Abstract

We describe the design and operation of a long-working-distance, incoherent light interference microscope that has been developed to address the growing demand for new microsystem characterization tools. The design of the new microscope is similar to that of a Linnik interference microscope and thus preserves the full working distance of the long-working-distance objectives utilized. However, in contrast to a traditional Linnik microscope, the new microscope does not rely on the use of matched objectives in the sample and the reference arms of the interferometer. An adjustable optical configuration has been devised that allows the total optical path length, wavefront curvature, and dispersion of the reference arm to be matched to the sample arm of the interferometer. The reference arm configuration can be adjusted to provide matching for 5×, 10×, and 20× long-working-distance objectives in the sample arm. In addition to retaining the full working distance of the sample arm objectives, the new design allows interference images to be acquired in situations in which intervening windows are necessary, such as occur with packaged microsystems, microfluidic devices, and cryogenic, vacuum, or environmental chamber studies of microsystem performance. The interference microscope is compatible with phase-shifting interferometry, vertical scanning interferometry, and stroboscopic measurement of dynamic processes.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Bosseboeuf, S. Petitgrand, “Application of microscopic interferometry techniques in the MEMS field,” in Microsystems Engineering: Metrology and Inspection III, C. Gorecki, ed., Proc. SPIE5145, 1–16 (2003).
  2. A. Bosseboeuf, S. Petitgrand, “Characterization of the static and dynamic behavior of M(O)EMS by optical techniques: Status and trends,” J. Micromech. Microeng. 13, S23–S33 (2003).
    [CrossRef]
  3. W. Hemmert, M. S. Mermelstein, D. M. Freeman, “Nanometer resolution of three-dimensional motions using video interference microscopy,” in Proceedings of the 12th IEEE International Conference on Micro Electro Mechanical Systems (Institute of Electrical and Electronics Engineers, 1999), pp. 302–308.
  4. M. R. Hart, R. A. Conant, K. Y. Lau, R. S. Muller, “Stroboscopic interferometer system for dynamic MEMS characterization,” J. Microelectromech. Syst. 9, 409–418 (2000).
    [CrossRef]
  5. B. D. Jensen, M. P. de Boer, S. L. Miller, “IMaP: Interferometry for materials property evaluation in MEMS,” in International Conference on Modeling and Simulation of Microsystems, Semiconductors, Sensors and Actuators (Computational Publications, 1999), pp. 206–209.
  6. M. S. Baker, M. P. de Boer, N. F. Smith, L. K. Warne, M. B. Sinclair, “Integrated measurement-modeling approaches for evaluating residual stress using micromachined fixed-fixed beams,” J. Microelectromech. Syst. 11, 743–753 (2002).
    [CrossRef]
  7. M. P. de Boer, T. A. Michalske, “Accurate method for determining adhesion of cantilever beams,” J. Appl. Phys. 86, 817–827 (1999).
    [CrossRef]
  8. J. A. Knapp, M. P. de Boer, “Mechanics of microcantilever beams subject to combined electrostatic and adhesive forces,” J. Microelectromech. Syst. 11, 754–764 (2002).
    [CrossRef]
  9. M. P. de Boer, J. A. Knapp, T. A. Michalske, U. Srinivasan, R. Maboudian, “Adhesion hysteresis of silane coated microcantilevers,” Acta Mater. 48, 4531–4541 (2000).
    [CrossRef]
  10. Y. Bessho, “Surface roughness measuring apparatus utilizing deflectable laser beams,” U.S. patent4,978,219 (18December1990).
  11. C. J. R. Sheppard, H. Zhou, “Confocal interference microscopy,” in Three-Dimensional Microscopy: Image Acquisition and Processing IV, C.J. Cogswell, J.A. Conchello, T. Wilson, eds, Proc. SPIE2984, 85–89 (1997).
  12. P. F. Meilan, M. Garavaglia, “Fizeau confocal laser scanning interference microscope,” in Selected Papers from International Conference on Optics and Optoelectronics ‘98, K. Singh, O.P. Nijhawan, A.K. Gupta, A. K. Musla, eds. Proc. SPIE3729, 384–389 (1999).
    [CrossRef]
  13. M. Davidson, K. Kaufman, I. Mazor, F. Cohen, “An application of interference microscopy to integrated circuit ins pection and metrology,” in Integrated Circuit Metrology, Inspection, and Process Control, K. M. Monahan, ed., Proc. SPIE775, 233–247 (1987).
    [CrossRef]
  14. D. M. Gale, M. I. Pether, J. C. Dainty, “Linnik microscope imaging of integrated circuit structures” Appl. Opt. 35, 131–148 (1996).
    [CrossRef] [PubMed]
  15. G. S. Kino, S. S. C. Chim, “Mirau correlation microscope,” Appl. Opt. 29, 3775–3783 (1990).
    [CrossRef] [PubMed]
  16. P. J. Caber, “Interferometric profiler for rough surfaces,” Appl. Opt. 32, 3438–3441 (1993).
    [CrossRef] [PubMed]
  17. L. Deck, P. de Groot, “High-speed noncontact profiler based on scanning white-light interferometry,” Appl. Opt. 33, 7334–7338 (1994).
    [CrossRef] [PubMed]
  18. J. C. Wyant, K. Creath, “Advances in interferometric optical profiling,” Int. J. Mach. Tools Manufact. 32, 5–10 (1992).
    [CrossRef]
  19. P. de Groot, L. Deck, “Surface profiling by analysis of white-light interferograms in the spatial frequency domain,” J. Mod. Opt. 42, 389–401 (1995).
    [CrossRef]
  20. B. S. Lee, T. C. Strand, “Profilometry with a coherence scanning microscope,” Appl. Opt. 29, 3784–3788 (1990).
    [CrossRef] [PubMed]
  21. W. J. Tango, “Dispersion in stellar interferometry,” Appl. Opt. 29, 516–521 (1990).
    [CrossRef] [PubMed]
  22. P. R. Lawson, J. Davis, “Dispersion compensation in stellar interferometry,” Appl. Opt. 35, 612–620 (1996).
    [CrossRef] [PubMed]
  23. A. Pfortner, J. Schwider, “Dispersion error in white-light Linnik interferometers and its implications for evaluation procedures,” Appl. Opt. 40, 6223–6228 (2001).
    [CrossRef]
  24. P. de Groot, X. Colonna de Lega, J. Kramer, M. Turzhitsky, “Determination of fringe order in white-light interference microscopy,” Appl. Opt. 41, 4571–4578 (2002).
    [CrossRef] [PubMed]
  25. J. J. Sniegowski, M. P. de Boer, “IC-compatible polysilicon surface micromachining,” Annu. Rev. Mater. Sci. 30, 299–333 (2000).
    [CrossRef]
  26. J. E. Greivenkamp, J. H. Bruning, “Phase shifting interferometry,” in Optical Shop Testing, 2nd ed., D. Malacara, ed., (Wiley Interscience, 1992), pp. 501–598.
  27. P. Hariharan, B. F. Oreb, T. Eiju, “Digital phase-shifting interferometry: A simple error-compensating phase calculation algorithm,” Appl. Opt. 26, 2504–2506 (1987).
    [CrossRef] [PubMed]

2003 (1)

A. Bosseboeuf, S. Petitgrand, “Characterization of the static and dynamic behavior of M(O)EMS by optical techniques: Status and trends,” J. Micromech. Microeng. 13, S23–S33 (2003).
[CrossRef]

2002 (3)

M. S. Baker, M. P. de Boer, N. F. Smith, L. K. Warne, M. B. Sinclair, “Integrated measurement-modeling approaches for evaluating residual stress using micromachined fixed-fixed beams,” J. Microelectromech. Syst. 11, 743–753 (2002).
[CrossRef]

J. A. Knapp, M. P. de Boer, “Mechanics of microcantilever beams subject to combined electrostatic and adhesive forces,” J. Microelectromech. Syst. 11, 754–764 (2002).
[CrossRef]

P. de Groot, X. Colonna de Lega, J. Kramer, M. Turzhitsky, “Determination of fringe order in white-light interference microscopy,” Appl. Opt. 41, 4571–4578 (2002).
[CrossRef] [PubMed]

2001 (1)

2000 (3)

J. J. Sniegowski, M. P. de Boer, “IC-compatible polysilicon surface micromachining,” Annu. Rev. Mater. Sci. 30, 299–333 (2000).
[CrossRef]

M. P. de Boer, J. A. Knapp, T. A. Michalske, U. Srinivasan, R. Maboudian, “Adhesion hysteresis of silane coated microcantilevers,” Acta Mater. 48, 4531–4541 (2000).
[CrossRef]

M. R. Hart, R. A. Conant, K. Y. Lau, R. S. Muller, “Stroboscopic interferometer system for dynamic MEMS characterization,” J. Microelectromech. Syst. 9, 409–418 (2000).
[CrossRef]

1999 (1)

M. P. de Boer, T. A. Michalske, “Accurate method for determining adhesion of cantilever beams,” J. Appl. Phys. 86, 817–827 (1999).
[CrossRef]

1996 (2)

1995 (1)

P. de Groot, L. Deck, “Surface profiling by analysis of white-light interferograms in the spatial frequency domain,” J. Mod. Opt. 42, 389–401 (1995).
[CrossRef]

1994 (1)

1993 (1)

1992 (1)

J. C. Wyant, K. Creath, “Advances in interferometric optical profiling,” Int. J. Mach. Tools Manufact. 32, 5–10 (1992).
[CrossRef]

1990 (3)

1987 (1)

Baker, M. S.

M. S. Baker, M. P. de Boer, N. F. Smith, L. K. Warne, M. B. Sinclair, “Integrated measurement-modeling approaches for evaluating residual stress using micromachined fixed-fixed beams,” J. Microelectromech. Syst. 11, 743–753 (2002).
[CrossRef]

Bessho, Y.

Y. Bessho, “Surface roughness measuring apparatus utilizing deflectable laser beams,” U.S. patent4,978,219 (18December1990).

Bosseboeuf, A.

A. Bosseboeuf, S. Petitgrand, “Characterization of the static and dynamic behavior of M(O)EMS by optical techniques: Status and trends,” J. Micromech. Microeng. 13, S23–S33 (2003).
[CrossRef]

A. Bosseboeuf, S. Petitgrand, “Application of microscopic interferometry techniques in the MEMS field,” in Microsystems Engineering: Metrology and Inspection III, C. Gorecki, ed., Proc. SPIE5145, 1–16 (2003).

Bruning, J. H.

J. E. Greivenkamp, J. H. Bruning, “Phase shifting interferometry,” in Optical Shop Testing, 2nd ed., D. Malacara, ed., (Wiley Interscience, 1992), pp. 501–598.

Caber, P. J.

Chim, S. S. C.

G. S. Kino, S. S. C. Chim, “Mirau correlation microscope,” Appl. Opt. 29, 3775–3783 (1990).
[CrossRef] [PubMed]

Cohen, F.

M. Davidson, K. Kaufman, I. Mazor, F. Cohen, “An application of interference microscopy to integrated circuit ins pection and metrology,” in Integrated Circuit Metrology, Inspection, and Process Control, K. M. Monahan, ed., Proc. SPIE775, 233–247 (1987).
[CrossRef]

Colonna de Lega, X.

Conant, R. A.

M. R. Hart, R. A. Conant, K. Y. Lau, R. S. Muller, “Stroboscopic interferometer system for dynamic MEMS characterization,” J. Microelectromech. Syst. 9, 409–418 (2000).
[CrossRef]

Creath, K.

J. C. Wyant, K. Creath, “Advances in interferometric optical profiling,” Int. J. Mach. Tools Manufact. 32, 5–10 (1992).
[CrossRef]

Dainty, J. C.

Davidson, M.

M. Davidson, K. Kaufman, I. Mazor, F. Cohen, “An application of interference microscopy to integrated circuit ins pection and metrology,” in Integrated Circuit Metrology, Inspection, and Process Control, K. M. Monahan, ed., Proc. SPIE775, 233–247 (1987).
[CrossRef]

Davis, J.

de Boer, M. P.

J. A. Knapp, M. P. de Boer, “Mechanics of microcantilever beams subject to combined electrostatic and adhesive forces,” J. Microelectromech. Syst. 11, 754–764 (2002).
[CrossRef]

M. S. Baker, M. P. de Boer, N. F. Smith, L. K. Warne, M. B. Sinclair, “Integrated measurement-modeling approaches for evaluating residual stress using micromachined fixed-fixed beams,” J. Microelectromech. Syst. 11, 743–753 (2002).
[CrossRef]

M. P. de Boer, J. A. Knapp, T. A. Michalske, U. Srinivasan, R. Maboudian, “Adhesion hysteresis of silane coated microcantilevers,” Acta Mater. 48, 4531–4541 (2000).
[CrossRef]

J. J. Sniegowski, M. P. de Boer, “IC-compatible polysilicon surface micromachining,” Annu. Rev. Mater. Sci. 30, 299–333 (2000).
[CrossRef]

M. P. de Boer, T. A. Michalske, “Accurate method for determining adhesion of cantilever beams,” J. Appl. Phys. 86, 817–827 (1999).
[CrossRef]

B. D. Jensen, M. P. de Boer, S. L. Miller, “IMaP: Interferometry for materials property evaluation in MEMS,” in International Conference on Modeling and Simulation of Microsystems, Semiconductors, Sensors and Actuators (Computational Publications, 1999), pp. 206–209.

de Groot, P.

Deck, L.

P. de Groot, L. Deck, “Surface profiling by analysis of white-light interferograms in the spatial frequency domain,” J. Mod. Opt. 42, 389–401 (1995).
[CrossRef]

L. Deck, P. de Groot, “High-speed noncontact profiler based on scanning white-light interferometry,” Appl. Opt. 33, 7334–7338 (1994).
[CrossRef] [PubMed]

Eiju, T.

Freeman, D. M.

W. Hemmert, M. S. Mermelstein, D. M. Freeman, “Nanometer resolution of three-dimensional motions using video interference microscopy,” in Proceedings of the 12th IEEE International Conference on Micro Electro Mechanical Systems (Institute of Electrical and Electronics Engineers, 1999), pp. 302–308.

Gale, D. M.

Garavaglia, M.

P. F. Meilan, M. Garavaglia, “Fizeau confocal laser scanning interference microscope,” in Selected Papers from International Conference on Optics and Optoelectronics ‘98, K. Singh, O.P. Nijhawan, A.K. Gupta, A. K. Musla, eds. Proc. SPIE3729, 384–389 (1999).
[CrossRef]

Greivenkamp, J. E.

J. E. Greivenkamp, J. H. Bruning, “Phase shifting interferometry,” in Optical Shop Testing, 2nd ed., D. Malacara, ed., (Wiley Interscience, 1992), pp. 501–598.

Hariharan, P.

Hart, M. R.

M. R. Hart, R. A. Conant, K. Y. Lau, R. S. Muller, “Stroboscopic interferometer system for dynamic MEMS characterization,” J. Microelectromech. Syst. 9, 409–418 (2000).
[CrossRef]

Hemmert, W.

W. Hemmert, M. S. Mermelstein, D. M. Freeman, “Nanometer resolution of three-dimensional motions using video interference microscopy,” in Proceedings of the 12th IEEE International Conference on Micro Electro Mechanical Systems (Institute of Electrical and Electronics Engineers, 1999), pp. 302–308.

Jensen, B. D.

B. D. Jensen, M. P. de Boer, S. L. Miller, “IMaP: Interferometry for materials property evaluation in MEMS,” in International Conference on Modeling and Simulation of Microsystems, Semiconductors, Sensors and Actuators (Computational Publications, 1999), pp. 206–209.

Kaufman, K.

M. Davidson, K. Kaufman, I. Mazor, F. Cohen, “An application of interference microscopy to integrated circuit ins pection and metrology,” in Integrated Circuit Metrology, Inspection, and Process Control, K. M. Monahan, ed., Proc. SPIE775, 233–247 (1987).
[CrossRef]

Kino, G. S.

G. S. Kino, S. S. C. Chim, “Mirau correlation microscope,” Appl. Opt. 29, 3775–3783 (1990).
[CrossRef] [PubMed]

Knapp, J. A.

J. A. Knapp, M. P. de Boer, “Mechanics of microcantilever beams subject to combined electrostatic and adhesive forces,” J. Microelectromech. Syst. 11, 754–764 (2002).
[CrossRef]

M. P. de Boer, J. A. Knapp, T. A. Michalske, U. Srinivasan, R. Maboudian, “Adhesion hysteresis of silane coated microcantilevers,” Acta Mater. 48, 4531–4541 (2000).
[CrossRef]

Kramer, J.

Lau, K. Y.

M. R. Hart, R. A. Conant, K. Y. Lau, R. S. Muller, “Stroboscopic interferometer system for dynamic MEMS characterization,” J. Microelectromech. Syst. 9, 409–418 (2000).
[CrossRef]

Lawson, P. R.

Lee, B. S.

Maboudian, R.

M. P. de Boer, J. A. Knapp, T. A. Michalske, U. Srinivasan, R. Maboudian, “Adhesion hysteresis of silane coated microcantilevers,” Acta Mater. 48, 4531–4541 (2000).
[CrossRef]

Mazor, I.

M. Davidson, K. Kaufman, I. Mazor, F. Cohen, “An application of interference microscopy to integrated circuit ins pection and metrology,” in Integrated Circuit Metrology, Inspection, and Process Control, K. M. Monahan, ed., Proc. SPIE775, 233–247 (1987).
[CrossRef]

Meilan, P. F.

P. F. Meilan, M. Garavaglia, “Fizeau confocal laser scanning interference microscope,” in Selected Papers from International Conference on Optics and Optoelectronics ‘98, K. Singh, O.P. Nijhawan, A.K. Gupta, A. K. Musla, eds. Proc. SPIE3729, 384–389 (1999).
[CrossRef]

Mermelstein, M. S.

W. Hemmert, M. S. Mermelstein, D. M. Freeman, “Nanometer resolution of three-dimensional motions using video interference microscopy,” in Proceedings of the 12th IEEE International Conference on Micro Electro Mechanical Systems (Institute of Electrical and Electronics Engineers, 1999), pp. 302–308.

Michalske, T. A.

M. P. de Boer, J. A. Knapp, T. A. Michalske, U. Srinivasan, R. Maboudian, “Adhesion hysteresis of silane coated microcantilevers,” Acta Mater. 48, 4531–4541 (2000).
[CrossRef]

M. P. de Boer, T. A. Michalske, “Accurate method for determining adhesion of cantilever beams,” J. Appl. Phys. 86, 817–827 (1999).
[CrossRef]

Miller, S. L.

B. D. Jensen, M. P. de Boer, S. L. Miller, “IMaP: Interferometry for materials property evaluation in MEMS,” in International Conference on Modeling and Simulation of Microsystems, Semiconductors, Sensors and Actuators (Computational Publications, 1999), pp. 206–209.

Muller, R. S.

M. R. Hart, R. A. Conant, K. Y. Lau, R. S. Muller, “Stroboscopic interferometer system for dynamic MEMS characterization,” J. Microelectromech. Syst. 9, 409–418 (2000).
[CrossRef]

Oreb, B. F.

Pether, M. I.

Petitgrand, S.

A. Bosseboeuf, S. Petitgrand, “Characterization of the static and dynamic behavior of M(O)EMS by optical techniques: Status and trends,” J. Micromech. Microeng. 13, S23–S33 (2003).
[CrossRef]

A. Bosseboeuf, S. Petitgrand, “Application of microscopic interferometry techniques in the MEMS field,” in Microsystems Engineering: Metrology and Inspection III, C. Gorecki, ed., Proc. SPIE5145, 1–16 (2003).

Pfortner, A.

Schwider, J.

Sheppard, C. J. R.

C. J. R. Sheppard, H. Zhou, “Confocal interference microscopy,” in Three-Dimensional Microscopy: Image Acquisition and Processing IV, C.J. Cogswell, J.A. Conchello, T. Wilson, eds, Proc. SPIE2984, 85–89 (1997).

Sinclair, M. B.

M. S. Baker, M. P. de Boer, N. F. Smith, L. K. Warne, M. B. Sinclair, “Integrated measurement-modeling approaches for evaluating residual stress using micromachined fixed-fixed beams,” J. Microelectromech. Syst. 11, 743–753 (2002).
[CrossRef]

Smith, N. F.

M. S. Baker, M. P. de Boer, N. F. Smith, L. K. Warne, M. B. Sinclair, “Integrated measurement-modeling approaches for evaluating residual stress using micromachined fixed-fixed beams,” J. Microelectromech. Syst. 11, 743–753 (2002).
[CrossRef]

Sniegowski, J. J.

J. J. Sniegowski, M. P. de Boer, “IC-compatible polysilicon surface micromachining,” Annu. Rev. Mater. Sci. 30, 299–333 (2000).
[CrossRef]

Srinivasan, U.

M. P. de Boer, J. A. Knapp, T. A. Michalske, U. Srinivasan, R. Maboudian, “Adhesion hysteresis of silane coated microcantilevers,” Acta Mater. 48, 4531–4541 (2000).
[CrossRef]

Strand, T. C.

Tango, W. J.

Turzhitsky, M.

Warne, L. K.

M. S. Baker, M. P. de Boer, N. F. Smith, L. K. Warne, M. B. Sinclair, “Integrated measurement-modeling approaches for evaluating residual stress using micromachined fixed-fixed beams,” J. Microelectromech. Syst. 11, 743–753 (2002).
[CrossRef]

Wyant, J. C.

J. C. Wyant, K. Creath, “Advances in interferometric optical profiling,” Int. J. Mach. Tools Manufact. 32, 5–10 (1992).
[CrossRef]

Zhou, H.

C. J. R. Sheppard, H. Zhou, “Confocal interference microscopy,” in Three-Dimensional Microscopy: Image Acquisition and Processing IV, C.J. Cogswell, J.A. Conchello, T. Wilson, eds, Proc. SPIE2984, 85–89 (1997).

Acta Mater. (1)

M. P. de Boer, J. A. Knapp, T. A. Michalske, U. Srinivasan, R. Maboudian, “Adhesion hysteresis of silane coated microcantilevers,” Acta Mater. 48, 4531–4541 (2000).
[CrossRef]

Annu. Rev. Mater. Sci. (1)

J. J. Sniegowski, M. P. de Boer, “IC-compatible polysilicon surface micromachining,” Annu. Rev. Mater. Sci. 30, 299–333 (2000).
[CrossRef]

Appl. Opt. (10)

Int. J. Mach. Tools Manufact. (1)

J. C. Wyant, K. Creath, “Advances in interferometric optical profiling,” Int. J. Mach. Tools Manufact. 32, 5–10 (1992).
[CrossRef]

J. Appl. Phys. (1)

M. P. de Boer, T. A. Michalske, “Accurate method for determining adhesion of cantilever beams,” J. Appl. Phys. 86, 817–827 (1999).
[CrossRef]

J. Microelectromech. Syst. (3)

J. A. Knapp, M. P. de Boer, “Mechanics of microcantilever beams subject to combined electrostatic and adhesive forces,” J. Microelectromech. Syst. 11, 754–764 (2002).
[CrossRef]

M. S. Baker, M. P. de Boer, N. F. Smith, L. K. Warne, M. B. Sinclair, “Integrated measurement-modeling approaches for evaluating residual stress using micromachined fixed-fixed beams,” J. Microelectromech. Syst. 11, 743–753 (2002).
[CrossRef]

M. R. Hart, R. A. Conant, K. Y. Lau, R. S. Muller, “Stroboscopic interferometer system for dynamic MEMS characterization,” J. Microelectromech. Syst. 9, 409–418 (2000).
[CrossRef]

J. Micromech. Microeng. (1)

A. Bosseboeuf, S. Petitgrand, “Characterization of the static and dynamic behavior of M(O)EMS by optical techniques: Status and trends,” J. Micromech. Microeng. 13, S23–S33 (2003).
[CrossRef]

J. Mod. Opt. (1)

P. de Groot, L. Deck, “Surface profiling by analysis of white-light interferograms in the spatial frequency domain,” J. Mod. Opt. 42, 389–401 (1995).
[CrossRef]

Other (8)

Y. Bessho, “Surface roughness measuring apparatus utilizing deflectable laser beams,” U.S. patent4,978,219 (18December1990).

C. J. R. Sheppard, H. Zhou, “Confocal interference microscopy,” in Three-Dimensional Microscopy: Image Acquisition and Processing IV, C.J. Cogswell, J.A. Conchello, T. Wilson, eds, Proc. SPIE2984, 85–89 (1997).

P. F. Meilan, M. Garavaglia, “Fizeau confocal laser scanning interference microscope,” in Selected Papers from International Conference on Optics and Optoelectronics ‘98, K. Singh, O.P. Nijhawan, A.K. Gupta, A. K. Musla, eds. Proc. SPIE3729, 384–389 (1999).
[CrossRef]

M. Davidson, K. Kaufman, I. Mazor, F. Cohen, “An application of interference microscopy to integrated circuit ins pection and metrology,” in Integrated Circuit Metrology, Inspection, and Process Control, K. M. Monahan, ed., Proc. SPIE775, 233–247 (1987).
[CrossRef]

W. Hemmert, M. S. Mermelstein, D. M. Freeman, “Nanometer resolution of three-dimensional motions using video interference microscopy,” in Proceedings of the 12th IEEE International Conference on Micro Electro Mechanical Systems (Institute of Electrical and Electronics Engineers, 1999), pp. 302–308.

B. D. Jensen, M. P. de Boer, S. L. Miller, “IMaP: Interferometry for materials property evaluation in MEMS,” in International Conference on Modeling and Simulation of Microsystems, Semiconductors, Sensors and Actuators (Computational Publications, 1999), pp. 206–209.

A. Bosseboeuf, S. Petitgrand, “Application of microscopic interferometry techniques in the MEMS field,” in Microsystems Engineering: Metrology and Inspection III, C. Gorecki, ed., Proc. SPIE5145, 1–16 (2003).

J. E. Greivenkamp, J. H. Bruning, “Phase shifting interferometry,” in Optical Shop Testing, 2nd ed., D. Malacara, ed., (Wiley Interscience, 1992), pp. 501–598.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

(a) Schematic layout of the interference microscope. The microscope is constructed primarily from commercial optics and optomechanics. (b) Photograph of the interferometer coupled to a computer-controlled probe station for wafer-level measurement of microelectromechanical-system material parameters.

Fig. 2
Fig. 2

(a) Interference fringes obtained when the telescope is adjusted so that the back focal planes of the sample and the reference arms are not equidistant from the beam splitter; (b) after adjustment of the telescope straight fringes are obtained. The sample was slightly tilted when these interferograms were obtained.

Fig. 3
Fig. 3

Representative interferogram obtained with a 6.4-mm-thick fused silica compensating plate. For this compensator a fringe contrast of approximately 0.7 is obtained.

Fig. 4
Fig. 4

(a) Graph of the phase of the Fourier transforms of interferograms obtained for four different thicknesses of fused silica. The results of a quadratic fit to the phase profile are also shown. The inset shows the magnitude of the Fourier transform of one of the interferograms. (b) Graph of the coefficient of the second-order term of the quadratic fit as a function of fused silica thickness. The zero crossing of this line locates the optimal thickness of the compensation plate.

Fig. 5
Fig. 5

Results of the surface reconstruction of the step-height standard: (a) portion of the reconstructed surface, (b) line scan across the step. The measured step height of 10.20 µm is in excellent agreement with the quoted height of 10.14 ± 0.09 µm.

Fig. 6
Fig. 6

One of the interferometric images in the sequence used to determine the surface profile of the MEMS device. Tight fringes appear on the structure to the right of center, indicating that it is substantially tilted. Broader fringes are observed on the structure to the left of center, which exhibits much less tilt.

Fig. 7
Fig. 7

Gray-scale image of the surface profile of the MEMS structure. A significant contrast gradient is observed on the pop-up structure to the right of center, indicating that this structure is substantially tilted. Horizontal and vertical line scans obtained at the locations of the red lines on the figure are also shown.

Fig. 8
Fig. 8

Deflection of a polysilicon cantilever beam that is due to residual stress gradients. The inset shows one of the interferograms used with the PSI algorithm to obtain the beam deflection.

Fig. 9
Fig. 9

Virtually identical interference images of a MEMS structure with no intervening window (left), and with a 1.6-mm window inserted between the objective and the sample (right). To compensate for the window, a corresponding plate was placed in the collimated region of the reference arm, and the path-length-matching translation stage was adjusted to obtain high-contrast fringes.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

ϕ = k Z ( k ) ,
ϕ = k 0 Z ( k 0 ) + d ϕ d k | k 0 ( k k 0 ) + 1 2 d 2 ϕ d k 2 | k 0 ( k k 0 ) 2 + + ,
h ( x , y ) = 1 2 d ϕ d k | k 0 .

Metrics