Abstract

The ultimate goal of holographic particle image velocimetry (HPIV) is to provide space- and time-resolved measurement of complex flows. Recent new understanding of holographic imaging of small particles, pertaining to intrinsic aberration and noise in particular, has enabled us to elucidate fundamental issues in HPIV and implement a new HPIV system. This system is based on our previously reported off-axis HPIV setup, but the design is optimized by incorporating our new insights of holographic particle imaging characteristics. Furthermore, the new system benefits from advanced data processing algorithms and distributed parallel computing technology. Because of its robustness and efficiency, for the first time to our knowledge, the goal of both temporally and spatially resolved flow measurements becomes tangible. We demonstrate its temporal measurement capability by a series of phase-locked dynamic measurements of instantaneous three-dimensional, three-component velocity fields in a highly three-dimensional vortical flow—the flow past a tab.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. J. Adrian, “Particle-imaging techniques for experimental fluid mechanics,” Annu. Rev. Fluid Mech. 23, 261–304 (1991).
    [CrossRef]
  2. C. E. Willert, M. Gharib, “Digital particle image velocimetry,” Exp. Fluids 10, 181–193 (1991).
    [CrossRef]
  3. M. P. Arroyo, C. A. Greated, “Stereoscopic particle velocimetry,” Meas. Sci. Technol. 2, 1181–1186 (1991).
    [CrossRef]
  4. K. Prasad, R. J. Adrian, “Stereoscopic particle image velocimetry applied to liquid flows,” Exp. Fluids 15, 49–60 (1993).
    [CrossRef]
  5. Y. G. Guezennec, Y. Zhao, T. J. Gieseke, “High-speed 3-D scanning particle image velocimetry (3-D SPIV),” in Selected Papers from the Seventh International Symposium on Applications of Laser Techniques to Fluid Mechanics, R. J. Adrian, D. F. G. Durão, F. Durst, M. V. Heiter, M. Maeda, J. H. Whitelaw, eds. (Springer-Verlag, 1996).
  6. Ch. Bruecker, “3D scanning PIV applied to an air flow in a motored engine using digital high-speed video,” Meas. Sci. Technol. 8, 1480–1492 (1997).
    [CrossRef]
  7. J. D. Trolinger, R. A. Belz, W. M. Farmer, “Holographic techniques for the study of dynamic particle fields,” Appl. Opt. 8, 957–961 (1969).
    [CrossRef] [PubMed]
  8. B. J. Thompson, “Holographic particle sizing techniques,” J. Phys. E 7, 781–788 (1974).
    [CrossRef]
  9. P. R. Hobson, “Precision coordinate measurements using holographic recording,” J. Phys. E 21, 139–145 (1988).
    [CrossRef]
  10. H. Meng, F. Hussain, “In-line recording and off-axis viewing technique for holographic particle velocimetry,” Appl. Opt. 34, 1827–1840 (1995).
    [CrossRef] [PubMed]
  11. J. O. Scherer, L. P. Bernal, “In-line holographic particle image velocimetry for turbulent flows,” Appl. Opt. 36, 9309–9318 (1997).
    [CrossRef]
  12. H. Meng, W. L. Anderson, F. Hussain, D. Liu, “Intrinsic speckle noise in in-line particle holography,” J. Opt. Soc. Am. A 10, 2046–2058 (1993).
    [CrossRef]
  13. D. H. Barnhart, R. J. Adrian, C. D. Meinhart, G. C. Papen, “Phase-conjugate holographic system for high-resolution particle image velocimetry,” Appl. Opt. 33, 7159–7169 (1994).
    [CrossRef] [PubMed]
  14. Y. Pu, H. Meng, “An advanced off-axis holographic particle image velocimetry (HPIV) system,” Exp. Fluids 29, 184–197 (2000).
    [CrossRef]
  15. J. Zhang, B. Tao, J. Katz, “Turbulent flow measurement in a square duct with hybrid holographic PIV,” Exp. Fluids 23, 373–381 (1997).
    [CrossRef]
  16. A. Lozano, J. Kostas, J. Soria, “Use of holography in particle image velocimetry measurements of a swirling flow,” Exp. Fluids 27, 251–261 (1999).
    [CrossRef]
  17. R. Konrath, W. Schröder, W. Limberg, “Holographic particle image velocimetry applied to the flow within the cylinder of a four-valve internal combustion engine,” Exp. Fluids 33, 781–793 (2002).
    [CrossRef]
  18. S. F. Herrmann, K. D. Hinsch, “Light-in-flight holographic particle image velocimetry for wind-tunnel applications,” Meas. Sci. Technol. 15, 613–621 (2004).
    [CrossRef]
  19. K. D. Hinsch, S. F. Hermann, “Holographic particle image velocimetry,” Meas. Sci. Technol. 13, R61–R72 (2002).
    [CrossRef]
  20. H. Meng, G. Pan, Y. Pu, S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15, 673–685 (2004).
    [CrossRef]
  21. Y. Pu, H. Meng, “Intrinsic aberrations due to Mie scattering in particle holography,” J. Opt. Soc. Am. A 20, 1920–1932 (2003).
    [CrossRef]
  22. Y. Pu, H. Meng, “Intrinsic speckle noise in off-axis particle holography,” J. Opt. Soc. Am. A 21, 1221–1230 (2004).
    [CrossRef]
  23. H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981).
  24. J. M. Coupland, N. A. Halliwell, “Holographic displacement measurements in fluid and solid mechanics: immunity to aberrations by optical correlation processing,” Proc. R. Soc. London 453, 1053–1066 (1997).
    [CrossRef]
  25. J. W. Goodman, “Film grain noise in wavefront reconstruction imaging,” J. Opt. Soc. Am. 57, 493–502 (1967).
    [CrossRef] [PubMed]
  26. J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, 1975), pp. 9–75.
  27. R. L. Panton, Incompressible Flow (Wiley, 1996), p. 770.
  28. J. Westerweel, “Fundamentals of digital particle image velocimetry,” Meas. Sci. Technol. 8, 1379–1392 (1997).
    [CrossRef]
  29. K. Sholes, P. V. Farrell, “Optical alignment-induced errors in holographic particle image velocimetry,” Appl. Opt. 39, 5685–5693 (2000).
    [CrossRef]
  30. Y. Pu, X. Song, H. Meng, “Off-axis holographic particle image velocimetry for diagnosing particulate flows,” Exp. Fluids 29, S117–S128 (2000).
    [CrossRef]
  31. K. Huang, J. Slepicka, S. S. Cha, “Cross-correlation of three-dimensional images for three-dimensional three-component fluid velocity measurements,” in Optical Diagnostics in Fluid and Thermal Flow, S. S. Cha, J. D. Trolinger, eds., Proc. SPIE2005, 655–666 (1993).
    [CrossRef]
  32. Y. Pu, D. Andresen, “Distributed processing for cinematic holographic particle image velocimetry,” in Proceedings of Eight IEEE International Symposium on High Performance Distributed Computing. (IEEE Press, 1999), pp. 343–344.
    [CrossRef]
  33. H. I. Bjelkhagen, Silver-Halide Recording Materials for Holography and Their Processing (Springer-Verlag, 1995).
    [CrossRef]
  34. H. Stüer, S. Blaser, “Assessment of spatial derivatives determined from scattered 3D PTV data,” Exp. Fluids 30, 492–499 (2001).
    [CrossRef]
  35. R. Elavarasan, H. Meng, “Flow visualization study of role of coherent structures in a tab wake,” Fluid Dyn. Res. 27, 183–197 (2000).
    [CrossRef]
  36. W. Yang, H. Meng, J. Sheng, “Dynamics of hairpin vortices generated by a mixing tab in a channel flow,” Exp. Fluids 30, 705–722 (2001).
    [CrossRef]
  37. S. C. Dong, H. Meng, “Direct numerical simulation of the mixing tab flow,” J. Fluid Mech. 510, 219–242 (2004).
    [CrossRef]

2004 (4)

S. F. Herrmann, K. D. Hinsch, “Light-in-flight holographic particle image velocimetry for wind-tunnel applications,” Meas. Sci. Technol. 15, 613–621 (2004).
[CrossRef]

H. Meng, G. Pan, Y. Pu, S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15, 673–685 (2004).
[CrossRef]

Y. Pu, H. Meng, “Intrinsic speckle noise in off-axis particle holography,” J. Opt. Soc. Am. A 21, 1221–1230 (2004).
[CrossRef]

S. C. Dong, H. Meng, “Direct numerical simulation of the mixing tab flow,” J. Fluid Mech. 510, 219–242 (2004).
[CrossRef]

2003 (1)

2002 (2)

R. Konrath, W. Schröder, W. Limberg, “Holographic particle image velocimetry applied to the flow within the cylinder of a four-valve internal combustion engine,” Exp. Fluids 33, 781–793 (2002).
[CrossRef]

K. D. Hinsch, S. F. Hermann, “Holographic particle image velocimetry,” Meas. Sci. Technol. 13, R61–R72 (2002).
[CrossRef]

2001 (2)

W. Yang, H. Meng, J. Sheng, “Dynamics of hairpin vortices generated by a mixing tab in a channel flow,” Exp. Fluids 30, 705–722 (2001).
[CrossRef]

H. Stüer, S. Blaser, “Assessment of spatial derivatives determined from scattered 3D PTV data,” Exp. Fluids 30, 492–499 (2001).
[CrossRef]

2000 (4)

R. Elavarasan, H. Meng, “Flow visualization study of role of coherent structures in a tab wake,” Fluid Dyn. Res. 27, 183–197 (2000).
[CrossRef]

K. Sholes, P. V. Farrell, “Optical alignment-induced errors in holographic particle image velocimetry,” Appl. Opt. 39, 5685–5693 (2000).
[CrossRef]

Y. Pu, X. Song, H. Meng, “Off-axis holographic particle image velocimetry for diagnosing particulate flows,” Exp. Fluids 29, S117–S128 (2000).
[CrossRef]

Y. Pu, H. Meng, “An advanced off-axis holographic particle image velocimetry (HPIV) system,” Exp. Fluids 29, 184–197 (2000).
[CrossRef]

1999 (1)

A. Lozano, J. Kostas, J. Soria, “Use of holography in particle image velocimetry measurements of a swirling flow,” Exp. Fluids 27, 251–261 (1999).
[CrossRef]

1997 (5)

J. Zhang, B. Tao, J. Katz, “Turbulent flow measurement in a square duct with hybrid holographic PIV,” Exp. Fluids 23, 373–381 (1997).
[CrossRef]

J. O. Scherer, L. P. Bernal, “In-line holographic particle image velocimetry for turbulent flows,” Appl. Opt. 36, 9309–9318 (1997).
[CrossRef]

Ch. Bruecker, “3D scanning PIV applied to an air flow in a motored engine using digital high-speed video,” Meas. Sci. Technol. 8, 1480–1492 (1997).
[CrossRef]

J. Westerweel, “Fundamentals of digital particle image velocimetry,” Meas. Sci. Technol. 8, 1379–1392 (1997).
[CrossRef]

J. M. Coupland, N. A. Halliwell, “Holographic displacement measurements in fluid and solid mechanics: immunity to aberrations by optical correlation processing,” Proc. R. Soc. London 453, 1053–1066 (1997).
[CrossRef]

1995 (1)

1994 (1)

1993 (2)

H. Meng, W. L. Anderson, F. Hussain, D. Liu, “Intrinsic speckle noise in in-line particle holography,” J. Opt. Soc. Am. A 10, 2046–2058 (1993).
[CrossRef]

K. Prasad, R. J. Adrian, “Stereoscopic particle image velocimetry applied to liquid flows,” Exp. Fluids 15, 49–60 (1993).
[CrossRef]

1991 (3)

R. J. Adrian, “Particle-imaging techniques for experimental fluid mechanics,” Annu. Rev. Fluid Mech. 23, 261–304 (1991).
[CrossRef]

C. E. Willert, M. Gharib, “Digital particle image velocimetry,” Exp. Fluids 10, 181–193 (1991).
[CrossRef]

M. P. Arroyo, C. A. Greated, “Stereoscopic particle velocimetry,” Meas. Sci. Technol. 2, 1181–1186 (1991).
[CrossRef]

1988 (1)

P. R. Hobson, “Precision coordinate measurements using holographic recording,” J. Phys. E 21, 139–145 (1988).
[CrossRef]

1974 (1)

B. J. Thompson, “Holographic particle sizing techniques,” J. Phys. E 7, 781–788 (1974).
[CrossRef]

1969 (1)

1967 (1)

Adrian, R. J.

D. H. Barnhart, R. J. Adrian, C. D. Meinhart, G. C. Papen, “Phase-conjugate holographic system for high-resolution particle image velocimetry,” Appl. Opt. 33, 7159–7169 (1994).
[CrossRef] [PubMed]

K. Prasad, R. J. Adrian, “Stereoscopic particle image velocimetry applied to liquid flows,” Exp. Fluids 15, 49–60 (1993).
[CrossRef]

R. J. Adrian, “Particle-imaging techniques for experimental fluid mechanics,” Annu. Rev. Fluid Mech. 23, 261–304 (1991).
[CrossRef]

Anderson, W. L.

Andresen, D.

Y. Pu, D. Andresen, “Distributed processing for cinematic holographic particle image velocimetry,” in Proceedings of Eight IEEE International Symposium on High Performance Distributed Computing. (IEEE Press, 1999), pp. 343–344.
[CrossRef]

Arroyo, M. P.

M. P. Arroyo, C. A. Greated, “Stereoscopic particle velocimetry,” Meas. Sci. Technol. 2, 1181–1186 (1991).
[CrossRef]

Barnhart, D. H.

Belz, R. A.

Bernal, L. P.

Bjelkhagen, H. I.

H. I. Bjelkhagen, Silver-Halide Recording Materials for Holography and Their Processing (Springer-Verlag, 1995).
[CrossRef]

Blaser, S.

H. Stüer, S. Blaser, “Assessment of spatial derivatives determined from scattered 3D PTV data,” Exp. Fluids 30, 492–499 (2001).
[CrossRef]

Bruecker, Ch.

Ch. Bruecker, “3D scanning PIV applied to an air flow in a motored engine using digital high-speed video,” Meas. Sci. Technol. 8, 1480–1492 (1997).
[CrossRef]

Cha, S. S.

K. Huang, J. Slepicka, S. S. Cha, “Cross-correlation of three-dimensional images for three-dimensional three-component fluid velocity measurements,” in Optical Diagnostics in Fluid and Thermal Flow, S. S. Cha, J. D. Trolinger, eds., Proc. SPIE2005, 655–666 (1993).
[CrossRef]

Coupland, J. M.

J. M. Coupland, N. A. Halliwell, “Holographic displacement measurements in fluid and solid mechanics: immunity to aberrations by optical correlation processing,” Proc. R. Soc. London 453, 1053–1066 (1997).
[CrossRef]

Dong, S. C.

S. C. Dong, H. Meng, “Direct numerical simulation of the mixing tab flow,” J. Fluid Mech. 510, 219–242 (2004).
[CrossRef]

Elavarasan, R.

R. Elavarasan, H. Meng, “Flow visualization study of role of coherent structures in a tab wake,” Fluid Dyn. Res. 27, 183–197 (2000).
[CrossRef]

Farmer, W. M.

Farrell, P. V.

Gharib, M.

C. E. Willert, M. Gharib, “Digital particle image velocimetry,” Exp. Fluids 10, 181–193 (1991).
[CrossRef]

Gieseke, T. J.

Y. G. Guezennec, Y. Zhao, T. J. Gieseke, “High-speed 3-D scanning particle image velocimetry (3-D SPIV),” in Selected Papers from the Seventh International Symposium on Applications of Laser Techniques to Fluid Mechanics, R. J. Adrian, D. F. G. Durão, F. Durst, M. V. Heiter, M. Maeda, J. H. Whitelaw, eds. (Springer-Verlag, 1996).

Goodman, J. W.

J. W. Goodman, “Film grain noise in wavefront reconstruction imaging,” J. Opt. Soc. Am. 57, 493–502 (1967).
[CrossRef] [PubMed]

J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, 1975), pp. 9–75.

Greated, C. A.

M. P. Arroyo, C. A. Greated, “Stereoscopic particle velocimetry,” Meas. Sci. Technol. 2, 1181–1186 (1991).
[CrossRef]

Guezennec, Y. G.

Y. G. Guezennec, Y. Zhao, T. J. Gieseke, “High-speed 3-D scanning particle image velocimetry (3-D SPIV),” in Selected Papers from the Seventh International Symposium on Applications of Laser Techniques to Fluid Mechanics, R. J. Adrian, D. F. G. Durão, F. Durst, M. V. Heiter, M. Maeda, J. H. Whitelaw, eds. (Springer-Verlag, 1996).

Halliwell, N. A.

J. M. Coupland, N. A. Halliwell, “Holographic displacement measurements in fluid and solid mechanics: immunity to aberrations by optical correlation processing,” Proc. R. Soc. London 453, 1053–1066 (1997).
[CrossRef]

Hermann, S. F.

K. D. Hinsch, S. F. Hermann, “Holographic particle image velocimetry,” Meas. Sci. Technol. 13, R61–R72 (2002).
[CrossRef]

Herrmann, S. F.

S. F. Herrmann, K. D. Hinsch, “Light-in-flight holographic particle image velocimetry for wind-tunnel applications,” Meas. Sci. Technol. 15, 613–621 (2004).
[CrossRef]

Hinsch, K. D.

S. F. Herrmann, K. D. Hinsch, “Light-in-flight holographic particle image velocimetry for wind-tunnel applications,” Meas. Sci. Technol. 15, 613–621 (2004).
[CrossRef]

K. D. Hinsch, S. F. Hermann, “Holographic particle image velocimetry,” Meas. Sci. Technol. 13, R61–R72 (2002).
[CrossRef]

Hobson, P. R.

P. R. Hobson, “Precision coordinate measurements using holographic recording,” J. Phys. E 21, 139–145 (1988).
[CrossRef]

Huang, K.

K. Huang, J. Slepicka, S. S. Cha, “Cross-correlation of three-dimensional images for three-dimensional three-component fluid velocity measurements,” in Optical Diagnostics in Fluid and Thermal Flow, S. S. Cha, J. D. Trolinger, eds., Proc. SPIE2005, 655–666 (1993).
[CrossRef]

Hussain, F.

Katz, J.

J. Zhang, B. Tao, J. Katz, “Turbulent flow measurement in a square duct with hybrid holographic PIV,” Exp. Fluids 23, 373–381 (1997).
[CrossRef]

Konrath, R.

R. Konrath, W. Schröder, W. Limberg, “Holographic particle image velocimetry applied to the flow within the cylinder of a four-valve internal combustion engine,” Exp. Fluids 33, 781–793 (2002).
[CrossRef]

Kostas, J.

A. Lozano, J. Kostas, J. Soria, “Use of holography in particle image velocimetry measurements of a swirling flow,” Exp. Fluids 27, 251–261 (1999).
[CrossRef]

Limberg, W.

R. Konrath, W. Schröder, W. Limberg, “Holographic particle image velocimetry applied to the flow within the cylinder of a four-valve internal combustion engine,” Exp. Fluids 33, 781–793 (2002).
[CrossRef]

Liu, D.

Lozano, A.

A. Lozano, J. Kostas, J. Soria, “Use of holography in particle image velocimetry measurements of a swirling flow,” Exp. Fluids 27, 251–261 (1999).
[CrossRef]

Meinhart, C. D.

Meng, H.

Y. Pu, H. Meng, “Intrinsic speckle noise in off-axis particle holography,” J. Opt. Soc. Am. A 21, 1221–1230 (2004).
[CrossRef]

H. Meng, G. Pan, Y. Pu, S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15, 673–685 (2004).
[CrossRef]

S. C. Dong, H. Meng, “Direct numerical simulation of the mixing tab flow,” J. Fluid Mech. 510, 219–242 (2004).
[CrossRef]

Y. Pu, H. Meng, “Intrinsic aberrations due to Mie scattering in particle holography,” J. Opt. Soc. Am. A 20, 1920–1932 (2003).
[CrossRef]

W. Yang, H. Meng, J. Sheng, “Dynamics of hairpin vortices generated by a mixing tab in a channel flow,” Exp. Fluids 30, 705–722 (2001).
[CrossRef]

R. Elavarasan, H. Meng, “Flow visualization study of role of coherent structures in a tab wake,” Fluid Dyn. Res. 27, 183–197 (2000).
[CrossRef]

Y. Pu, X. Song, H. Meng, “Off-axis holographic particle image velocimetry for diagnosing particulate flows,” Exp. Fluids 29, S117–S128 (2000).
[CrossRef]

Y. Pu, H. Meng, “An advanced off-axis holographic particle image velocimetry (HPIV) system,” Exp. Fluids 29, 184–197 (2000).
[CrossRef]

H. Meng, F. Hussain, “In-line recording and off-axis viewing technique for holographic particle velocimetry,” Appl. Opt. 34, 1827–1840 (1995).
[CrossRef] [PubMed]

H. Meng, W. L. Anderson, F. Hussain, D. Liu, “Intrinsic speckle noise in in-line particle holography,” J. Opt. Soc. Am. A 10, 2046–2058 (1993).
[CrossRef]

Pan, G.

H. Meng, G. Pan, Y. Pu, S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15, 673–685 (2004).
[CrossRef]

Panton, R. L.

R. L. Panton, Incompressible Flow (Wiley, 1996), p. 770.

Papen, G. C.

Prasad, K.

K. Prasad, R. J. Adrian, “Stereoscopic particle image velocimetry applied to liquid flows,” Exp. Fluids 15, 49–60 (1993).
[CrossRef]

Pu, Y.

H. Meng, G. Pan, Y. Pu, S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15, 673–685 (2004).
[CrossRef]

Y. Pu, H. Meng, “Intrinsic speckle noise in off-axis particle holography,” J. Opt. Soc. Am. A 21, 1221–1230 (2004).
[CrossRef]

Y. Pu, H. Meng, “Intrinsic aberrations due to Mie scattering in particle holography,” J. Opt. Soc. Am. A 20, 1920–1932 (2003).
[CrossRef]

Y. Pu, X. Song, H. Meng, “Off-axis holographic particle image velocimetry for diagnosing particulate flows,” Exp. Fluids 29, S117–S128 (2000).
[CrossRef]

Y. Pu, H. Meng, “An advanced off-axis holographic particle image velocimetry (HPIV) system,” Exp. Fluids 29, 184–197 (2000).
[CrossRef]

Y. Pu, D. Andresen, “Distributed processing for cinematic holographic particle image velocimetry,” in Proceedings of Eight IEEE International Symposium on High Performance Distributed Computing. (IEEE Press, 1999), pp. 343–344.
[CrossRef]

Scherer, J. O.

Schröder, W.

R. Konrath, W. Schröder, W. Limberg, “Holographic particle image velocimetry applied to the flow within the cylinder of a four-valve internal combustion engine,” Exp. Fluids 33, 781–793 (2002).
[CrossRef]

Sheng, J.

W. Yang, H. Meng, J. Sheng, “Dynamics of hairpin vortices generated by a mixing tab in a channel flow,” Exp. Fluids 30, 705–722 (2001).
[CrossRef]

Sholes, K.

Slepicka, J.

K. Huang, J. Slepicka, S. S. Cha, “Cross-correlation of three-dimensional images for three-dimensional three-component fluid velocity measurements,” in Optical Diagnostics in Fluid and Thermal Flow, S. S. Cha, J. D. Trolinger, eds., Proc. SPIE2005, 655–666 (1993).
[CrossRef]

Song, X.

Y. Pu, X. Song, H. Meng, “Off-axis holographic particle image velocimetry for diagnosing particulate flows,” Exp. Fluids 29, S117–S128 (2000).
[CrossRef]

Soria, J.

A. Lozano, J. Kostas, J. Soria, “Use of holography in particle image velocimetry measurements of a swirling flow,” Exp. Fluids 27, 251–261 (1999).
[CrossRef]

Stüer, H.

H. Stüer, S. Blaser, “Assessment of spatial derivatives determined from scattered 3D PTV data,” Exp. Fluids 30, 492–499 (2001).
[CrossRef]

Tao, B.

J. Zhang, B. Tao, J. Katz, “Turbulent flow measurement in a square duct with hybrid holographic PIV,” Exp. Fluids 23, 373–381 (1997).
[CrossRef]

Thompson, B. J.

B. J. Thompson, “Holographic particle sizing techniques,” J. Phys. E 7, 781–788 (1974).
[CrossRef]

Trolinger, J. D.

van de Hulst, H. C.

H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981).

Westerweel, J.

J. Westerweel, “Fundamentals of digital particle image velocimetry,” Meas. Sci. Technol. 8, 1379–1392 (1997).
[CrossRef]

Willert, C. E.

C. E. Willert, M. Gharib, “Digital particle image velocimetry,” Exp. Fluids 10, 181–193 (1991).
[CrossRef]

Woodward, S. H.

H. Meng, G. Pan, Y. Pu, S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15, 673–685 (2004).
[CrossRef]

Yang, W.

W. Yang, H. Meng, J. Sheng, “Dynamics of hairpin vortices generated by a mixing tab in a channel flow,” Exp. Fluids 30, 705–722 (2001).
[CrossRef]

Zhang, J.

J. Zhang, B. Tao, J. Katz, “Turbulent flow measurement in a square duct with hybrid holographic PIV,” Exp. Fluids 23, 373–381 (1997).
[CrossRef]

Zhao, Y.

Y. G. Guezennec, Y. Zhao, T. J. Gieseke, “High-speed 3-D scanning particle image velocimetry (3-D SPIV),” in Selected Papers from the Seventh International Symposium on Applications of Laser Techniques to Fluid Mechanics, R. J. Adrian, D. F. G. Durão, F. Durst, M. V. Heiter, M. Maeda, J. H. Whitelaw, eds. (Springer-Verlag, 1996).

Annu. Rev. Fluid Mech. (1)

R. J. Adrian, “Particle-imaging techniques for experimental fluid mechanics,” Annu. Rev. Fluid Mech. 23, 261–304 (1991).
[CrossRef]

Appl. Opt. (5)

Exp. Fluids (9)

Y. Pu, X. Song, H. Meng, “Off-axis holographic particle image velocimetry for diagnosing particulate flows,” Exp. Fluids 29, S117–S128 (2000).
[CrossRef]

H. Stüer, S. Blaser, “Assessment of spatial derivatives determined from scattered 3D PTV data,” Exp. Fluids 30, 492–499 (2001).
[CrossRef]

W. Yang, H. Meng, J. Sheng, “Dynamics of hairpin vortices generated by a mixing tab in a channel flow,” Exp. Fluids 30, 705–722 (2001).
[CrossRef]

Y. Pu, H. Meng, “An advanced off-axis holographic particle image velocimetry (HPIV) system,” Exp. Fluids 29, 184–197 (2000).
[CrossRef]

J. Zhang, B. Tao, J. Katz, “Turbulent flow measurement in a square duct with hybrid holographic PIV,” Exp. Fluids 23, 373–381 (1997).
[CrossRef]

A. Lozano, J. Kostas, J. Soria, “Use of holography in particle image velocimetry measurements of a swirling flow,” Exp. Fluids 27, 251–261 (1999).
[CrossRef]

R. Konrath, W. Schröder, W. Limberg, “Holographic particle image velocimetry applied to the flow within the cylinder of a four-valve internal combustion engine,” Exp. Fluids 33, 781–793 (2002).
[CrossRef]

C. E. Willert, M. Gharib, “Digital particle image velocimetry,” Exp. Fluids 10, 181–193 (1991).
[CrossRef]

K. Prasad, R. J. Adrian, “Stereoscopic particle image velocimetry applied to liquid flows,” Exp. Fluids 15, 49–60 (1993).
[CrossRef]

Fluid Dyn. Res. (1)

R. Elavarasan, H. Meng, “Flow visualization study of role of coherent structures in a tab wake,” Fluid Dyn. Res. 27, 183–197 (2000).
[CrossRef]

J. Fluid Mech. (1)

S. C. Dong, H. Meng, “Direct numerical simulation of the mixing tab flow,” J. Fluid Mech. 510, 219–242 (2004).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (3)

J. Phys. E (2)

B. J. Thompson, “Holographic particle sizing techniques,” J. Phys. E 7, 781–788 (1974).
[CrossRef]

P. R. Hobson, “Precision coordinate measurements using holographic recording,” J. Phys. E 21, 139–145 (1988).
[CrossRef]

Meas. Sci. Technol. (6)

M. P. Arroyo, C. A. Greated, “Stereoscopic particle velocimetry,” Meas. Sci. Technol. 2, 1181–1186 (1991).
[CrossRef]

S. F. Herrmann, K. D. Hinsch, “Light-in-flight holographic particle image velocimetry for wind-tunnel applications,” Meas. Sci. Technol. 15, 613–621 (2004).
[CrossRef]

K. D. Hinsch, S. F. Hermann, “Holographic particle image velocimetry,” Meas. Sci. Technol. 13, R61–R72 (2002).
[CrossRef]

H. Meng, G. Pan, Y. Pu, S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15, 673–685 (2004).
[CrossRef]

Ch. Bruecker, “3D scanning PIV applied to an air flow in a motored engine using digital high-speed video,” Meas. Sci. Technol. 8, 1480–1492 (1997).
[CrossRef]

J. Westerweel, “Fundamentals of digital particle image velocimetry,” Meas. Sci. Technol. 8, 1379–1392 (1997).
[CrossRef]

Proc. R. Soc. London (1)

J. M. Coupland, N. A. Halliwell, “Holographic displacement measurements in fluid and solid mechanics: immunity to aberrations by optical correlation processing,” Proc. R. Soc. London 453, 1053–1066 (1997).
[CrossRef]

Other (7)

H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1981).

K. Huang, J. Slepicka, S. S. Cha, “Cross-correlation of three-dimensional images for three-dimensional three-component fluid velocity measurements,” in Optical Diagnostics in Fluid and Thermal Flow, S. S. Cha, J. D. Trolinger, eds., Proc. SPIE2005, 655–666 (1993).
[CrossRef]

Y. Pu, D. Andresen, “Distributed processing for cinematic holographic particle image velocimetry,” in Proceedings of Eight IEEE International Symposium on High Performance Distributed Computing. (IEEE Press, 1999), pp. 343–344.
[CrossRef]

H. I. Bjelkhagen, Silver-Halide Recording Materials for Holography and Their Processing (Springer-Verlag, 1995).
[CrossRef]

J. W. Goodman, “Statistical properties of laser speckle patterns,” in Laser Speckle and Related Phenomena, J. C. Dainty, ed. (Springer-Verlag, 1975), pp. 9–75.

R. L. Panton, Incompressible Flow (Wiley, 1996), p. 770.

Y. G. Guezennec, Y. Zhao, T. J. Gieseke, “High-speed 3-D scanning particle image velocimetry (3-D SPIV),” in Selected Papers from the Seventh International Symposium on Applications of Laser Techniques to Fluid Mechanics, R. J. Adrian, D. F. G. Durão, F. Durst, M. V. Heiter, M. Maeda, J. H. Whitelaw, eds. (Springer-Verlag, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Optical configurations for off-axis HPIV. (a) Forward scattering; (b) backward scattering; (c) 90 deg scattering, vertical polarization configuration; (d) 90 deg, horizontal polarization configuration. Ei, illuminating wave; Er, reference wave; H, hologram plane; nH, normal vector of holographic plane; θH, recording angle; αr, reference angle; M, mirror; BS, beam splitter.

Fig. 2
Fig. 2

Scheme of off-axis holography in the Gemini HPIV system. (a) Recording, (b) reconstruction and data processing. HEM, high-energy mirror; WP, half-wave plate; BS, beam splitter; PBS, polarizing beam splitter; PCI, peripheral component interconnect.

Fig. 3
Fig. 3

Calibration of PRED algorithm through planar distributed particle images generated by simulations of Mie scattering. (a) Spatial distribution of particle centroid extracted by PRED. (b) Statistics of the coordinate errors at various SNRs. Results are averages calculated from ten tests: A total of 500 particle images is generated in each test, and on average 480 particles are extracted by PRED.

Fig. 4
Fig. 4

Benchmark tests of CCC algorithm based on simulated spiral fluid motion consisting of a linear translation T plus a solid-body rotation ω1 in a volume of D×D×D. (a) Probability of successful correlations as a function of rotation angle ω for different levels of translation T. (b) Relative error in correlation results. (c) Probability of paired particles among all particles in one interrogation cell. (d) Percentage of erroneously matched centroids among all paired centroids ω is expressed in radians. T is expressed in percentage of D.

Fig. 5
Fig. 5

Distributed parallel computing cluster in the Gemini HPIV system. (a) Hardware infrastructure. The current system implemented the acquisition node and three processing nodes. (b) Timing of parallel operations. The design goal was to maximize the overlap among the acquisition, communication, and computation.

Fig. 6
Fig. 6

Flow visualization of vortex shedding based on phase-locked video imaging. Shown is the intensity average of 100 images phase locked with the excitation of the flow. These structures would smear out after the averaging if the flow is not phase locked.

Fig. 7
Fig. 7

Optical setup for the HPIV measurement of flow passing a wall-mounted tab. Note that a horizontal polarization configuration is used for optical access.

Fig. 8
Fig. 8

Calibration of particle centroid uncertainty. A total of 2251 particles was extracted. The solid curve is a best-fit normal probability distribution for reference. The overall uncertainty is 46 µm.

Fig. 9
Fig. 9

(Color online) Shown is the 3D vorticity isosurface of the HPIV measured flow at one instant. We cut out a portion of the data volume to show the inner vorticity contour. Threshold for the isosurface is 0.5 ωm.

Fig. 10
Fig. 10

Statistics of residual flow divergence (an indicator of errors in experimental data) compared with statistics of flow vorticity. (a) Probability density functions of divergence and vorticity magnitude normalized by maximum vorticity value ωm. The darker shaded area is P(|∇ · v| > ωT), and the lighter shaded area is P(‖∇ × v‖ > ωT). (b) The relative vorticity error εω(ωT) as a function of ωT.

Fig. 11
Fig. 11

Vortex shedding cycle recorded and reconstructed by holographic PIV. The vortex structures are represented by the vorticity isosurface at ωT = 0.5 ωm.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

I 0 σ N = I 0 / I N 1 + 2 I 0 / I N ,
I 0 I N = π tan 2 Ω λ 2 n s L .
n s L π tan 2 Ω λ 2 [ I 0 I N ] min ,
Re max = ( L η ) 4 / 3 = ( 4 π n s L 3 3 ) 4 / 9 .
ɛ ν = ɛ p 2 + ɛ p 2 / Δ t = 2 ɛ p / Δ t .
x c = i j k I ijk x i j k I ijk , ( i , j , k ) V T ,
Γ i j ( x , y , z ; r ) = exp [ ( x x i + x j ) 2 + ( y y i + y j ) 2 + ( z z i + z j ) 2 2 r 2 ] .
C ( x , y , z ) = i = 1 N j = 1 N Γ i j ( x , y , z ; r ) ,

Metrics