Abstract

The spectra recorded by a dispersion spectrophotometer are usually distorted by the response function of the instrument. To improve the resolving power, double or triple cascade spectrophotometers with narrow slits have been employed, but the total flux of the radiation available decreases accordingly, resulting in a low signal-to-noise ratio and a longer measuring time. The actual spectra can be restored approximately by mathematically removing the effects of the measuring instruments. Based on the Shalvi–Weinstein criterion, a (6, 2)-order normalized cumulant-based blind deconvolution algorithm for Raman spectral data is proposed. The actual spectral data and the unit-impulse response of the measuring instruments can be estimated simultaneously. By conducting experiments on real Raman spectra of some organic compounds, it is shown that this algorithm has a robust performance and fast convergence behavior and can improve the resolving power and correct the relative intensity distortion considerably.

© 2005 Optical Society of America

Full Article  |  PDF Article
Related Articles
Algebraic analysis of the Van Cittert iterative method of deconvolution with a general relaxation factor

Chengqi Xu, Idriss Aissaoui, and Serge Jacquey
J. Opt. Soc. Am. A 11(11) 2804-2808 (1994)

Deconvolution by derivative operation

J. Y. Dong
J. Opt. Soc. Am. B 5(12) 2548-2551 (1988)

Estimation of spectral slit width and blind deconvolution of spectroscopic data by homomorphic filtering

Yasuhiro Senga, Keiichiroh Minami, Satoshi Kawata, and Shigeo Minami
Appl. Opt. 23(10) 1601-1608 (1984)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (3)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (21)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription