Abstract

A compensation technique for reducing the effect of nonlinear optical frequency swept in an optical frequency-domain reflectometer (OFDR) is proposed. The instantaneous sweep optical frequency of an OFDR laser source is directly obtained by analysis of the interference signal from an auxiliary interferometer with a Hilbert transformation. Beating OFDR data from a main interferometer are regenerated with respect to the measured instantaneous optical frequency. We show that this technique dramatically improves the spatial resolution of a conventional OFDR and can be applied to an optical frequency-domain medical imaging system to eliminate the problem of a nonlinear frequency sweep effect.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Takada, “High-resolution OFDR with incorporated fiberoptic frequency encoder,” Electron. Lett. 4, 1069–1072 (1992).
  2. R. Passy, N. Gisin, J. P. von der Weid, H. H. Gilgen, “Experimental and theoretical investigations of coherent OFDR with semiconductor laser sources,” J. Lightwave Technol. 12, 1622–1630 (1994).
    [CrossRef]
  3. K. Tsuji, K. Shimizu, T. Horiguchi, Y. Koyamada, “Spatial-resolution improvement in long-range coherent optical frequency domain reflectometry by frequency-sweep linearization,” Electron. Lett. 33, 408–410 (1997).
    [CrossRef]
  4. U. Glombitza, E. Brinkmeyer, “Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides,” J. Lightwave Technol. 11, 1377–1384 (1993).
    [CrossRef]
  5. S. H. Yun, G. J. Tearney, J. F. de Boer, N. Iftimia, B. E. Bouma, “High-speed optical frequency-domain imaging,” Opt. Express 11, 2953–2963 (2003).
  6. T.-J. Ahn, S. Moon, Y. Youk, Y. Jung, K. Oh, D. Y. Kim, “Model delay measurement of a few-mode fiber by using an optical frequency domain reflectometer,” in Conference on Lasers and Electro-Optics— Quantum Electronics and Laser Science, OSA Trends in Optics and Photonics Series (Optical Society of America, 2005), paper JthE5.
  7. T.-J. Ahn, S. Moon, Y. Youk, Y. Jung, K. Oh, D. Y. Kim, “New optical frequency domain differential mode delay measurement method for a multimode optical fiber,” Opt. Express 13, 4005–4011 (2005).
    [CrossRef] [PubMed]
  8. J. Y. Lee, “Dispersion measurement apparatus in short length fiber using Fourier transform spectroscopy,” Master’s thesis (Gwangju Institute of Science and Technology, 2002).
  9. R. Bracewell, The Fourier Transform and Its Applications (McGraw-Hill, 1965).

2005

2003

1997

K. Tsuji, K. Shimizu, T. Horiguchi, Y. Koyamada, “Spatial-resolution improvement in long-range coherent optical frequency domain reflectometry by frequency-sweep linearization,” Electron. Lett. 33, 408–410 (1997).
[CrossRef]

1994

R. Passy, N. Gisin, J. P. von der Weid, H. H. Gilgen, “Experimental and theoretical investigations of coherent OFDR with semiconductor laser sources,” J. Lightwave Technol. 12, 1622–1630 (1994).
[CrossRef]

1993

U. Glombitza, E. Brinkmeyer, “Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides,” J. Lightwave Technol. 11, 1377–1384 (1993).
[CrossRef]

1992

K. Takada, “High-resolution OFDR with incorporated fiberoptic frequency encoder,” Electron. Lett. 4, 1069–1072 (1992).

Ahn, T.-J.

T.-J. Ahn, S. Moon, Y. Youk, Y. Jung, K. Oh, D. Y. Kim, “New optical frequency domain differential mode delay measurement method for a multimode optical fiber,” Opt. Express 13, 4005–4011 (2005).
[CrossRef] [PubMed]

T.-J. Ahn, S. Moon, Y. Youk, Y. Jung, K. Oh, D. Y. Kim, “Model delay measurement of a few-mode fiber by using an optical frequency domain reflectometer,” in Conference on Lasers and Electro-Optics— Quantum Electronics and Laser Science, OSA Trends in Optics and Photonics Series (Optical Society of America, 2005), paper JthE5.

Bouma, B. E.

Bracewell, R.

R. Bracewell, The Fourier Transform and Its Applications (McGraw-Hill, 1965).

Brinkmeyer, E.

U. Glombitza, E. Brinkmeyer, “Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides,” J. Lightwave Technol. 11, 1377–1384 (1993).
[CrossRef]

de Boer, J. F.

Gilgen, H. H.

R. Passy, N. Gisin, J. P. von der Weid, H. H. Gilgen, “Experimental and theoretical investigations of coherent OFDR with semiconductor laser sources,” J. Lightwave Technol. 12, 1622–1630 (1994).
[CrossRef]

Gisin, N.

R. Passy, N. Gisin, J. P. von der Weid, H. H. Gilgen, “Experimental and theoretical investigations of coherent OFDR with semiconductor laser sources,” J. Lightwave Technol. 12, 1622–1630 (1994).
[CrossRef]

Glombitza, U.

U. Glombitza, E. Brinkmeyer, “Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides,” J. Lightwave Technol. 11, 1377–1384 (1993).
[CrossRef]

Horiguchi, T.

K. Tsuji, K. Shimizu, T. Horiguchi, Y. Koyamada, “Spatial-resolution improvement in long-range coherent optical frequency domain reflectometry by frequency-sweep linearization,” Electron. Lett. 33, 408–410 (1997).
[CrossRef]

Iftimia, N.

Jung, Y.

T.-J. Ahn, S. Moon, Y. Youk, Y. Jung, K. Oh, D. Y. Kim, “New optical frequency domain differential mode delay measurement method for a multimode optical fiber,” Opt. Express 13, 4005–4011 (2005).
[CrossRef] [PubMed]

T.-J. Ahn, S. Moon, Y. Youk, Y. Jung, K. Oh, D. Y. Kim, “Model delay measurement of a few-mode fiber by using an optical frequency domain reflectometer,” in Conference on Lasers and Electro-Optics— Quantum Electronics and Laser Science, OSA Trends in Optics and Photonics Series (Optical Society of America, 2005), paper JthE5.

Kim, D. Y.

T.-J. Ahn, S. Moon, Y. Youk, Y. Jung, K. Oh, D. Y. Kim, “New optical frequency domain differential mode delay measurement method for a multimode optical fiber,” Opt. Express 13, 4005–4011 (2005).
[CrossRef] [PubMed]

T.-J. Ahn, S. Moon, Y. Youk, Y. Jung, K. Oh, D. Y. Kim, “Model delay measurement of a few-mode fiber by using an optical frequency domain reflectometer,” in Conference on Lasers and Electro-Optics— Quantum Electronics and Laser Science, OSA Trends in Optics and Photonics Series (Optical Society of America, 2005), paper JthE5.

Koyamada, Y.

K. Tsuji, K. Shimizu, T. Horiguchi, Y. Koyamada, “Spatial-resolution improvement in long-range coherent optical frequency domain reflectometry by frequency-sweep linearization,” Electron. Lett. 33, 408–410 (1997).
[CrossRef]

Lee, J. Y.

J. Y. Lee, “Dispersion measurement apparatus in short length fiber using Fourier transform spectroscopy,” Master’s thesis (Gwangju Institute of Science and Technology, 2002).

Moon, S.

T.-J. Ahn, S. Moon, Y. Youk, Y. Jung, K. Oh, D. Y. Kim, “New optical frequency domain differential mode delay measurement method for a multimode optical fiber,” Opt. Express 13, 4005–4011 (2005).
[CrossRef] [PubMed]

T.-J. Ahn, S. Moon, Y. Youk, Y. Jung, K. Oh, D. Y. Kim, “Model delay measurement of a few-mode fiber by using an optical frequency domain reflectometer,” in Conference on Lasers and Electro-Optics— Quantum Electronics and Laser Science, OSA Trends in Optics and Photonics Series (Optical Society of America, 2005), paper JthE5.

Oh, K.

T.-J. Ahn, S. Moon, Y. Youk, Y. Jung, K. Oh, D. Y. Kim, “New optical frequency domain differential mode delay measurement method for a multimode optical fiber,” Opt. Express 13, 4005–4011 (2005).
[CrossRef] [PubMed]

T.-J. Ahn, S. Moon, Y. Youk, Y. Jung, K. Oh, D. Y. Kim, “Model delay measurement of a few-mode fiber by using an optical frequency domain reflectometer,” in Conference on Lasers and Electro-Optics— Quantum Electronics and Laser Science, OSA Trends in Optics and Photonics Series (Optical Society of America, 2005), paper JthE5.

Passy, R.

R. Passy, N. Gisin, J. P. von der Weid, H. H. Gilgen, “Experimental and theoretical investigations of coherent OFDR with semiconductor laser sources,” J. Lightwave Technol. 12, 1622–1630 (1994).
[CrossRef]

Shimizu, K.

K. Tsuji, K. Shimizu, T. Horiguchi, Y. Koyamada, “Spatial-resolution improvement in long-range coherent optical frequency domain reflectometry by frequency-sweep linearization,” Electron. Lett. 33, 408–410 (1997).
[CrossRef]

Takada, K.

K. Takada, “High-resolution OFDR with incorporated fiberoptic frequency encoder,” Electron. Lett. 4, 1069–1072 (1992).

Tearney, G. J.

Tsuji, K.

K. Tsuji, K. Shimizu, T. Horiguchi, Y. Koyamada, “Spatial-resolution improvement in long-range coherent optical frequency domain reflectometry by frequency-sweep linearization,” Electron. Lett. 33, 408–410 (1997).
[CrossRef]

von der Weid, J. P.

R. Passy, N. Gisin, J. P. von der Weid, H. H. Gilgen, “Experimental and theoretical investigations of coherent OFDR with semiconductor laser sources,” J. Lightwave Technol. 12, 1622–1630 (1994).
[CrossRef]

Youk, Y.

T.-J. Ahn, S. Moon, Y. Youk, Y. Jung, K. Oh, D. Y. Kim, “New optical frequency domain differential mode delay measurement method for a multimode optical fiber,” Opt. Express 13, 4005–4011 (2005).
[CrossRef] [PubMed]

T.-J. Ahn, S. Moon, Y. Youk, Y. Jung, K. Oh, D. Y. Kim, “Model delay measurement of a few-mode fiber by using an optical frequency domain reflectometer,” in Conference on Lasers and Electro-Optics— Quantum Electronics and Laser Science, OSA Trends in Optics and Photonics Series (Optical Society of America, 2005), paper JthE5.

Yun, S. H.

Electron. Lett.

K. Tsuji, K. Shimizu, T. Horiguchi, Y. Koyamada, “Spatial-resolution improvement in long-range coherent optical frequency domain reflectometry by frequency-sweep linearization,” Electron. Lett. 33, 408–410 (1997).
[CrossRef]

K. Takada, “High-resolution OFDR with incorporated fiberoptic frequency encoder,” Electron. Lett. 4, 1069–1072 (1992).

J. Lightwave Technol.

R. Passy, N. Gisin, J. P. von der Weid, H. H. Gilgen, “Experimental and theoretical investigations of coherent OFDR with semiconductor laser sources,” J. Lightwave Technol. 12, 1622–1630 (1994).
[CrossRef]

U. Glombitza, E. Brinkmeyer, “Coherent frequency-domain reflectometry for characterization of single-mode integrated-optical waveguides,” J. Lightwave Technol. 11, 1377–1384 (1993).
[CrossRef]

Opt. Express

Other

J. Y. Lee, “Dispersion measurement apparatus in short length fiber using Fourier transform spectroscopy,” Master’s thesis (Gwangju Institute of Science and Technology, 2002).

R. Bracewell, The Fourier Transform and Its Applications (McGraw-Hill, 1965).

T.-J. Ahn, S. Moon, Y. Youk, Y. Jung, K. Oh, D. Y. Kim, “Model delay measurement of a few-mode fiber by using an optical frequency domain reflectometer,” in Conference on Lasers and Electro-Optics— Quantum Electronics and Laser Science, OSA Trends in Optics and Photonics Series (Optical Society of America, 2005), paper JthE5.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Fundamental configuration for an OFDR system to compensate for a nonlinear frequency sweep of a light source with a tuning rate of 62.5 GHz/s at the center wavelength of 1550 nm. D1, D2, detectors; PC, polarization controller. Other acronyms defined in the text.

Fig. 2
Fig. 2

Schematic diagram of manipulation of a signal from an auxiliary interferometer in the HTCM for the nonlinear swept-frequency measurement of a tunable laser: (a) Original signal waveform, (b) Hilbert-transformed waveform of the signal (dashed curve), (c) estimated time-varying phase of the signal, and (d) estimated time-varying optical swept-frequency change.

Fig. 3
Fig. 3

Time-varying phase of a beating signal from an auxiliary interferometer and the measured time-varying frequency change of a commercial TLS. A frequency tuning rate of the TLS, which is the differential of the swept frequency, is also shown in the inset.

Fig. 4
Fig. 4

Beating spectra in OFDR measurements: A, without and B, with the linearization of the sweep frequency of a commercial TLS used in the OFDR, whose frequency tuning rate was 62.5 GHz/s.

Fig. 5
Fig. 5

Beating spectra in OFDR measurements: A, without and B, with the linearization of the sweep frequency of a DFB-LD used in the OFDR, whose frequency tuning rate was 243 GHz/s.

Fig. 6
Fig. 6

Time-varying phase of a beating signal from an auxiliary interferometer and the time-varying frequency change of a DFB-LD.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

υ ( t ) = ( 1 / 2 π ) d φ ( t ) / d t
y ( t ) = y 0 sin [ φ ( t ) φ ( t τ ) + ξ 0 ] ,
y ( t ) = y 0 sin [ 2 π τ υ ( t ) + ξ 0 ] .
γ ( t ) = d υ ( t ) / d t .
H { y ( t ) } = y 0 cos [ 2 π τ υ ( t ) + ξ 0 ] .
Φ ( t ) = 2 π τ υ ( t ) + ξ 0 = tan 1 [ y ( t ) / H { y ( t ) } ] .
υ ( t ) = 1 2 π τ ( tan 1 [ y ( t ) / H { y ( t ) } ] ξ 0 ) = 1 2 π n c Δ L ( tan 1 [ y ( t ) / H { y ( t ) } ] ξ 0 ) ,
U ( t ) = U 1 sin [ 2 π τ 1 υ ( t ) + ξ 1 ] ,
U i U ( t i ) = U 1 sin [ 2 π τ 1 υ ( t i ) + ξ 1 ] ,

Metrics