Abstract

We report a new approach in optical coherence tomography (OCT) called full-field Fourier-domain OCT (3F-OCT). A three-dimensional image of a sample is obtained by digital reconstruction of a three-dimensional data cube, acquired with a Fourier holography recording system, illuminated with a swept source. We present a theoretical and experimental study of the signal-to-noise ratio of the 3F-OCT approach versus serial image acquisition (flying-spot OCT) approach.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. B. E. Bouma, G. J. Tearney, Handbook of Optical Coherence Tomography (Marcel Dekker, 2002), p. 26
  3. M. E. Brezinski, J. G. Fujimoto, “Optical coherence tomography: high-resolution imaging in nontransparent tissue,” IEEE J. Sel. Top. Quantum Electron. 5, 1185–1192 (1999).
    [CrossRef]
  4. R. Leitgeb, C. K. Hitzenberger, A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Exp. 11, 889–903 (2003); http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-899 .
    [CrossRef]
  5. J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time domain optical coherence tomography,” Opt. Lett. 28, 2067–2069 (2003).
    [CrossRef] [PubMed]
  6. M. A. Choma, M. V. Sarunic, C. Yang, J. A. Izzat, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Exp. 11, 2183–2189 (2003); http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2183
    [CrossRef]
  7. A. V. Zvyagin, “Fourier-domain optical coherence tomography: Optimization of signal-to-noise ratio in full space,” Opt. Commun. 242, 97–108 (2004).
    [CrossRef]
  8. E. Beaurepaire, A. C. Boccara, M. Lebec, L. Blanchot, H. Saint-Jalmes, “Full-field optical coherence microscopy,” Opt. Lett. 23, 244–246 (1998).
    [CrossRef]
  9. S. Bourquin, P. Seitz, R. P. Salathe, “Optical coherence topography based on a two-dimensional smart detector array,” Opt. Lett. 26, 512–514 (2001).
    [CrossRef]
  10. M. Laubscher, M. Ducros, B. Karamata, T. Lasser, R. Salathe, “Video-rate three-dimensional optical coherence tomography,” Opt. Exp. 10, 429–435 (2002).
    [CrossRef]
  11. E. Wolf, “Three dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153–156 (1969).
    [CrossRef]
  12. E. Arons, D. Dilworth, “Analysis of Fourier synthesis holography for imaging through scattering materials,” Appl. Opt. 34, 1841–1847 (1995).
    [CrossRef] [PubMed]
  13. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, B. E. Bouma, “High-speed spectral-domain optical coherence tomography at 1.3 µm wavelength,” Opt. Exp. 11, 2953–2963 (2003); http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2953
    [CrossRef]
  14. R. N. Bracewell, Fourier Transform and Its Applications (McGraw-Hill, 1978), Chap.18.
  15. American National Standards Institute, “Safe use of lasers,” ANSI Z136.1-2000 (Laser Institute of America, 2000).
  16. N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, J. F. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Exp. 12, 367–376 (2004); http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-367
    [CrossRef]
  17. A. B. Vakhtin, K. A. Peterson, W. R. Wood, D. J. Kane, “Differential spectral interferometry: An imaging technique for biomedical applications,” Opt. Lett. 28, 1332–1334 (2003).
    [CrossRef] [PubMed]
  18. K. Y. T. Seet, P. Blazkiewicz, P. Meredith, A. V. Zvyagin, “Optical scatter imaging using digital Fourier microscopy,” J. Phys. D (to be published).
  19. N. N. Boustany, S. C. Kuo, N. V. Thakor, “Optical scatter imaging: Subcellular morphometry in situ with Fourier filtering,” Opt. Lett. 26, 1063–1065 (2001).
    [CrossRef]
  20. W. Y. Oh, S. H. Yun, G. J. Tearney, B. E. Bouma “Wide tuning range wavelength-swept laser with two semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17, 678–680 (2005).
    [CrossRef]
  21. S. H. Yun, G. J. Tearney, J. F. de Boer, B. E. Bouma “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Exp. 12, 2997–2998 (2004).
  22. L. Vabre, A. Dubois, A. C. Boccara, “Thermal-light full-field optical coherence tomography,” Opt. Lett. 27, 530–532 (2003).
    [CrossRef]
  23. B. Karamata, P. Lambelet, M. Laubscher, R. P. Salathé, T. Lasser, “Spatially incoherent illumination as a mechanism for cross-talk suppression in wide-field optical coherence tomography,” Opt. Lett. 29, 736–738 (2004).
    [CrossRef] [PubMed]
  24. E. Leith, C. Chen, H. Chen, Y. Chen, D. Dilworth, J. Lopez, J. Rudd, P.-C. Sun, J. Valdmanis, G. Vossler, “Imaging through scattering media with holography,” J. Opt. Soc. Am. A 9, 1148–1153 (1992).
    [CrossRef]
  25. A. V. Zvyagin, P. Blazkiewicz, J. Vintrou, “Image reconstruction in full-field Fourier-domain optical coherence tomography,” J. Opt. A (to be published).

2005 (1)

W. Y. Oh, S. H. Yun, G. J. Tearney, B. E. Bouma “Wide tuning range wavelength-swept laser with two semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17, 678–680 (2005).
[CrossRef]

2004 (4)

S. H. Yun, G. J. Tearney, J. F. de Boer, B. E. Bouma “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Exp. 12, 2997–2998 (2004).

A. V. Zvyagin, “Fourier-domain optical coherence tomography: Optimization of signal-to-noise ratio in full space,” Opt. Commun. 242, 97–108 (2004).
[CrossRef]

N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, J. F. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Exp. 12, 367–376 (2004); http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-367
[CrossRef]

B. Karamata, P. Lambelet, M. Laubscher, R. P. Salathé, T. Lasser, “Spatially incoherent illumination as a mechanism for cross-talk suppression in wide-field optical coherence tomography,” Opt. Lett. 29, 736–738 (2004).
[CrossRef] [PubMed]

2003 (6)

S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, B. E. Bouma, “High-speed spectral-domain optical coherence tomography at 1.3 µm wavelength,” Opt. Exp. 11, 2953–2963 (2003); http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2953
[CrossRef]

R. Leitgeb, C. K. Hitzenberger, A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Exp. 11, 889–903 (2003); http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-899 .
[CrossRef]

M. A. Choma, M. V. Sarunic, C. Yang, J. A. Izzat, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Exp. 11, 2183–2189 (2003); http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2183
[CrossRef]

L. Vabre, A. Dubois, A. C. Boccara, “Thermal-light full-field optical coherence tomography,” Opt. Lett. 27, 530–532 (2003).
[CrossRef]

A. B. Vakhtin, K. A. Peterson, W. R. Wood, D. J. Kane, “Differential spectral interferometry: An imaging technique for biomedical applications,” Opt. Lett. 28, 1332–1334 (2003).
[CrossRef] [PubMed]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time domain optical coherence tomography,” Opt. Lett. 28, 2067–2069 (2003).
[CrossRef] [PubMed]

2002 (1)

M. Laubscher, M. Ducros, B. Karamata, T. Lasser, R. Salathe, “Video-rate three-dimensional optical coherence tomography,” Opt. Exp. 10, 429–435 (2002).
[CrossRef]

2001 (2)

1999 (1)

M. E. Brezinski, J. G. Fujimoto, “Optical coherence tomography: high-resolution imaging in nontransparent tissue,” IEEE J. Sel. Top. Quantum Electron. 5, 1185–1192 (1999).
[CrossRef]

1998 (1)

1995 (1)

1992 (1)

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

1969 (1)

E. Wolf, “Three dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153–156 (1969).
[CrossRef]

Arons, E.

Beaurepaire, E.

Blanchot, L.

Blazkiewicz, P.

A. V. Zvyagin, P. Blazkiewicz, J. Vintrou, “Image reconstruction in full-field Fourier-domain optical coherence tomography,” J. Opt. A (to be published).

K. Y. T. Seet, P. Blazkiewicz, P. Meredith, A. V. Zvyagin, “Optical scatter imaging using digital Fourier microscopy,” J. Phys. D (to be published).

Boccara, A. C.

Bouma, B. E.

W. Y. Oh, S. H. Yun, G. J. Tearney, B. E. Bouma “Wide tuning range wavelength-swept laser with two semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17, 678–680 (2005).
[CrossRef]

S. H. Yun, G. J. Tearney, J. F. de Boer, B. E. Bouma “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Exp. 12, 2997–2998 (2004).

N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, J. F. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Exp. 12, 367–376 (2004); http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-367
[CrossRef]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time domain optical coherence tomography,” Opt. Lett. 28, 2067–2069 (2003).
[CrossRef] [PubMed]

S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, B. E. Bouma, “High-speed spectral-domain optical coherence tomography at 1.3 µm wavelength,” Opt. Exp. 11, 2953–2963 (2003); http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2953
[CrossRef]

B. E. Bouma, G. J. Tearney, Handbook of Optical Coherence Tomography (Marcel Dekker, 2002), p. 26

Bourquin, S.

Boustany, N. N.

Bracewell, R. N.

R. N. Bracewell, Fourier Transform and Its Applications (McGraw-Hill, 1978), Chap.18.

Brezinski, M. E.

M. E. Brezinski, J. G. Fujimoto, “Optical coherence tomography: high-resolution imaging in nontransparent tissue,” IEEE J. Sel. Top. Quantum Electron. 5, 1185–1192 (1999).
[CrossRef]

Cense, B.

N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, J. F. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Exp. 12, 367–376 (2004); http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-367
[CrossRef]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time domain optical coherence tomography,” Opt. Lett. 28, 2067–2069 (2003).
[CrossRef] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Chen, C.

Chen, H.

Chen, T. C.

N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, J. F. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Exp. 12, 367–376 (2004); http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-367
[CrossRef]

Chen, Y.

Choma, M. A.

M. A. Choma, M. V. Sarunic, C. Yang, J. A. Izzat, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Exp. 11, 2183–2189 (2003); http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2183
[CrossRef]

de Boer, J. F.

N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, J. F. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Exp. 12, 367–376 (2004); http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-367
[CrossRef]

S. H. Yun, G. J. Tearney, J. F. de Boer, B. E. Bouma “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Exp. 12, 2997–2998 (2004).

S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, B. E. Bouma, “High-speed spectral-domain optical coherence tomography at 1.3 µm wavelength,” Opt. Exp. 11, 2953–2963 (2003); http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2953
[CrossRef]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time domain optical coherence tomography,” Opt. Lett. 28, 2067–2069 (2003).
[CrossRef] [PubMed]

Dilworth, D.

Dubois, A.

Ducros, M.

M. Laubscher, M. Ducros, B. Karamata, T. Lasser, R. Salathe, “Video-rate three-dimensional optical coherence tomography,” Opt. Exp. 10, 429–435 (2002).
[CrossRef]

Fercher, A. F.

R. Leitgeb, C. K. Hitzenberger, A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Exp. 11, 889–903 (2003); http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-899 .
[CrossRef]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Fujimoto, J. G.

M. E. Brezinski, J. G. Fujimoto, “Optical coherence tomography: high-resolution imaging in nontransparent tissue,” IEEE J. Sel. Top. Quantum Electron. 5, 1185–1192 (1999).
[CrossRef]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Hitzenberger, C. K.

R. Leitgeb, C. K. Hitzenberger, A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Exp. 11, 889–903 (2003); http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-899 .
[CrossRef]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Iftimia, N.

S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, B. E. Bouma, “High-speed spectral-domain optical coherence tomography at 1.3 µm wavelength,” Opt. Exp. 11, 2953–2963 (2003); http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2953
[CrossRef]

Izzat, J. A.

M. A. Choma, M. V. Sarunic, C. Yang, J. A. Izzat, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Exp. 11, 2183–2189 (2003); http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2183
[CrossRef]

Kane, D. J.

Karamata, B.

Kuo, S. C.

Lambelet, P.

Lasser, T.

Laubscher, M.

Lebec, M.

Leitgeb, R.

R. Leitgeb, C. K. Hitzenberger, A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Exp. 11, 889–903 (2003); http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-899 .
[CrossRef]

Leith, E.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Lopez, J.

Meredith, P.

K. Y. T. Seet, P. Blazkiewicz, P. Meredith, A. V. Zvyagin, “Optical scatter imaging using digital Fourier microscopy,” J. Phys. D (to be published).

Nassif, N. A.

N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, J. F. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Exp. 12, 367–376 (2004); http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-367
[CrossRef]

Oh, W. Y.

W. Y. Oh, S. H. Yun, G. J. Tearney, B. E. Bouma “Wide tuning range wavelength-swept laser with two semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17, 678–680 (2005).
[CrossRef]

Park, B. H.

N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, J. F. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Exp. 12, 367–376 (2004); http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-367
[CrossRef]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time domain optical coherence tomography,” Opt. Lett. 28, 2067–2069 (2003).
[CrossRef] [PubMed]

Peterson, K. A.

Pierce, M. C.

N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, J. F. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Exp. 12, 367–376 (2004); http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-367
[CrossRef]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time domain optical coherence tomography,” Opt. Lett. 28, 2067–2069 (2003).
[CrossRef] [PubMed]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Rudd, J.

Saint-Jalmes, H.

Salathe, R.

M. Laubscher, M. Ducros, B. Karamata, T. Lasser, R. Salathe, “Video-rate three-dimensional optical coherence tomography,” Opt. Exp. 10, 429–435 (2002).
[CrossRef]

Salathe, R. P.

Salathé, R. P.

Sarunic, M. V.

M. A. Choma, M. V. Sarunic, C. Yang, J. A. Izzat, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Exp. 11, 2183–2189 (2003); http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2183
[CrossRef]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Seet, K. Y. T.

K. Y. T. Seet, P. Blazkiewicz, P. Meredith, A. V. Zvyagin, “Optical scatter imaging using digital Fourier microscopy,” J. Phys. D (to be published).

Seitz, P.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Sun, P.-C.

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Tearney, G. J.

W. Y. Oh, S. H. Yun, G. J. Tearney, B. E. Bouma “Wide tuning range wavelength-swept laser with two semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17, 678–680 (2005).
[CrossRef]

S. H. Yun, G. J. Tearney, J. F. de Boer, B. E. Bouma “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Exp. 12, 2997–2998 (2004).

N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, J. F. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Exp. 12, 367–376 (2004); http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-367
[CrossRef]

J. F. de Boer, B. Cense, B. H. Park, M. C. Pierce, G. J. Tearney, B. E. Bouma, “Improved signal-to-noise ratio in spectral-domain compared with time domain optical coherence tomography,” Opt. Lett. 28, 2067–2069 (2003).
[CrossRef] [PubMed]

S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, B. E. Bouma, “High-speed spectral-domain optical coherence tomography at 1.3 µm wavelength,” Opt. Exp. 11, 2953–2963 (2003); http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2953
[CrossRef]

B. E. Bouma, G. J. Tearney, Handbook of Optical Coherence Tomography (Marcel Dekker, 2002), p. 26

Thakor, N. V.

Vabre, L.

Vakhtin, A. B.

Valdmanis, J.

Vintrou, J.

A. V. Zvyagin, P. Blazkiewicz, J. Vintrou, “Image reconstruction in full-field Fourier-domain optical coherence tomography,” J. Opt. A (to be published).

Vossler, G.

Wolf, E.

E. Wolf, “Three dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153–156 (1969).
[CrossRef]

Wood, W. R.

Yang, C.

M. A. Choma, M. V. Sarunic, C. Yang, J. A. Izzat, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Exp. 11, 2183–2189 (2003); http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2183
[CrossRef]

Yun, S. H.

W. Y. Oh, S. H. Yun, G. J. Tearney, B. E. Bouma “Wide tuning range wavelength-swept laser with two semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17, 678–680 (2005).
[CrossRef]

S. H. Yun, G. J. Tearney, J. F. de Boer, B. E. Bouma “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Exp. 12, 2997–2998 (2004).

N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, J. F. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Exp. 12, 367–376 (2004); http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-367
[CrossRef]

S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, B. E. Bouma, “High-speed spectral-domain optical coherence tomography at 1.3 µm wavelength,” Opt. Exp. 11, 2953–2963 (2003); http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2953
[CrossRef]

Zvyagin, A. V.

A. V. Zvyagin, “Fourier-domain optical coherence tomography: Optimization of signal-to-noise ratio in full space,” Opt. Commun. 242, 97–108 (2004).
[CrossRef]

K. Y. T. Seet, P. Blazkiewicz, P. Meredith, A. V. Zvyagin, “Optical scatter imaging using digital Fourier microscopy,” J. Phys. D (to be published).

A. V. Zvyagin, P. Blazkiewicz, J. Vintrou, “Image reconstruction in full-field Fourier-domain optical coherence tomography,” J. Opt. A (to be published).

Appl. Opt. (1)

IEEE J. Sel. Top. Quantum Electron. (1)

M. E. Brezinski, J. G. Fujimoto, “Optical coherence tomography: high-resolution imaging in nontransparent tissue,” IEEE J. Sel. Top. Quantum Electron. 5, 1185–1192 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

W. Y. Oh, S. H. Yun, G. J. Tearney, B. E. Bouma “Wide tuning range wavelength-swept laser with two semiconductor optical amplifiers,” IEEE Photon. Technol. Lett. 17, 678–680 (2005).
[CrossRef]

J. Opt. Soc. Am. A (1)

Opt. Commun. (2)

E. Wolf, “Three dimensional structure determination of semi-transparent objects from holographic data,” Opt. Commun. 1, 153–156 (1969).
[CrossRef]

A. V. Zvyagin, “Fourier-domain optical coherence tomography: Optimization of signal-to-noise ratio in full space,” Opt. Commun. 242, 97–108 (2004).
[CrossRef]

Opt. Exp. (6)

S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, B. E. Bouma, “High-speed spectral-domain optical coherence tomography at 1.3 µm wavelength,” Opt. Exp. 11, 2953–2963 (2003); http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-22-2953
[CrossRef]

R. Leitgeb, C. K. Hitzenberger, A. F. Fercher, “Performance of Fourier domain vs. time domain optical coherence tomography,” Opt. Exp. 11, 889–903 (2003); http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-8-899 .
[CrossRef]

M. A. Choma, M. V. Sarunic, C. Yang, J. A. Izzat, “Sensitivity advantage of swept source and Fourier domain optical coherence tomography,” Opt. Exp. 11, 2183–2189 (2003); http://www.opticsexpress.org/abstract.cfm?URI=OPEX-11-18-2183
[CrossRef]

N. A. Nassif, B. Cense, B. H. Park, M. C. Pierce, S. H. Yun, B. E. Bouma, G. J. Tearney, T. C. Chen, J. F. de Boer, “In vivo high-resolution video-rate spectral-domain optical coherence tomography of the human retina and optic nerve,” Opt. Exp. 12, 367–376 (2004); http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-3-367
[CrossRef]

M. Laubscher, M. Ducros, B. Karamata, T. Lasser, R. Salathe, “Video-rate three-dimensional optical coherence tomography,” Opt. Exp. 10, 429–435 (2002).
[CrossRef]

S. H. Yun, G. J. Tearney, J. F. de Boer, B. E. Bouma “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Exp. 12, 2997–2998 (2004).

Opt. Lett. (7)

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Other (5)

B. E. Bouma, G. J. Tearney, Handbook of Optical Coherence Tomography (Marcel Dekker, 2002), p. 26

R. N. Bracewell, Fourier Transform and Its Applications (McGraw-Hill, 1978), Chap.18.

American National Standards Institute, “Safe use of lasers,” ANSI Z136.1-2000 (Laser Institute of America, 2000).

A. V. Zvyagin, P. Blazkiewicz, J. Vintrou, “Image reconstruction in full-field Fourier-domain optical coherence tomography,” J. Opt. A (to be published).

K. Y. T. Seet, P. Blazkiewicz, P. Meredith, A. V. Zvyagin, “Optical scatter imaging using digital Fourier microscopy,” J. Phys. D (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of 3F-OCT: C, collimator; Sc, scatterer; α, angle of incidence.

Fig. 2
Fig. 2

Schematic diagram of 3F-OCT in reflection mode: (a) ray diagram of input illumination, (b) ray diagram of collected backscattered light. The length between optical-fiber arms is mismatched (not shown in figure) to compensate for the extra path distance traveled by light in the sample arm.

Fig. 3
Fig. 3

Two sections through a 3D image of the fiber tip: xy plane, lateral cross section (left panel); xz plane, axial cross section (right panel). The x, y, and z dimensions of the image pixels were 8, 6, and 6.7 µm, respectively. The swept-source wavelength range was 100 nm, centered at 820 nm; sweep time, 10 s. NA of the fiber, 0.12; f = 100 mm.

Fig. 4
Fig. 4

(a) Illumination of the retina by flying-spot OCT, (b) illumination of the eye by 3F-OCT.

Fig. 5
Fig. 5

Schematic diagram of the hybrid TD/3F-OCT experimental setup: S, sample fiber; R, scanning reference fiber; TCA, transconductance amplifier. In the digital sensor, shaded boxes represent off-axis detectors employed in the experiment (not to scale).

Fig. 6
Fig. 6

Logarithmic plot of two signals pertinent to flying-spot (upper curve) and full-field (lower curve) OCT, acquired from ten detectors with the experimental setup of Fig. 4. See details in text.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

ϕ FS = ρ τ FS ( P r + σ sc I 0 + 2 P r I 0 σ sc ) ,
ϕ noise , FS 2 = ρ τ FS P r .
ϕ 3 F = ρ τ 3 F ( P r + σ sc I 0 + 2 P r I 0 σ sc cos ( κ n x s ) ) / N ,
ϕ noise , 3 F 2 = ρ τ 3 F P r / N .
J [ ϕ noise , 3 F 2 ] = ρ τ 3 F P r ,
SNR 3 F SNR FS = 1 2 τ 3 F τ FS .
i d = 2 P 0 ρ q { 1 + sinc [ ( ω / υ ) x s ω t ] cos ( 2 n ω t ) } ,

Metrics