleaved barrier layers,” J. Synchrotron Radiat. 5, 708–710 (1998).
[CrossRef]

J. Vac. Sci. Technol. A

D. L. Windt, “Stress, microstructure, and stability of Mo/Si, W/Si, and Mo/C multilayer films,” J. Vac. Sci. Technol. A 18, 980–991 (2000).
[CrossRef]

Jpn. J. Appl. Phys.

H. Azuma, A. Takeichi, I. Konomi, Y. Watanabe, S. Noda, “Thermally induced structural modification of nanometer-order Mo/Si multilayers by the spectral reflectance of laser-plasma soft X-rays,” Jpn. J. Appl. Phys. 43, 2078–2082 (1993).
[CrossRef]

T. Feigl, S. Yulin, T. Kuhlmann, N. Kaiser, “Damage resistant and low stress EUV multilayer mirrors,” Jpn. J. Appl. Phys. 41, 4082–4085 (2002).
[CrossRef]

S. Braun, H. Mai, M. Moss, R. Scholz, A. Leson, “Mo/Si multilayers with different barrier layers for applications as extreme ultraviolet mirrors,” Jpn. J. Appl. Phys. 41, 4074–4081 (2002).
[CrossRef]

Mater. Sci. Eng.

X. Fan, K. Hack, T. Ishigaki, “Calculated C-MoSi2 and B-Mo5Si3 pseudo-binary phase diagrams for the use in advanced materials processing,” Mater. Sci. Eng. A278, 46–53 (2000).
[CrossRef]

Metall. Mater. Trans. A

S. Govindarajan, J. J. Moore, J. Disam, “Synthesis of nanocomposite thin films based on the Mo-Si-C ternary system and compositional tailoring through controlled ion bombardment,” Metall. Mater. Trans. A 29, 1719–1725 (1998).
[CrossRef]

Microelectron. Eng.

T. Feigel, H. Lauth, S. Yulin, N. Kaiser, “Heat resistance of EUV multilayer mirrors for long-time applications,” Microelectron. Eng. 57–58, 3–8 (2001).
[CrossRef]

Opt. Eng.

C. Montcalm, “Reduction of residual stress in extreme ultraviolet Mo/Si multilayer mirrors with postdeposition thermal treatments,” Opt. Eng. 40, 469–477 (2001).
[CrossRef]

S. Bajt, J. B. Alameda, T. W. Barbee, W. M. Clift, J. A. Folta, B. Kaufmann, E. A. Spiller, “Improved reflectance and stability of Mo-Si multilayers,” Opt. Eng. 41, 1797–1804 (2002).
[CrossRef]

E. Ziegler, “Multilayers for high heat load synchrotron applications,” Opt. Eng. 34, 445–452 (1995).
[CrossRef]

Surf. Coat. Technol.

M. Ishino, O. Yoda, H. Takenaka, K. Sano, M. Koike, “Heat stability of Mo/Si multilayers inserted with compound layers,” Surf. Coat. Technol. 169–170, 628–631 (2003).
[CrossRef]

Thin Solid Films

T. Böttger, D. C. Meyer, P. Paufler, S. Braun, M. Moss, H. Mai, E. Beyer, “Thermal stability of Mo/Si multilayers with boron carbide interlayers,” Thin Solid Films 444, 165–173 (2003).
[CrossRef]

Other

S. Bajt, “High-reflectance interface-engineered multilayers,” invited talk at Physics of X-Ray Multilayer Structures, Chamonix, France, 3–7 March 2002, http://cletus.phys.columbia.edu/pxrms/archives/pxrms02/index.html .

See“X-ray interactions with matter” at http://www.cxro.lbl.gov/opticalconstants/ , managed by E. M. Gullikson.

W. H. Zachariasen, Theory of X-ray Diffraction in Crystals (Wiley, 1945), p. 102.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Cross-sectional TEM image of the as-deposited Mo/SiC multilayer coating. The plot at the bottom shows the layer profile obtained from the image by averaging over ∼20 nm in the plane of the layers.

Fig. 2
Fig. 2

Cross-sectional TEM image of the Mo/SiC multilayer coating annealed at 400 °C for 48 h. The plot at the bottom shows the layer profile obtained from the image by averaging over ∼20 nm in the plane of the layers.

Fig. 3
Fig. 3

SAED pattern for the as-deposited Mo/SiC multilayer coating. The direction normal to the film is vertical. The profile shown at the bottom was taken along the white line.

Fig. 4
Fig. 4

SAED pattern for the annealed Mo/SiC multilayer coating. The direction normal to the film is vertical. The profile shown at the bottom was taken along the white line.

Fig. 5
Fig. 5

Normal-incidence reflectivity calculated for a 60-period Mo/SiC multilayer coating in the as-deposited state (solid curve) and after completion of the alpha stage relaxation (dashed curve).

Fig. 6
Fig. 6

XRD measurements of the Mo/SiC multilayer films annealed for a series of times at temperatures of 350°, 375°, and 400 °C. The as-deposited films show a strong Mo <110> peak at 2θ = 40°. The peak broadens and shifts to lower angle with increasing annealing time. The crystallization of the SiC layers is indicated by the appearance of the SiC <111> peak at 2θ = 35°.

Fig. 7
Fig. 7

Plots showing a linear relationship between the square of the decrease in the Mo layer thickness and the annealing time. The slope of the line is proportional to the interdiffusion coefficient.

Fig. 8
Fig. 8

Arrhenius plot showing the temperature dependence of the measured interdiffusion (D) coefficient. The slope of the line is the activation energy and the ordinate intercept is D0.

Fig. 9
Fig. 9

Predicted temperature dependence of the stabilization time, defined as the time required to complete the alpha stage relaxation in the Mo/SiC multilayer structure. Here we have assumed that the initial thickness of the crystalline Mo layers is 3 nm.

Fig. 10
Fig. 10

Reflectivity and wavelength change due to 100 h anneal at 500 °C. Two pieces of the same coating have been characterized with a reflectometer before and after annealing. One piece has been initially cured for 100 h at 400 °C. Both pieces were then annealed at 500 °C for a cumulative time of 100 h(1h + 9h + 90 h). Independent of the procedure, both pieces ended up having the same final reflectivity and wavelength.

Tables (2)

Tables Icon

Table 1 Values of the Layer Thicknesses, Bilayer Spacing, and Gamma Determined from the TEM Images

Tables Icon

Table 2 Values of the Interdiffusion Coefficient Determined for the Alpha Stage Relaxation of Mo/SiC Multilayers

Equations (12)

Equations on this page are rendered with MathJax. Learn more.

N Mo = τ Mo ρ Mo A w Mo = 2.4 × 10 16 atoms / cm 2 .
N SiC = ( τ SiC ( i ) τ SiC ( f ) ) ρ SiC A w SiC = 4.0 × 10 15 mol / cm 2 .
β = N Mo N Mo + N SiC = 0.85 .
ρ MoSiC = w Mo N Mo + w SiC N SiC τ MoSiC A = 9.1 g / cm 3 .
d w d t = D ( T ) β ( 1 β ) w .
D ( T ) = D 0 exp ( E A / k T ) .
w 2 = 2 D t β ( 1 β ) .
Δ τ Mo = 2 β w .
Δ τ Mo 2 = 8 β 1 β D t .
I ( 2 θ ) = I 0 exp [ ( 2 θ 2 θ < 110 > ) 2 2 σ 2 ] .
τ Mo = 2 π λ 2 σ cos θ < 110 > .
t s = ( 1 β ) τ Mo 2 8 β D 0 exp ( E A / k T ) .

Metrics