Abstract

Polymer microlens arrays with hermaphroditic focusing behaviors are demonstrated. Each microlens in an arrays exhibits either converging or diverging focus, depending on the polarization direction of the incident light. A polymer film with patterned microlens arrays is flexible, lightweight, and ultrathin (∼50 µm). Details of the lens structure, device fabrication, and lens performance are described.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Fritze, M. B. Stern, P. W. Wyatt, “Laser-fabricated glass microlens arrays,” Opt. Lett. 23, 141–143 (1998).
    [CrossRef]
  2. T. Okamoto, M. Mori, T. Karasawa, S. Hayakawa, I. Seo, H. Sato, “Ultraviolet-cured polymer microlens arrays,” Appl. Opt. 38, 2991–2996 (1999).
    [CrossRef]
  3. N. Chronis, G. L. Liu, K. Jeong, L. P. Lee, “Tunable liquid-filled microlens arrays integrated with microfluidic network,” Opt. Express 11, 2370–2378 (2003).
    [CrossRef] [PubMed]
  4. J. Chen, W. Wang, J. Fang, K. Varahramyan, “Variable-focusing microlens with microfluidic chip,” J. Micromech. Microeng. 14, 675–680 (2004).
    [CrossRef]
  5. T. Krupenkin, S. Yang, P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82, 316–318 (2003).
    [CrossRef]
  6. S. Kuiper, B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
    [CrossRef]
  7. N. A. Riza, M. C. DeJule, “Three-terminal adaptive nematic liquid crystal lens device,” Opt. Lett. 19, 1013–1015 (1994).
    [CrossRef] [PubMed]
  8. T. Nose, S. Masuda, S. Sato, J. Li, L. C. Chien, P. J. Bos, “Effects of low polymer content in a liquid-crystal microlens,” Opt. Lett. 22, 351–353 (1997).
    [CrossRef] [PubMed]
  9. L. G. Commander, S. E. Day, D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177, 157–170 (2000).
    [CrossRef]
  10. Y. Choi, J. H. Park, J. H. Kim, S. D. Lee. “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Opt. Mater. 21, 643–646 (2002).
    [CrossRef]
  11. H. R. Stapert, S. del Valle, E. J. K. Verstegen, B. M. I. van der Zande, J. Lub, S. Stallinga, “Photoreplicated anisotropic liquid-crystalline lenses for aberration control and dual-layer readout of optical discs,” Adv. Funct. Mater. 13, 732–738 (2003).
    [CrossRef]
  12. X. Wang, H. Dai, K. Xu, “Tunable reflective lens array based on liquid crystal on silicon,” Opt. Express 13, 352–357 (2005).
    [CrossRef] [PubMed]
  13. H. Ren, Y. H. Fan, Y. H. Lin, S. T. Wu, “Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets,” Opt. Commun. 247, 101–106 (2005).
    [CrossRef]
  14. H. Ren, J. R. Wu, Y. H. Fan, Y. H. Lin, S. T. Wu, “Hermaphroditic liquid-crystal microlens,” Opt. Lett. 30, 376–378 (2005).
    [CrossRef] [PubMed]
  15. Y. Kim, J. H. Park, H. Choi, S. Jung, S. W. Min, B. Lee, “Viewing-angle-enhancement integral imaging system using a curved lens arrays,” Opt. Express 12, 421–429 (2004).
    [CrossRef] [PubMed]
  16. J. Arai, F. Okano, H. Isono, I. Yuyama, “Gradient-index lens arrays method based on real time integral photography for three-dimensional images,” Appl. Opt. 37, 2034–2045 (1998).
    [CrossRef]
  17. S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18, 1679–1684 (1979).
    [CrossRef]

2005

2004

J. Chen, W. Wang, J. Fang, K. Varahramyan, “Variable-focusing microlens with microfluidic chip,” J. Micromech. Microeng. 14, 675–680 (2004).
[CrossRef]

S. Kuiper, B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[CrossRef]

Y. Kim, J. H. Park, H. Choi, S. Jung, S. W. Min, B. Lee, “Viewing-angle-enhancement integral imaging system using a curved lens arrays,” Opt. Express 12, 421–429 (2004).
[CrossRef] [PubMed]

2003

T. Krupenkin, S. Yang, P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82, 316–318 (2003).
[CrossRef]

H. R. Stapert, S. del Valle, E. J. K. Verstegen, B. M. I. van der Zande, J. Lub, S. Stallinga, “Photoreplicated anisotropic liquid-crystalline lenses for aberration control and dual-layer readout of optical discs,” Adv. Funct. Mater. 13, 732–738 (2003).
[CrossRef]

N. Chronis, G. L. Liu, K. Jeong, L. P. Lee, “Tunable liquid-filled microlens arrays integrated with microfluidic network,” Opt. Express 11, 2370–2378 (2003).
[CrossRef] [PubMed]

2002

Y. Choi, J. H. Park, J. H. Kim, S. D. Lee. “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Opt. Mater. 21, 643–646 (2002).
[CrossRef]

2000

L. G. Commander, S. E. Day, D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177, 157–170 (2000).
[CrossRef]

1999

1998

1997

1994

1979

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18, 1679–1684 (1979).
[CrossRef]

Arai, J.

Bos, P. J.

Chen, J.

J. Chen, W. Wang, J. Fang, K. Varahramyan, “Variable-focusing microlens with microfluidic chip,” J. Micromech. Microeng. 14, 675–680 (2004).
[CrossRef]

Chien, L. C.

Choi, H.

Choi, Y.

Y. Choi, J. H. Park, J. H. Kim, S. D. Lee. “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Opt. Mater. 21, 643–646 (2002).
[CrossRef]

Chronis, N.

Commander, L. G.

L. G. Commander, S. E. Day, D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177, 157–170 (2000).
[CrossRef]

Dai, H.

Day, S. E.

L. G. Commander, S. E. Day, D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177, 157–170 (2000).
[CrossRef]

DeJule, M. C.

del Valle, S.

H. R. Stapert, S. del Valle, E. J. K. Verstegen, B. M. I. van der Zande, J. Lub, S. Stallinga, “Photoreplicated anisotropic liquid-crystalline lenses for aberration control and dual-layer readout of optical discs,” Adv. Funct. Mater. 13, 732–738 (2003).
[CrossRef]

Fan, Y. H.

H. Ren, J. R. Wu, Y. H. Fan, Y. H. Lin, S. T. Wu, “Hermaphroditic liquid-crystal microlens,” Opt. Lett. 30, 376–378 (2005).
[CrossRef] [PubMed]

H. Ren, Y. H. Fan, Y. H. Lin, S. T. Wu, “Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets,” Opt. Commun. 247, 101–106 (2005).
[CrossRef]

Fang, J.

J. Chen, W. Wang, J. Fang, K. Varahramyan, “Variable-focusing microlens with microfluidic chip,” J. Micromech. Microeng. 14, 675–680 (2004).
[CrossRef]

Fritze, M.

Hayakawa, S.

Hendriks, B. H. W.

S. Kuiper, B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[CrossRef]

Isono, H.

Jeong, K.

Jung, S.

Karasawa, T.

Kim, J. H.

Y. Choi, J. H. Park, J. H. Kim, S. D. Lee. “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Opt. Mater. 21, 643–646 (2002).
[CrossRef]

Kim, Y.

Krupenkin, T.

T. Krupenkin, S. Yang, P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82, 316–318 (2003).
[CrossRef]

Kuiper, S.

S. Kuiper, B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[CrossRef]

Lee, B.

Lee, L. P.

Lee, S. D.

Y. Choi, J. H. Park, J. H. Kim, S. D. Lee. “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Opt. Mater. 21, 643–646 (2002).
[CrossRef]

Li, J.

Lin, Y. H.

H. Ren, Y. H. Fan, Y. H. Lin, S. T. Wu, “Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets,” Opt. Commun. 247, 101–106 (2005).
[CrossRef]

H. Ren, J. R. Wu, Y. H. Fan, Y. H. Lin, S. T. Wu, “Hermaphroditic liquid-crystal microlens,” Opt. Lett. 30, 376–378 (2005).
[CrossRef] [PubMed]

Liu, G. L.

Lub, J.

H. R. Stapert, S. del Valle, E. J. K. Verstegen, B. M. I. van der Zande, J. Lub, S. Stallinga, “Photoreplicated anisotropic liquid-crystalline lenses for aberration control and dual-layer readout of optical discs,” Adv. Funct. Mater. 13, 732–738 (2003).
[CrossRef]

Mach, P.

T. Krupenkin, S. Yang, P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82, 316–318 (2003).
[CrossRef]

Masuda, S.

Min, S. W.

Mori, M.

Nose, T.

Okamoto, T.

Okano, F.

Park, J. H.

Y. Kim, J. H. Park, H. Choi, S. Jung, S. W. Min, B. Lee, “Viewing-angle-enhancement integral imaging system using a curved lens arrays,” Opt. Express 12, 421–429 (2004).
[CrossRef] [PubMed]

Y. Choi, J. H. Park, J. H. Kim, S. D. Lee. “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Opt. Mater. 21, 643–646 (2002).
[CrossRef]

Ren, H.

H. Ren, J. R. Wu, Y. H. Fan, Y. H. Lin, S. T. Wu, “Hermaphroditic liquid-crystal microlens,” Opt. Lett. 30, 376–378 (2005).
[CrossRef] [PubMed]

H. Ren, Y. H. Fan, Y. H. Lin, S. T. Wu, “Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets,” Opt. Commun. 247, 101–106 (2005).
[CrossRef]

Riza, N. A.

Sato, H.

Sato, S.

Selviah, D. R.

L. G. Commander, S. E. Day, D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177, 157–170 (2000).
[CrossRef]

Seo, I.

Stallinga, S.

H. R. Stapert, S. del Valle, E. J. K. Verstegen, B. M. I. van der Zande, J. Lub, S. Stallinga, “Photoreplicated anisotropic liquid-crystalline lenses for aberration control and dual-layer readout of optical discs,” Adv. Funct. Mater. 13, 732–738 (2003).
[CrossRef]

Stapert, H. R.

H. R. Stapert, S. del Valle, E. J. K. Verstegen, B. M. I. van der Zande, J. Lub, S. Stallinga, “Photoreplicated anisotropic liquid-crystalline lenses for aberration control and dual-layer readout of optical discs,” Adv. Funct. Mater. 13, 732–738 (2003).
[CrossRef]

Stern, M. B.

van der Zande, B. M. I.

H. R. Stapert, S. del Valle, E. J. K. Verstegen, B. M. I. van der Zande, J. Lub, S. Stallinga, “Photoreplicated anisotropic liquid-crystalline lenses for aberration control and dual-layer readout of optical discs,” Adv. Funct. Mater. 13, 732–738 (2003).
[CrossRef]

Varahramyan, K.

J. Chen, W. Wang, J. Fang, K. Varahramyan, “Variable-focusing microlens with microfluidic chip,” J. Micromech. Microeng. 14, 675–680 (2004).
[CrossRef]

Verstegen, E. J. K.

H. R. Stapert, S. del Valle, E. J. K. Verstegen, B. M. I. van der Zande, J. Lub, S. Stallinga, “Photoreplicated anisotropic liquid-crystalline lenses for aberration control and dual-layer readout of optical discs,” Adv. Funct. Mater. 13, 732–738 (2003).
[CrossRef]

Wang, W.

J. Chen, W. Wang, J. Fang, K. Varahramyan, “Variable-focusing microlens with microfluidic chip,” J. Micromech. Microeng. 14, 675–680 (2004).
[CrossRef]

Wang, X.

Wu, J. R.

Wu, S. T.

H. Ren, J. R. Wu, Y. H. Fan, Y. H. Lin, S. T. Wu, “Hermaphroditic liquid-crystal microlens,” Opt. Lett. 30, 376–378 (2005).
[CrossRef] [PubMed]

H. Ren, Y. H. Fan, Y. H. Lin, S. T. Wu, “Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets,” Opt. Commun. 247, 101–106 (2005).
[CrossRef]

Wyatt, P. W.

Xu, K.

Yang, S.

T. Krupenkin, S. Yang, P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82, 316–318 (2003).
[CrossRef]

Yuyama, I.

Adv. Funct. Mater.

H. R. Stapert, S. del Valle, E. J. K. Verstegen, B. M. I. van der Zande, J. Lub, S. Stallinga, “Photoreplicated anisotropic liquid-crystalline lenses for aberration control and dual-layer readout of optical discs,” Adv. Funct. Mater. 13, 732–738 (2003).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

T. Krupenkin, S. Yang, P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82, 316–318 (2003).
[CrossRef]

S. Kuiper, B. H. W. Hendriks, “Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett. 85, 1128–1130 (2004).
[CrossRef]

J. Micromech. Microeng.

J. Chen, W. Wang, J. Fang, K. Varahramyan, “Variable-focusing microlens with microfluidic chip,” J. Micromech. Microeng. 14, 675–680 (2004).
[CrossRef]

Jpn. J. Appl. Phys.

S. Sato, “Liquid-crystal lens-cells with variable focal length,” Jpn. J. Appl. Phys. 18, 1679–1684 (1979).
[CrossRef]

Opt. Commun.

L. G. Commander, S. E. Day, D. R. Selviah, “Variable focal length microlenses,” Opt. Commun. 177, 157–170 (2000).
[CrossRef]

H. Ren, Y. H. Fan, Y. H. Lin, S. T. Wu, “Tunable-focus microlens arrays using nanosized polymer-dispersed liquid crystal droplets,” Opt. Commun. 247, 101–106 (2005).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Mater.

Y. Choi, J. H. Park, J. H. Kim, S. D. Lee. “Fabrication of a focal length variable microlens array based on a nematic liquid crystal,” Opt. Mater. 21, 643–646 (2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Side view of a polymer-based microlens array. For a concave lens, n1 and n2 are the refractive indices of the polymer material along the x and y axes, respectively. For a convex lens, n1 and n2 are the refractive indices of the polymer material along the y and x axes, respectively.

Fig. 2
Fig. 2

Procedure for fabricating polymer-based microlens arrays. See text for a description of steps (a)–(e).

Fig. 3
Fig. 3

Imaging properties of a molded cavity array: (a), (b), and (c) correspond to the cell rubbing directions of the bottom substrate parallel, perpendicular (before distance adjustment), and perpendicular (after distance adjustment) to the polarizer’s transmission axis, respectively.

Fig. 4
Fig. 4

Photos of polymer-based microlens arrays with 16 × 20 pixels in (a) planar and (b) flexible states.

Fig. 5
Fig. 5

Imaging properties of a planar LC microlens array: observed images that correspond to the cell rubbing direction of the bottom substrate (a), (b) parallel and (c), (d) perpendicular to the polarizer’s transmission axis.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

f = R / ( n convex n concave ) .
n convex = n 1 n 2 ( n 1 2 cos 2 θ + n 2 2 sin 2 θ ) 1 / 2 ,
n concave = n 1 n 2 ( n 2 2 cos 2 θ + n 1 2 sin 2 θ ) 1 / 2 .

Metrics