Abstract

Stable picosecond soliton transmission is demonstrated numerically by use of concatenated gain-distributed nonlinear amplifying fiber loop mirrors (NALMs). We show that, as compared with previous soliton transmission schemes that use conventional NALMs or nonlinear optical loop mirror and amplifier combinations, the present scheme permits a significant increase of loop-mirror (amplifier) spacing. The broad switching window of the present device and the high-quality pulses switched from it provide a reasonable stability range for soliton transmission. We also show that a soliton self-frequency shift can be suppressed by the gain-dispersion effect in the amplifying fiber loop and that soliton–soliton interactions can be partially reduced by using lowly dispersive transmission fibers.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. (Wiley, 2002), pp. 404–477.
    [CrossRef]
  2. K. J. Blow, N. J. Doran, “Average soliton dynamics and the operation of soliton systems with lumped amplifiers,” IEEE Photon. Technol. Lett. 3, 369–371 (1991).
    [CrossRef]
  3. A. Hasegawa, Y. Kodama, “Guiding-center soliton in optical fibers,” Opt. Lett. 15, 1443–1445 (1990).
    [CrossRef] [PubMed]
  4. M. Nakazawa, K. Suzuki, H. Kubota, E. Yamada, Y. Kimura, “Dynamic optical soliton communication,” IEEE J. Quantum Electron. 26, 2095–2102 (1990).
    [CrossRef]
  5. R. J. Essiambre, G. P. Agrawal, “Solution communication beyond the average-soliton regime,” J. Opt. Soc. Am. B 12, 2420–2425 (1995).
    [CrossRef]
  6. N. J. Smith, N. J. Doran, “Picosecond soliton transmission using concatenated nonlinear optical loop-mirror intensity filters,” J. Opt. Soc. Am. B 12, 1117–1125 (1995).
    [CrossRef]
  7. I. Gabitov, D. D. Holm, B. P. Luce, A. Mattheus, “Recovery of solitons with nonlinear amplifying loop mirrors,” Opt. Lett. 20, 2490–2492 (1995).
    [CrossRef] [PubMed]
  8. I. Gabitov, D. D. Holm, B. P. Luce, “Low-noise picosecond soliton transmission by use of concatenated nonlinear amplifying loop mirrors,” J. Opt. Soc. Am. B 14, 1850–1855 (1997).
    [CrossRef]
  9. Z. M. Liao, C. J. McKinstrie, G. P. Agrawal, “Importance of prechirping in constant-dispersion fiber links with a large amplifier spacing,” J. Opt. Soc. Am. B 17, 514–518 (2000).
    [CrossRef]
  10. Y. Kominis, K. Hizanidis, “Nonlinear mode investigation in optical pulse propagation under periodic amplification and filtering,” J. Opt. Soc. Am. B 20, 545–553 (2003).
    [CrossRef]
  11. W. Cao, P. K. A. Wai, “Comparison of fiber-based Sagnac interferometers for self-switching of optical pulses,” Opt. Commun. 245, 177–186 (2005).
    [CrossRef]
  12. P. K. A. Wai, W. Cao, “Simultaneous amplification and compression of ultrashort solitons in an erbium-doped nonlinear amplifying fiber loop mirror,” IEEE J. Quantum Electron. 39, 555–561 (2003).
    [CrossRef]
  13. G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic, 2001), pp. 151–200.
    [CrossRef]
  14. M. Matsumoto, A. Hasegawa, Y. Kodama, “Adiabatic amplification of solitons by means of nonlinear amplifying loop mirrors,” Opt. Lett. 19, 1019–1021 (1994).
    [CrossRef] [PubMed]
  15. K. Smith, L. F. Mollenauer, “Experimental observation of soliton interaction over long fiber paths: discovery of a long-range interaction,” Opt. Lett. 14, 1284–1286 (1989).
    [CrossRef] [PubMed]
  16. E. M. Dianov, A. V. Luchnikov, A. N. Pilipetskii, A. N. Starodumov, “Electrostriction mechanism of soliton interaction in optical fibers,” Opt. Lett. 15, 314–316 (1990).
    [CrossRef] [PubMed]
  17. J. P. Gordon, “Theory of the soliton self-frequency shift,” Opt. Lett. 11, 662–664 (1986).
    [CrossRef] [PubMed]
  18. K. J. Blow, N. J. Doran, D. Wood, “Suppression of the soliton self-frequency shift by bandwidth-limited amplification,” J. Opt. Soc. Am. B 5, 1301–1304 (1988).
    [CrossRef]

2005

W. Cao, P. K. A. Wai, “Comparison of fiber-based Sagnac interferometers for self-switching of optical pulses,” Opt. Commun. 245, 177–186 (2005).
[CrossRef]

2003

P. K. A. Wai, W. Cao, “Simultaneous amplification and compression of ultrashort solitons in an erbium-doped nonlinear amplifying fiber loop mirror,” IEEE J. Quantum Electron. 39, 555–561 (2003).
[CrossRef]

Y. Kominis, K. Hizanidis, “Nonlinear mode investigation in optical pulse propagation under periodic amplification and filtering,” J. Opt. Soc. Am. B 20, 545–553 (2003).
[CrossRef]

2000

1997

1995

1994

1991

K. J. Blow, N. J. Doran, “Average soliton dynamics and the operation of soliton systems with lumped amplifiers,” IEEE Photon. Technol. Lett. 3, 369–371 (1991).
[CrossRef]

1990

1989

1988

1986

Agrawal, G. P.

Blow, K. J.

K. J. Blow, N. J. Doran, “Average soliton dynamics and the operation of soliton systems with lumped amplifiers,” IEEE Photon. Technol. Lett. 3, 369–371 (1991).
[CrossRef]

K. J. Blow, N. J. Doran, D. Wood, “Suppression of the soliton self-frequency shift by bandwidth-limited amplification,” J. Opt. Soc. Am. B 5, 1301–1304 (1988).
[CrossRef]

Cao, W.

W. Cao, P. K. A. Wai, “Comparison of fiber-based Sagnac interferometers for self-switching of optical pulses,” Opt. Commun. 245, 177–186 (2005).
[CrossRef]

P. K. A. Wai, W. Cao, “Simultaneous amplification and compression of ultrashort solitons in an erbium-doped nonlinear amplifying fiber loop mirror,” IEEE J. Quantum Electron. 39, 555–561 (2003).
[CrossRef]

Dianov, E. M.

Doran, N. J.

Essiambre, R. J.

Gabitov, I.

Gordon, J. P.

Hasegawa, A.

Hizanidis, K.

Holm, D. D.

Kimura, Y.

M. Nakazawa, K. Suzuki, H. Kubota, E. Yamada, Y. Kimura, “Dynamic optical soliton communication,” IEEE J. Quantum Electron. 26, 2095–2102 (1990).
[CrossRef]

Kodama, Y.

Kominis, Y.

Kubota, H.

M. Nakazawa, K. Suzuki, H. Kubota, E. Yamada, Y. Kimura, “Dynamic optical soliton communication,” IEEE J. Quantum Electron. 26, 2095–2102 (1990).
[CrossRef]

Liao, Z. M.

Luce, B. P.

Luchnikov, A. V.

Matsumoto, M.

Mattheus, A.

McKinstrie, C. J.

Mollenauer, L. F.

Nakazawa, M.

M. Nakazawa, K. Suzuki, H. Kubota, E. Yamada, Y. Kimura, “Dynamic optical soliton communication,” IEEE J. Quantum Electron. 26, 2095–2102 (1990).
[CrossRef]

Pilipetskii, A. N.

Smith, K.

Smith, N. J.

Starodumov, A. N.

Suzuki, K.

M. Nakazawa, K. Suzuki, H. Kubota, E. Yamada, Y. Kimura, “Dynamic optical soliton communication,” IEEE J. Quantum Electron. 26, 2095–2102 (1990).
[CrossRef]

Wai, P. K. A.

W. Cao, P. K. A. Wai, “Comparison of fiber-based Sagnac interferometers for self-switching of optical pulses,” Opt. Commun. 245, 177–186 (2005).
[CrossRef]

P. K. A. Wai, W. Cao, “Simultaneous amplification and compression of ultrashort solitons in an erbium-doped nonlinear amplifying fiber loop mirror,” IEEE J. Quantum Electron. 39, 555–561 (2003).
[CrossRef]

Wood, D.

Yamada, E.

M. Nakazawa, K. Suzuki, H. Kubota, E. Yamada, Y. Kimura, “Dynamic optical soliton communication,” IEEE J. Quantum Electron. 26, 2095–2102 (1990).
[CrossRef]

IEEE J. Quantum Electron.

M. Nakazawa, K. Suzuki, H. Kubota, E. Yamada, Y. Kimura, “Dynamic optical soliton communication,” IEEE J. Quantum Electron. 26, 2095–2102 (1990).
[CrossRef]

P. K. A. Wai, W. Cao, “Simultaneous amplification and compression of ultrashort solitons in an erbium-doped nonlinear amplifying fiber loop mirror,” IEEE J. Quantum Electron. 39, 555–561 (2003).
[CrossRef]

IEEE Photon. Technol. Lett.

K. J. Blow, N. J. Doran, “Average soliton dynamics and the operation of soliton systems with lumped amplifiers,” IEEE Photon. Technol. Lett. 3, 369–371 (1991).
[CrossRef]

J. Opt. Soc. Am. B

Opt. Commun.

W. Cao, P. K. A. Wai, “Comparison of fiber-based Sagnac interferometers for self-switching of optical pulses,” Opt. Commun. 245, 177–186 (2005).
[CrossRef]

Opt. Lett.

Other

G. P. Agrawal, Applications of Nonlinear Fiber Optics (Academic, 2001), pp. 151–200.
[CrossRef]

G. P. Agrawal, Fiber-Optic Communication Systems, 3rd ed. (Wiley, 2002), pp. 404–477.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Switching characteristics of a conventional NALM: (a), (c) with a lumped gain of 5 dB; (b), (d) with a lumped gain of 10 dB, where ΔνΔτ is the time–bandwidth product of the transmitted pulse.

Fig. 2
Fig. 2

Switching characteristics of a NOLM and amplifier combination: (a), (c) the coupler has a power-splitting ratio of 56:44; (b), (d) the coupler has a power-splitting ratio of 60:40. In each case, a lumped gain of 10 dB is placed at the input port (outside the NOLM), where ΔνΔτ is the time–bandwidth product of the transmitted pulse.

Fig. 3
Fig. 3

Switching characteristics of a gain-distributed NALM with a gain of 10 dB: (a), (c) the coupler has a power-splitting ratio of 54:46; (b), (d) the coupler has a power-splitting ratio of 56:44, where ΔνΔτ is the time–bandwidth product of the transmitted pulse.

Fig. 4
Fig. 4

Schematic diagram of the soliton transmission line.

Fig. 5
Fig. 5

Pulse shape and spectral evolution through a transmission fiber link with concatenated gain-distributed NALMs, where (a) and (c) are measured at the inputs of the NALMs and (b) and (d) are measured at the outputs of the NALMs.

Fig. 6
Fig. 6

Evolution of the normalized peak intensity and normalized width of pulses switched from (a) the conventional NALM, (b) the NOLM and amplifier combination, and (c) the gain-distributed NALM.

Fig. 7
Fig. 7

Interaction of two in-phase solitons initially separated by 30 ps: (a) β2 = −20 ps2/km, (b) β2 = −10 ps2/km.

Fig. 8
Fig. 8

Spectra evolution under conditions identical to those used for Fig. 5 except that the RSS effect is considered, where (a) and (b) show the pulse spectra measured, respectively, at the input and output of each NALM.

Fig. 9
Fig. 9

Soliton spectra measured at the output of each NALM when (a) only the RSS effect is considered and (b) both the RSS effect and the gain-dispersion effect are considered. In both cases, the NALM has a distributed gain of 7.1 dB and the loop length is 2.526 km.

Fig. 10
Fig. 10

Pulse width evolution under conditions identical to those of Fig. 9(b) except that the peak power of the input pulse to the first NALM is varied for (a) 487.4 mW and (b) 569.4 mW.

Fig. 11
Fig. 11

Pulse width evolution under conditions identical to those of Fig. 9(b) except that the input pulse width to the first NALM is varied for (a) 4.71 ps and (b) 5.35 ps.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

i u ξ + 1 2 ( 1 i d ) 2 u τ 2 + | u | 2 u = i 2 μ u + i δ 3 u τ 3 + τ R u + | u | 2 τ ,
ξ = z L D = z | β 2 | T 0 2 , τ = t z / υ g T 0 , d = g 0 L D T 2 2 T 0 2 ,
μ = ( g 0 α ) L D , δ = β 3 6 | β 2 | T 0 , τ R = T R T 0 ,
u ( 0 , τ ) = A sech ( τ ) ,
A 2 = γ P 0 T 0 2 | β 2 | .
Pedestal energy ( % ) = | E total E sech | E total × 100 % .
E sech = 2 P peak T FWHM 1.763 .

Metrics