Abstract

We evaluate the use of edge-illuminated holographic Bragg filters formed in phenanthrenequinone-doped poly(methyl methacrylate) for optical-code-division multiple-access (OCDMA) coding and decoding applications. Experimental cascaded Bragg filters are formed to select two different wavelengths with a fixed distance between the gratings and are directly coupled to a fiber-measurement system. The configuration and tolerances of the cascaded gratings are shown to be practical for time–wavelength OCDMA applications.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Sato, M. Scepanovic, R. K. Kostuk, “Holographic edge-illuminated polymer Bragg gratings for dense wavelength division optical filters at 1550 nm,” Appl. Opt. 42, 778–784 (2003).
    [CrossRef] [PubMed]
  2. A. Sato, R. K. Kostuk, “Holographic gratings for dense wavelength division optical filters at 1550 nm using phenanthrenquinone doped poly methyl methacrylate,” in Proc. SPIE 5216, 44–52 (2003).
    [CrossRef]
  3. O. Beyer, I. Nee, F. Havermeyer, K. Buse, “Holographic recording of Bragg gratings for wavelength division multiplexing in doped and partially polymerized poly(methyl methacrylate),” Appl. Opt. 42, 30–37 (2003).
    [CrossRef] [PubMed]
  4. S. Yeralan, J. Gunther, D. Ritums, R. Cid, M. Popovich, “Switchable Bragg grating devices for telecommunications applications,” Opt. Eng. 41, 1774–1779 (2002).
    [CrossRef]
  5. T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, R. L. Sutherland, “Holographic polymer dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30, 83–115 (2000).
    [CrossRef]
  6. T. W. Mossberg, M. G. Raymer, “Optical code-division multiplexing: The intelligent optical solution,” Opt. Photon. News 12(3), 50–54 (2001).
    [CrossRef]
  7. J. Shah, “Optical CDMA,” Opt. Photon. News 14(4), 42–47 (2003).
    [CrossRef]
  8. G. J. Steckman, I. Solomatine, G. Zhou, D. Psaltis, “Characterization of phenanthrenequinone-doped poly(methyl methacrylate) for holographic memory,” Opt. Lett. 23, 1310–1312 (1998).
    [CrossRef]
  9. K. Y. Hsu, S. H. Lin, Y.-N. Hsiao, W. T. Whang, “Experimental characterization of phenanthrenequinone doped poly-(methyl methacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42, 1390–1396 (2003).
    [CrossRef]
  10. L. Eldada, L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6, 54–68 (2000).
    [CrossRef]
  11. S. La Rochelle, P.-Y. Cortes, H. Fathallah, L. A. Rusch, H. B. Jaafar, “Writing and applications of fiber Bragg grating arrays,” in Proc. SPIE 4087, 140–149 (2000).
    [CrossRef]
  12. A. Grunnet-Jepsen, A. E. Johnson, E. S. Maniloff, T. W. Mossberg, M. J. Munroe, J. N. Sweetser, “Fiber Bragg grating based spectral encoder/decoder for lightwave CDMA,” Electron. Lett. 35, 1096–1097 (1999).
    [CrossRef]
  13. G.-C. Yang, W. C. Kwong, Prime Codes with Applications to CDMA Optical and Wireless Networks (Artech House, 2002).
  14. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2946 (1969).
    [CrossRef]
  15. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
    [CrossRef]
  16. R. P. Braun, “Cost effective metro networks,” in the 16th Annual Meeting of the Lasers and Electro-Optics Society (IEEE, 2003), paper WQ1, pp. 610–611.
  17. J. T. Verdeyen, Laser Electronics, 3rd ed. (Prentice-Hall, 1995), pp. 63–85.

2003

J. Shah, “Optical CDMA,” Opt. Photon. News 14(4), 42–47 (2003).
[CrossRef]

K. Y. Hsu, S. H. Lin, Y.-N. Hsiao, W. T. Whang, “Experimental characterization of phenanthrenequinone doped poly-(methyl methacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42, 1390–1396 (2003).
[CrossRef]

A. Sato, R. K. Kostuk, “Holographic gratings for dense wavelength division optical filters at 1550 nm using phenanthrenquinone doped poly methyl methacrylate,” in Proc. SPIE 5216, 44–52 (2003).
[CrossRef]

O. Beyer, I. Nee, F. Havermeyer, K. Buse, “Holographic recording of Bragg gratings for wavelength division multiplexing in doped and partially polymerized poly(methyl methacrylate),” Appl. Opt. 42, 30–37 (2003).
[CrossRef] [PubMed]

A. Sato, M. Scepanovic, R. K. Kostuk, “Holographic edge-illuminated polymer Bragg gratings for dense wavelength division optical filters at 1550 nm,” Appl. Opt. 42, 778–784 (2003).
[CrossRef] [PubMed]

2002

S. Yeralan, J. Gunther, D. Ritums, R. Cid, M. Popovich, “Switchable Bragg grating devices for telecommunications applications,” Opt. Eng. 41, 1774–1779 (2002).
[CrossRef]

2001

T. W. Mossberg, M. G. Raymer, “Optical code-division multiplexing: The intelligent optical solution,” Opt. Photon. News 12(3), 50–54 (2001).
[CrossRef]

2000

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, R. L. Sutherland, “Holographic polymer dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30, 83–115 (2000).
[CrossRef]

L. Eldada, L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6, 54–68 (2000).
[CrossRef]

S. La Rochelle, P.-Y. Cortes, H. Fathallah, L. A. Rusch, H. B. Jaafar, “Writing and applications of fiber Bragg grating arrays,” in Proc. SPIE 4087, 140–149 (2000).
[CrossRef]

1999

A. Grunnet-Jepsen, A. E. Johnson, E. S. Maniloff, T. W. Mossberg, M. J. Munroe, J. N. Sweetser, “Fiber Bragg grating based spectral encoder/decoder for lightwave CDMA,” Electron. Lett. 35, 1096–1097 (1999).
[CrossRef]

1998

1997

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
[CrossRef]

1969

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2946 (1969).
[CrossRef]

Beyer, O.

Braun, R. P.

R. P. Braun, “Cost effective metro networks,” in the 16th Annual Meeting of the Lasers and Electro-Optics Society (IEEE, 2003), paper WQ1, pp. 610–611.

Bunning, T. J.

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, R. L. Sutherland, “Holographic polymer dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30, 83–115 (2000).
[CrossRef]

Buse, K.

Cid, R.

S. Yeralan, J. Gunther, D. Ritums, R. Cid, M. Popovich, “Switchable Bragg grating devices for telecommunications applications,” Opt. Eng. 41, 1774–1779 (2002).
[CrossRef]

Cortes, P.-Y.

S. La Rochelle, P.-Y. Cortes, H. Fathallah, L. A. Rusch, H. B. Jaafar, “Writing and applications of fiber Bragg grating arrays,” in Proc. SPIE 4087, 140–149 (2000).
[CrossRef]

Eldada, L.

L. Eldada, L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6, 54–68 (2000).
[CrossRef]

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
[CrossRef]

Fathallah, H.

S. La Rochelle, P.-Y. Cortes, H. Fathallah, L. A. Rusch, H. B. Jaafar, “Writing and applications of fiber Bragg grating arrays,” in Proc. SPIE 4087, 140–149 (2000).
[CrossRef]

Grunnet-Jepsen, A.

A. Grunnet-Jepsen, A. E. Johnson, E. S. Maniloff, T. W. Mossberg, M. J. Munroe, J. N. Sweetser, “Fiber Bragg grating based spectral encoder/decoder for lightwave CDMA,” Electron. Lett. 35, 1096–1097 (1999).
[CrossRef]

Gunther, J.

S. Yeralan, J. Gunther, D. Ritums, R. Cid, M. Popovich, “Switchable Bragg grating devices for telecommunications applications,” Opt. Eng. 41, 1774–1779 (2002).
[CrossRef]

Havermeyer, F.

Hsiao, Y.-N.

K. Y. Hsu, S. H. Lin, Y.-N. Hsiao, W. T. Whang, “Experimental characterization of phenanthrenequinone doped poly-(methyl methacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42, 1390–1396 (2003).
[CrossRef]

Hsu, K. Y.

K. Y. Hsu, S. H. Lin, Y.-N. Hsiao, W. T. Whang, “Experimental characterization of phenanthrenequinone doped poly-(methyl methacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42, 1390–1396 (2003).
[CrossRef]

Jaafar, H. B.

S. La Rochelle, P.-Y. Cortes, H. Fathallah, L. A. Rusch, H. B. Jaafar, “Writing and applications of fiber Bragg grating arrays,” in Proc. SPIE 4087, 140–149 (2000).
[CrossRef]

Johnson, A. E.

A. Grunnet-Jepsen, A. E. Johnson, E. S. Maniloff, T. W. Mossberg, M. J. Munroe, J. N. Sweetser, “Fiber Bragg grating based spectral encoder/decoder for lightwave CDMA,” Electron. Lett. 35, 1096–1097 (1999).
[CrossRef]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2946 (1969).
[CrossRef]

Kostuk, R. K.

A. Sato, R. K. Kostuk, “Holographic gratings for dense wavelength division optical filters at 1550 nm using phenanthrenquinone doped poly methyl methacrylate,” in Proc. SPIE 5216, 44–52 (2003).
[CrossRef]

A. Sato, M. Scepanovic, R. K. Kostuk, “Holographic edge-illuminated polymer Bragg gratings for dense wavelength division optical filters at 1550 nm,” Appl. Opt. 42, 778–784 (2003).
[CrossRef] [PubMed]

Kwong, W. C.

G.-C. Yang, W. C. Kwong, Prime Codes with Applications to CDMA Optical and Wireless Networks (Artech House, 2002).

La Rochelle, S.

S. La Rochelle, P.-Y. Cortes, H. Fathallah, L. A. Rusch, H. B. Jaafar, “Writing and applications of fiber Bragg grating arrays,” in Proc. SPIE 4087, 140–149 (2000).
[CrossRef]

Lin, S. H.

K. Y. Hsu, S. H. Lin, Y.-N. Hsiao, W. T. Whang, “Experimental characterization of phenanthrenequinone doped poly-(methyl methacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42, 1390–1396 (2003).
[CrossRef]

Maniloff, E. S.

A. Grunnet-Jepsen, A. E. Johnson, E. S. Maniloff, T. W. Mossberg, M. J. Munroe, J. N. Sweetser, “Fiber Bragg grating based spectral encoder/decoder for lightwave CDMA,” Electron. Lett. 35, 1096–1097 (1999).
[CrossRef]

Mossberg, T. W.

T. W. Mossberg, M. G. Raymer, “Optical code-division multiplexing: The intelligent optical solution,” Opt. Photon. News 12(3), 50–54 (2001).
[CrossRef]

A. Grunnet-Jepsen, A. E. Johnson, E. S. Maniloff, T. W. Mossberg, M. J. Munroe, J. N. Sweetser, “Fiber Bragg grating based spectral encoder/decoder for lightwave CDMA,” Electron. Lett. 35, 1096–1097 (1999).
[CrossRef]

Munroe, M. J.

A. Grunnet-Jepsen, A. E. Johnson, E. S. Maniloff, T. W. Mossberg, M. J. Munroe, J. N. Sweetser, “Fiber Bragg grating based spectral encoder/decoder for lightwave CDMA,” Electron. Lett. 35, 1096–1097 (1999).
[CrossRef]

Natarajan, L. V.

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, R. L. Sutherland, “Holographic polymer dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30, 83–115 (2000).
[CrossRef]

Nee, I.

Popovich, M.

S. Yeralan, J. Gunther, D. Ritums, R. Cid, M. Popovich, “Switchable Bragg grating devices for telecommunications applications,” Opt. Eng. 41, 1774–1779 (2002).
[CrossRef]

Psaltis, D.

Raymer, M. G.

T. W. Mossberg, M. G. Raymer, “Optical code-division multiplexing: The intelligent optical solution,” Opt. Photon. News 12(3), 50–54 (2001).
[CrossRef]

Ritums, D.

S. Yeralan, J. Gunther, D. Ritums, R. Cid, M. Popovich, “Switchable Bragg grating devices for telecommunications applications,” Opt. Eng. 41, 1774–1779 (2002).
[CrossRef]

Rusch, L. A.

S. La Rochelle, P.-Y. Cortes, H. Fathallah, L. A. Rusch, H. B. Jaafar, “Writing and applications of fiber Bragg grating arrays,” in Proc. SPIE 4087, 140–149 (2000).
[CrossRef]

Sato, A.

A. Sato, R. K. Kostuk, “Holographic gratings for dense wavelength division optical filters at 1550 nm using phenanthrenquinone doped poly methyl methacrylate,” in Proc. SPIE 5216, 44–52 (2003).
[CrossRef]

A. Sato, M. Scepanovic, R. K. Kostuk, “Holographic edge-illuminated polymer Bragg gratings for dense wavelength division optical filters at 1550 nm,” Appl. Opt. 42, 778–784 (2003).
[CrossRef] [PubMed]

Scepanovic, M.

Shacklette, L. W.

L. Eldada, L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6, 54–68 (2000).
[CrossRef]

Shah, J.

J. Shah, “Optical CDMA,” Opt. Photon. News 14(4), 42–47 (2003).
[CrossRef]

Solomatine, I.

Steckman, G. J.

Sutherland, R. L.

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, R. L. Sutherland, “Holographic polymer dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30, 83–115 (2000).
[CrossRef]

Sweetser, J. N.

A. Grunnet-Jepsen, A. E. Johnson, E. S. Maniloff, T. W. Mossberg, M. J. Munroe, J. N. Sweetser, “Fiber Bragg grating based spectral encoder/decoder for lightwave CDMA,” Electron. Lett. 35, 1096–1097 (1999).
[CrossRef]

Tondiglia, V. P.

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, R. L. Sutherland, “Holographic polymer dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30, 83–115 (2000).
[CrossRef]

Verdeyen, J. T.

J. T. Verdeyen, Laser Electronics, 3rd ed. (Prentice-Hall, 1995), pp. 63–85.

Whang, W. T.

K. Y. Hsu, S. H. Lin, Y.-N. Hsiao, W. T. Whang, “Experimental characterization of phenanthrenequinone doped poly-(methyl methacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42, 1390–1396 (2003).
[CrossRef]

Yang, G.-C.

G.-C. Yang, W. C. Kwong, Prime Codes with Applications to CDMA Optical and Wireless Networks (Artech House, 2002).

Yeralan, S.

S. Yeralan, J. Gunther, D. Ritums, R. Cid, M. Popovich, “Switchable Bragg grating devices for telecommunications applications,” Opt. Eng. 41, 1774–1779 (2002).
[CrossRef]

Zhou, G.

Annu. Rev. Mater. Sci.

T. J. Bunning, L. V. Natarajan, V. P. Tondiglia, R. L. Sutherland, “Holographic polymer dispersed liquid crystals (H-PDLCs),” Annu. Rev. Mater. Sci. 30, 83–115 (2000).
[CrossRef]

Appl. Opt.

Bell Syst. Tech. J.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909–2946 (1969).
[CrossRef]

Electron. Lett.

A. Grunnet-Jepsen, A. E. Johnson, E. S. Maniloff, T. W. Mossberg, M. J. Munroe, J. N. Sweetser, “Fiber Bragg grating based spectral encoder/decoder for lightwave CDMA,” Electron. Lett. 35, 1096–1097 (1999).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron.

L. Eldada, L. W. Shacklette, “Advances in polymer integrated optics,” IEEE J. Sel. Top. Quantum Electron. 6, 54–68 (2000).
[CrossRef]

J. Lightwave Technol.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277–1294 (1997).
[CrossRef]

Opt. Eng.

K. Y. Hsu, S. H. Lin, Y.-N. Hsiao, W. T. Whang, “Experimental characterization of phenanthrenequinone doped poly-(methyl methacrylate) photopolymer for volume holographic storage,” Opt. Eng. 42, 1390–1396 (2003).
[CrossRef]

S. Yeralan, J. Gunther, D. Ritums, R. Cid, M. Popovich, “Switchable Bragg grating devices for telecommunications applications,” Opt. Eng. 41, 1774–1779 (2002).
[CrossRef]

Opt. Lett.

Opt. Photon. News

T. W. Mossberg, M. G. Raymer, “Optical code-division multiplexing: The intelligent optical solution,” Opt. Photon. News 12(3), 50–54 (2001).
[CrossRef]

J. Shah, “Optical CDMA,” Opt. Photon. News 14(4), 42–47 (2003).
[CrossRef]

Proc. SPIE

A. Sato, R. K. Kostuk, “Holographic gratings for dense wavelength division optical filters at 1550 nm using phenanthrenquinone doped poly methyl methacrylate,” in Proc. SPIE 5216, 44–52 (2003).
[CrossRef]

S. La Rochelle, P.-Y. Cortes, H. Fathallah, L. A. Rusch, H. B. Jaafar, “Writing and applications of fiber Bragg grating arrays,” in Proc. SPIE 4087, 140–149 (2000).
[CrossRef]

Other

G.-C. Yang, W. C. Kwong, Prime Codes with Applications to CDMA Optical and Wireless Networks (Artech House, 2002).

R. P. Braun, “Cost effective metro networks,” in the 16th Annual Meeting of the Lasers and Electro-Optics Society (IEEE, 2003), paper WQ1, pp. 610–611.

J. T. Verdeyen, Laser Electronics, 3rd ed. (Prentice-Hall, 1995), pp. 63–85.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Asynchronous OCDMA system for encoding and decoding wavelength–time codes. A broadband input signal enters the encoder that consists of grating elements (Gn) separated by distances (dm).

Fig. 2
Fig. 2

Edge-illuminated hologram configuration. The exposing beams are from the side of the material allowing apodized grating profiles and formation by use of a transmission grating configuration. Ei, incident-beam direction; Er, reflected-beam direction; L, grating length in the reflection mode; d, material thickness.

Fig. 3
Fig. 3

Coupling from a fiber into the cascaded grating substrate: f, focal length of the lens; w0, 1/e2 radius of the beam from the fiber; d1, separation between the lens and the substrate; d2, end glass thickness; d3, length of the polymer.

Fig. 4
Fig. 4

Mask layout used for forming the cascaded gratings: L1, L2, lengths of the gratings; λ1, λ2, corresponding filtered wavelengths; d, separation between gratings.

Fig. 5
Fig. 5

System used to measure the reflection characteristics of the cascaded polymer gratings: EIH, edge-illuminated hologram; Δλ, tuning range of the tunable laser in the 1550 nm bandwidth region.

Fig. 6
Fig. 6

Transmittance of one of the cascaded gratings experimentally measured by Detector 1 in the system described in Fig. 5.

Fig. 7
Fig. 7

Measured reflection efficiency for two wavelengths coupled back into a single-mode launch fiber as measured with Detector 2 in Fig. 5.

Fig. 8
Fig. 8

System for measuring the eye diagram with the signal reflected from the cascaded polymer grating: TL, tunable laser; PC, polarization controller; EOM, electro-optic modulator; EDFA, erbium-doped fiber amplifier; SG, signal generator.

Fig. 9
Fig. 9

(a) Eye diagram generated by the reflected signal when the incident wavelength is tuned to the Bragg wavelength of one of the cascaded gratings. (b) Eye diagram generated by the reflected signal when the wavelength is tuned approximately 0.2 nm from the Bragg wavelength for the grating.

Fig. 10
Fig. 10

Signal Q as a function of wavelength determined from the eye diagrams of the signals reflected from one of the polymer gratings and coupled back into a single-mode fiber by use of the system described in Fig. 7.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

Φ N ( N M 1 ) .
N = Δ λ δ λ ,
M = Δ T δ t ,
η = S S * ,
S = j sinh ( ν cosh a ) cosh ( a + ν cosh a ) , ν = π Δ n L λ Bragg , ξ = α L + j ϑ L 2 , a = sinh 1 ( ξ / ν ) .
ϑ = K 2 Δ λ 4 π n ,
Δ λ = λ 2 n L .
θ = sin 1 ( λ 488 2 n 488 Λ ) .
Q = I 1 I 2 σ 1 + σ 2 = 11 ,
BER = 1 2 π exp ( Q 2 / 2 ) = 1.93 × 10 28

Metrics