Abstract

We demonstrate the effect of the spectral shape of broadband light sources in a task-based approach for assessment of signal detection and resolution in optical coherence tomography. We define two binary tasks: The signal is either present or absent and the signal can be either resolved or not. In a transparent sample bounded by two uniform interfaces we study the minimum detectable change in the index of refraction as well as the minimum resolvable distance between the layers in correlation with the source spectral shape and power. Results show that the area under the receiver operating curve (AUC) for a signal-detection task is not affected by the shape of the spectrum but solely by its optical power, whereas spectral shaping has an effect, which we quantify, on the AUC for the resolution task. Moreover, the AUC is demonstrated in relation to the concept of system sensitivity for a signal-detection task.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
    [CrossRef] [PubMed]
  2. J. M. Schmitt, “Restoration of optical coherence images of living tissue using the clean algorithm,” J. Biomed. Opt. 3, 66–75 (1998).
    [CrossRef] [PubMed]
  3. C. Akcay, P. Parrein, J. P. Rolland, “Estimation of longitudinal resolution in optical coherence imaging,” Appl. Opt. 41, 5256–5262 (2002).
    [CrossRef] [PubMed]
  4. A. C. Akcay, J. P. Rolland, J. M. Eichenholz, “Spectral shaping to improve the point-spread function in optical coherence tomography,” Opt. Lett. 28, 1921–1923 (2003).
    [CrossRef] [PubMed]
  5. J. Rolland, J. O’Daniel, C. Akcay, T. Delemos, K. S. Lee, K. Cheong, E. Clarkson, R. Chakrabarti, R. Ferris, “Task-based optimization and performance assessment in optical coherence imaging,” J. Opt. Soc. Am. A 22, 1132–1142 (2005).
    [CrossRef]
  6. H. H. Barrett, C. K. Abbey, E. Clarkson, “Objective assessment of image quality. III. ROC metrics, ideal observers, and likelihood-generating functions,” J. Opt. Soc. Am. A 15, 1520–1535 (1998).
    [CrossRef]
  7. H. H. Barrett, “Objective assessment of image quality: effects of quantum noise and object variability,” J. Opt. Soc. Am. A 7, 1266–1278 (1990).
    [CrossRef] [PubMed]
  8. H. H. Barrett, K. J. Myers, Foundations of Image Science, B. E. A. Saleh, ed., Wiley Series on Pure and Applied Optics (Wiley, 2004), pp. 801–911.
  9. R. D. Fiete, H. H. Barrett, W. E. Smith, K. J. Myers, “Hotelling trace criterion and its correlation with human-observer performance,” J. Opt. Soc. Am. A 4, 945–953 (1987).
    [CrossRef] [PubMed]
  10. S. D. Wollenweber, B. M. W. Tsui, D. S. Lalush, E. C. Frey, K. J. LaCroix, G. T. Gullberg, “Comparison of Hotelling observer models and human observers in defect detection from myocardial SPECT imaging,” IEEE Trans. Nucl. Sci. 46, 2098–2103 (1999).
    [CrossRef]
  11. A. G. Podoleanu, “Unbalanced versus balanced operation in an optical coherence tomography system,” Appl. Opt. 39, 173–182 (2000).
    [CrossRef]
  12. A. M. Rollins, J. A. Izatt, “Optimal interferometer designs for optical coherence tomography,” Opt. Lett. 24, 1484–1486 (1999).
    [CrossRef]
  13. A. M. Rollins, J. A. Izatt, “SNR analysis of conventional and optimal fiber-optic low-coherence interferometer topologies,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications IV, V. V. Tuchin, J. A. Izatt, J. G. Fujimoto, eds., Proc. SPIE3915, 60–67 (2000).
    [CrossRef]
  14. J. W. Goodman, Statistical Optics (Wiley, 2000).
  15. M. Born, E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 2002), pp. 42, 562.

2005

2003

2002

2000

1999

A. M. Rollins, J. A. Izatt, “Optimal interferometer designs for optical coherence tomography,” Opt. Lett. 24, 1484–1486 (1999).
[CrossRef]

S. D. Wollenweber, B. M. W. Tsui, D. S. Lalush, E. C. Frey, K. J. LaCroix, G. T. Gullberg, “Comparison of Hotelling observer models and human observers in defect detection from myocardial SPECT imaging,” IEEE Trans. Nucl. Sci. 46, 2098–2103 (1999).
[CrossRef]

1998

1991

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

1990

1987

Abbey, C. K.

Akcay, A. C.

Akcay, C.

Barrett, H. H.

Born, M.

M. Born, E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 2002), pp. 42, 562.

Chakrabarti, R.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Cheong, K.

Clarkson, E.

Delemos, T.

Eichenholz, J. M.

Ferris, R.

Fiete, R. D.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Frey, E. C.

S. D. Wollenweber, B. M. W. Tsui, D. S. Lalush, E. C. Frey, K. J. LaCroix, G. T. Gullberg, “Comparison of Hotelling observer models and human observers in defect detection from myocardial SPECT imaging,” IEEE Trans. Nucl. Sci. 46, 2098–2103 (1999).
[CrossRef]

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Goodman, J. W.

J. W. Goodman, Statistical Optics (Wiley, 2000).

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Gullberg, G. T.

S. D. Wollenweber, B. M. W. Tsui, D. S. Lalush, E. C. Frey, K. J. LaCroix, G. T. Gullberg, “Comparison of Hotelling observer models and human observers in defect detection from myocardial SPECT imaging,” IEEE Trans. Nucl. Sci. 46, 2098–2103 (1999).
[CrossRef]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Izatt, J. A.

A. M. Rollins, J. A. Izatt, “Optimal interferometer designs for optical coherence tomography,” Opt. Lett. 24, 1484–1486 (1999).
[CrossRef]

A. M. Rollins, J. A. Izatt, “SNR analysis of conventional and optimal fiber-optic low-coherence interferometer topologies,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications IV, V. V. Tuchin, J. A. Izatt, J. G. Fujimoto, eds., Proc. SPIE3915, 60–67 (2000).
[CrossRef]

LaCroix, K. J.

S. D. Wollenweber, B. M. W. Tsui, D. S. Lalush, E. C. Frey, K. J. LaCroix, G. T. Gullberg, “Comparison of Hotelling observer models and human observers in defect detection from myocardial SPECT imaging,” IEEE Trans. Nucl. Sci. 46, 2098–2103 (1999).
[CrossRef]

Lalush, D. S.

S. D. Wollenweber, B. M. W. Tsui, D. S. Lalush, E. C. Frey, K. J. LaCroix, G. T. Gullberg, “Comparison of Hotelling observer models and human observers in defect detection from myocardial SPECT imaging,” IEEE Trans. Nucl. Sci. 46, 2098–2103 (1999).
[CrossRef]

Lee, K. S.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Myers, K. J.

R. D. Fiete, H. H. Barrett, W. E. Smith, K. J. Myers, “Hotelling trace criterion and its correlation with human-observer performance,” J. Opt. Soc. Am. A 4, 945–953 (1987).
[CrossRef] [PubMed]

H. H. Barrett, K. J. Myers, Foundations of Image Science, B. E. A. Saleh, ed., Wiley Series on Pure and Applied Optics (Wiley, 2004), pp. 801–911.

O’Daniel, J.

Parrein, P.

Podoleanu, A. G.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Rolland, J.

Rolland, J. P.

Rollins, A. M.

A. M. Rollins, J. A. Izatt, “Optimal interferometer designs for optical coherence tomography,” Opt. Lett. 24, 1484–1486 (1999).
[CrossRef]

A. M. Rollins, J. A. Izatt, “SNR analysis of conventional and optimal fiber-optic low-coherence interferometer topologies,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications IV, V. V. Tuchin, J. A. Izatt, J. G. Fujimoto, eds., Proc. SPIE3915, 60–67 (2000).
[CrossRef]

Schmitt, J. M.

J. M. Schmitt, “Restoration of optical coherence images of living tissue using the clean algorithm,” J. Biomed. Opt. 3, 66–75 (1998).
[CrossRef] [PubMed]

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Smith, W. E.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Tsui, B. M. W.

S. D. Wollenweber, B. M. W. Tsui, D. S. Lalush, E. C. Frey, K. J. LaCroix, G. T. Gullberg, “Comparison of Hotelling observer models and human observers in defect detection from myocardial SPECT imaging,” IEEE Trans. Nucl. Sci. 46, 2098–2103 (1999).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 2002), pp. 42, 562.

Wollenweber, S. D.

S. D. Wollenweber, B. M. W. Tsui, D. S. Lalush, E. C. Frey, K. J. LaCroix, G. T. Gullberg, “Comparison of Hotelling observer models and human observers in defect detection from myocardial SPECT imaging,” IEEE Trans. Nucl. Sci. 46, 2098–2103 (1999).
[CrossRef]

Appl. Opt.

IEEE Trans. Nucl. Sci.

S. D. Wollenweber, B. M. W. Tsui, D. S. Lalush, E. C. Frey, K. J. LaCroix, G. T. Gullberg, “Comparison of Hotelling observer models and human observers in defect detection from myocardial SPECT imaging,” IEEE Trans. Nucl. Sci. 46, 2098–2103 (1999).
[CrossRef]

J. Biomed. Opt.

J. M. Schmitt, “Restoration of optical coherence images of living tissue using the clean algorithm,” J. Biomed. Opt. 3, 66–75 (1998).
[CrossRef] [PubMed]

J. Opt. Soc. Am. A

Opt. Lett.

Science

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178–1181 (1991).
[CrossRef] [PubMed]

Other

H. H. Barrett, K. J. Myers, Foundations of Image Science, B. E. A. Saleh, ed., Wiley Series on Pure and Applied Optics (Wiley, 2004), pp. 801–911.

A. M. Rollins, J. A. Izatt, “SNR analysis of conventional and optimal fiber-optic low-coherence interferometer topologies,” in Coherence Domain Optical Methods in Biomedical Science and Clinical Applications IV, V. V. Tuchin, J. A. Izatt, J. G. Fujimoto, eds., Proc. SPIE3915, 60–67 (2000).
[CrossRef]

J. W. Goodman, Statistical Optics (Wiley, 2000).

M. Born, E. Wolf, Principles of Optics, 7th ed. (Cambridge U. Press, 2002), pp. 42, 562.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Sample model: n is the refractive index of the sample and Δn is the change of refractive index from sample to substrate.

Fig. 2
Fig. 2

Solid curve, original power spectrum of the ASE source S0; dotted curve, power spectrum after the first shaping operation S1; dashed curve, power spectrum after the second shaping operation S2.

Fig. 3
Fig. 3

(a) Detectability and (b) AUC as a function of change in refractive index at the second interface.

Fig. 4
Fig. 4

(a) Power spectra each normalized to have unit power, (b) AUC as a function of change in refractive index for the power spectra shown in (a).

Fig. 5
Fig. 5

Detectability index as a function of the sample thickness for the ASE source (a) with the power spectrum S0, (b) with the shaped power spectrum S1, and (c) with the shaped power spectrum S2, and the corresponding AUC as a function of the sample thickness for the power spectra (d) S0, (e) S1, and (f) S2.

Equations (18)

Equations on this page are rendered with MathJax. Learn more.

d 2 = X K 1 X ,
X = I 1 I 0 ,
K = 1 2 ( K 1 + K 0 ) ,
K i ( t n , t m ) = I i ( t n ) I i ( t m ) I i ( t n ) I i ( t m ) .
AUC = 1 2 + 1 2 erf ( d 2 2 ) ,
E so ( t ) = exp ( i ω t ) E ̂ so ( ω ) d ω ,
E ( t ) = { α ̂ r ( ω ) exp [ i ϕ r ( ω , t ) + i ω t ] + α ̂ s ( ω ) exp [ i ϕ s ( ω , t ) + i ω t ] } E ̂ so ( ω ) d ω ,
I ( t ) = e Δ t r ( t t ) N ( t ) d t = e Δ t r ( t t ) N ( t ) d t ,
r ( t ) = { 1 , 0 t Δ t 0 , otherwise .
N ( t ) = ρ m * ( ω , t ) m ( ω , t ) exp [ i ( ω ω ) t ] × E ̂ so ( ω ) E ̂ so ( ω ) d ω d ω ,
E ̂ so ( ω ) E ̂ so ( ω ) = δ ( ω ω ) S ( ω ) .
I ( t ) = ρ e Δ t r ( t t ) × [ | m ( ω , t ) | 2 S ( ω ) d ω ] d t ,
| m ( ω , t ) | 2 = | α ̂ r ( ω ) | 2 + | α ̂ s ( ω ) | 2 + 2 Re { α ̂ r * ( ω ) α ̂ s ( ω ) exp [ i ϕ r ( ω , t ) + i ϕ s ( ω , t ) ] } .
N ( t ) = ρ | m ( ω , t ) | 2 S ω d ω .
K i ( t n , t m ) = I i ( t n ) I i ( t m ) I i ( t n ) I i ( t m ) .
K i ( t n , t m ) ( e Δ t ) 2 r ( t n t ) r ( t m t ) N i ( t ) d t .
r 1 = 1 n 1 + n , r 2 = Δ n 2 n + Δ n .
α ̂ s ( ω ) = r 1 + ( 1 r 1 2 ) r 2 exp ( i ω n 2 l c ) ,

Metrics