Abstract

We present a new concept for fluorescence lifetime imaging (FLIM) based on time-resolved Hadamard imaging (HI). HI allows image acquisition by use of one single-point detector without requiring a moving scanning stage. Moreover, it reduces the influence of detector noise compared with raster scanning. By use of Monte Carlo simulations it could be confirmed that Hadamard transformation may decrease the error in lifetime estimation and in general in fluorescence parameter estimation when the signal-to-noise ratio is low and detector dark noise is high. This concept may find applications whenever the performance of FLIM or similar methods is limited by high dark-count rates and when the use of a single-point detector is preferable.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Cubeddu, D. Comelli, C. D’Andrea, P. Taroni, G. Valentini, “Time-resolved fluorescence imaging in biology and medicine,” J. Phys. 35, R61–R76 (2002).
  2. S. Bambot, J. R. Lakowicz, G. Rao, “Potential applications of life-time-based, phase-modulation fluorometry in bioprocess and clinical monitoring,” Trends Biotechnol. 13, 106–115 (1995).
    [CrossRef] [PubMed]
  3. Bernard Valeur, Molecular Fluorescence (Wiley-VCH, 2002).
  4. H. Szmacinski, J. R. Lakowicz, “Optical measurements of pH using fluorescence lifetimes and phase-modulation fluorometry,” Anal. Chem. 65, 1668–1674 (1993).
    [CrossRef] [PubMed]
  5. H. J. Lin, H. Szmacinski, J. R. Lakowicz, “Lifetime-based pH sensors: indicators for acidic environments,” Anal. Biochem. 269, 162–167 (1999).
    [CrossRef] [PubMed]
  6. M. E. Lippitsch, J. Pusterhofer, M. J. P. Leiner, O. S. Wolfbeis, “Fibre-optic oxygen sensor with the fluorescence decay time as the information carrier,” Anal. Chim. Acta 205, 1–6 (1988).
    [CrossRef]
  7. H. Szmacinski, J. R. Lakowicz, “Sodium green as a potential probe for intracellular sodium imaging based on fluorescence lifetime,” Anal. Biochem. 250, 131–138 (1997).
    [CrossRef] [PubMed]
  8. T. Q. Ni, L. A. Melton, “Fluorescence lifetime imaging—An approach for fuel equivalence ratio imaging,” Appl. Spectrosc. 45, 938–943 (1991).
    [CrossRef]
  9. G. Marriott, R. M. Clegg, D. J. Arndtjovin, T. M. Jovin, “Time resolved imaging microscopy—Phosphorescence and delayed fluorescence imaging,” Biophys. J. 60, 1374–1387 (1991).
  10. X. F. Wang, T. Uchida, D. M. Coleman, S. Minami, “A 2-dimensional fluorescence lifetime imaging-system using a gated image intensifier,” Appl. Spectrosc. 45, 360–366 (1991).
    [CrossRef]
  11. R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, F. Rinaldi, E. Sorbellini, “Fluorescence lifetime imaging: an application to the detection of skin tumors,” IEEE J. Sel. Top. Quantum Electron. 5, 923–929 (1999).
    [CrossRef]
  12. P. J. Tadrous, J. Siegel, P. M. W. French, S. Shousha, E. N. Lalani, G. W. H. Stamp, “Fluorescence lifetime imaging of unstained tissues: early results in human breast cancer,” J. Pathol. 199, 309–317 (2003).
    [CrossRef] [PubMed]
  13. D. Schweitzer, A. Kolb, M. Hammer, R. Anders, “Time-correlated measurement of autofluorescence. A method to detect metabolic changes in the fundus,” Ophthalmologe 99, 774–779 (2002).
    [CrossRef] [PubMed]
  14. G. Valentini, C. d’Andrea, D. Comelli, A. Pifferi, P. Taroni, A. Torricelli, R. Cubeddu, C. Battaglia, C. Consolandi, G. Salani, L. Rossi Bernardi, G. de Bellis, “Time-resolved DNA-microarray reading by an intensified CCD for ultimate sensitivity,” Opt. Lett. 25, 1648–1650 (2000).
    [CrossRef]
  15. E. Waddell, Y. Wang, W. Stryjewski, S. McWhorter, A. C. Henry, D. Evans, R. L. McCarley, S. A. Soper, “High-resolution near-infrared imaging of DNA microarrays with time-resolved acquisition of fluorescence lifetimes,” Anal. Chem. 72, 5907–5917 (2000).
    [CrossRef]
  16. H. C. Gerritsen, M. A. H. Asselbergs, A. V. Agronskaia, W. G. J. H. M. Van Sark, “Fluorescence lifetime imaging in scanning microscopes: acquisition speed, photon economy and lifetime resolution,” J. Microsc. (Oxford) 206, 218–224 (2002).
    [CrossRef]
  17. K. Dowling, M. J. Dayel, M. J. Lever, P. M. W. French, J. D. Hares, A. K. L. Dymoke Bradshaw, “Fluorescence lifetime imaging with picosecond resolution for biomedical applications,” Opt. Lett. 23, 810–812 (1998).
    [CrossRef]
  18. N. J. A. Sloane, M. Harwit, “Masks for Hadamard transform optics and weighing designs,” Appl. Opt. 15, 107–114 (1976).
    [CrossRef] [PubMed]
  19. M. Harwit, N. J. A. Sloane, Hadamard Transform Optics (Academic, 1979).
  20. P. Fellgett, “Conclusions on multiplex methods,” J. Phys. (Paris) 28, 165–171 (1967).
    [CrossRef]
  21. R. A. DeVerse, R. M. Hammaker, W. G. Fateley, “Hadamard transform Raman imagery with a digital micro-mirror array,” Vib. Spectrosc. 19, 177–186 (1999).
    [CrossRef]
  22. D. Phillips, D. V. O’Connor, Time-Correlated Single Photon Counting (Academic, 1984).
  23. M. Unser, M. Eden, “Maximum-likelihood estimation of linear signal parameters for Poisson processes,” IEEE Trans. Acoust. Speech Signal Process. 36, 942–945 (1988).
    [CrossRef]
  24. Z. Bajzer, T. M. Therneau, J. C. Sharp, F. G. Prendergast, “Maximum-likelihood method for the analysis of time-resolved fluorescence decay curves,” Eur. Biophys. J. Biophys. Lett. 20, 247–262 (1991).
    [CrossRef]
  25. M. Köllner, A. Fischer, J. ArdenJacob, K. H. Drexhage, R. Muller, S. Seeger, J. Wolfrum, “Fluorescence pattern recognition for ultrasensitive molecule identification: comparison of experimental data and theoretical approximations,” Phys. Lett. 250, 355–360 (1996).
  26. A. Papoulis, S. U. Pillai, Probability, Random Variables and Stochastic Processes (McGraw-Hill, 2002).
  27. Q. S. Hanley, “Masking, photobleaching, and spreading effects in Hadamard transform imaging and spectroscopy systems,” Appl. Spectrosc. 55, 318–330 (2001).
    [CrossRef]
  28. G. Q. Chen, E. Mei, W. F. Gu, X. B. Zeng, Y. Zeng, “Instrument for Hadamard-transform 3-dimensional fluorescence microscope image analysis,” Anal. Chim. Acta 300, 261–267 (1995).
    [CrossRef]
  29. A. G. Tkachenko, H. Xie, D. Coleman, W. Glomm, J. Ryan, M. F. Anderson, S. Franzen, D. L. Feldheim, “Multifunctional gold nanoparticle-peptide complexes for nuclear targeting,” J. Am. Chem. Soc. 125, 4700–4701 (2003).
    [CrossRef] [PubMed]
  30. M. van Zandvoort, C. J. de Grauw, H. C. Gerritsen, J. L. V. Broers, M. Egbrink, F. C. S. Ramaekers, D. W. Slaaf, “Discrimination of DNA and RNA in cells by a vital fluorescent probe: lifetime imaging of syto13 in healthy and apoptotic cells,” Cytometry 47, 226–235 (2002).
    [CrossRef] [PubMed]
  31. J. Siegel, D. S. Elson, S. E. D. Webb, K. C. B. Lee, A. Vlanclas, G. L. Gambaruto, S. Leveque-Fort, M. J. Lever, P. J. Tadrous, G. W. H. Stamp, A. L. Wallace, A. Sandison, T. F. Watson, F. Alvarez, P. M. W. French, “Studying biological tissue with fluorescence lifetime imaging: microscopy, endoscopy, and complex decay profiles,” Appl. Opt. 42, 2995–3004 (2003).
    [CrossRef] [PubMed]
  32. J. Enderlein, “Maximum-likelihood criterion and single-molecule detection,” Appl. Opt. 34, 514–526 (1995).
    [CrossRef] [PubMed]
  33. J. Enderlein, P. M. Goodwin, A. VanOrden, W. P. Ambrose, R. Erdmann, R. A. Keller, “A maximum likelihood estimator to distinguish single molecules by their fluorescence decays,” Chem. Phys. Lett. 270, 464–470 (1997).
    [CrossRef]

2003 (3)

P. J. Tadrous, J. Siegel, P. M. W. French, S. Shousha, E. N. Lalani, G. W. H. Stamp, “Fluorescence lifetime imaging of unstained tissues: early results in human breast cancer,” J. Pathol. 199, 309–317 (2003).
[CrossRef] [PubMed]

A. G. Tkachenko, H. Xie, D. Coleman, W. Glomm, J. Ryan, M. F. Anderson, S. Franzen, D. L. Feldheim, “Multifunctional gold nanoparticle-peptide complexes for nuclear targeting,” J. Am. Chem. Soc. 125, 4700–4701 (2003).
[CrossRef] [PubMed]

J. Siegel, D. S. Elson, S. E. D. Webb, K. C. B. Lee, A. Vlanclas, G. L. Gambaruto, S. Leveque-Fort, M. J. Lever, P. J. Tadrous, G. W. H. Stamp, A. L. Wallace, A. Sandison, T. F. Watson, F. Alvarez, P. M. W. French, “Studying biological tissue with fluorescence lifetime imaging: microscopy, endoscopy, and complex decay profiles,” Appl. Opt. 42, 2995–3004 (2003).
[CrossRef] [PubMed]

2002 (4)

M. van Zandvoort, C. J. de Grauw, H. C. Gerritsen, J. L. V. Broers, M. Egbrink, F. C. S. Ramaekers, D. W. Slaaf, “Discrimination of DNA and RNA in cells by a vital fluorescent probe: lifetime imaging of syto13 in healthy and apoptotic cells,” Cytometry 47, 226–235 (2002).
[CrossRef] [PubMed]

D. Schweitzer, A. Kolb, M. Hammer, R. Anders, “Time-correlated measurement of autofluorescence. A method to detect metabolic changes in the fundus,” Ophthalmologe 99, 774–779 (2002).
[CrossRef] [PubMed]

R. Cubeddu, D. Comelli, C. D’Andrea, P. Taroni, G. Valentini, “Time-resolved fluorescence imaging in biology and medicine,” J. Phys. 35, R61–R76 (2002).

H. C. Gerritsen, M. A. H. Asselbergs, A. V. Agronskaia, W. G. J. H. M. Van Sark, “Fluorescence lifetime imaging in scanning microscopes: acquisition speed, photon economy and lifetime resolution,” J. Microsc. (Oxford) 206, 218–224 (2002).
[CrossRef]

2001 (1)

2000 (2)

G. Valentini, C. d’Andrea, D. Comelli, A. Pifferi, P. Taroni, A. Torricelli, R. Cubeddu, C. Battaglia, C. Consolandi, G. Salani, L. Rossi Bernardi, G. de Bellis, “Time-resolved DNA-microarray reading by an intensified CCD for ultimate sensitivity,” Opt. Lett. 25, 1648–1650 (2000).
[CrossRef]

E. Waddell, Y. Wang, W. Stryjewski, S. McWhorter, A. C. Henry, D. Evans, R. L. McCarley, S. A. Soper, “High-resolution near-infrared imaging of DNA microarrays with time-resolved acquisition of fluorescence lifetimes,” Anal. Chem. 72, 5907–5917 (2000).
[CrossRef]

1999 (3)

R. A. DeVerse, R. M. Hammaker, W. G. Fateley, “Hadamard transform Raman imagery with a digital micro-mirror array,” Vib. Spectrosc. 19, 177–186 (1999).
[CrossRef]

H. J. Lin, H. Szmacinski, J. R. Lakowicz, “Lifetime-based pH sensors: indicators for acidic environments,” Anal. Biochem. 269, 162–167 (1999).
[CrossRef] [PubMed]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, F. Rinaldi, E. Sorbellini, “Fluorescence lifetime imaging: an application to the detection of skin tumors,” IEEE J. Sel. Top. Quantum Electron. 5, 923–929 (1999).
[CrossRef]

1998 (1)

1997 (2)

J. Enderlein, P. M. Goodwin, A. VanOrden, W. P. Ambrose, R. Erdmann, R. A. Keller, “A maximum likelihood estimator to distinguish single molecules by their fluorescence decays,” Chem. Phys. Lett. 270, 464–470 (1997).
[CrossRef]

H. Szmacinski, J. R. Lakowicz, “Sodium green as a potential probe for intracellular sodium imaging based on fluorescence lifetime,” Anal. Biochem. 250, 131–138 (1997).
[CrossRef] [PubMed]

1996 (1)

M. Köllner, A. Fischer, J. ArdenJacob, K. H. Drexhage, R. Muller, S. Seeger, J. Wolfrum, “Fluorescence pattern recognition for ultrasensitive molecule identification: comparison of experimental data and theoretical approximations,” Phys. Lett. 250, 355–360 (1996).

1995 (3)

G. Q. Chen, E. Mei, W. F. Gu, X. B. Zeng, Y. Zeng, “Instrument for Hadamard-transform 3-dimensional fluorescence microscope image analysis,” Anal. Chim. Acta 300, 261–267 (1995).
[CrossRef]

S. Bambot, J. R. Lakowicz, G. Rao, “Potential applications of life-time-based, phase-modulation fluorometry in bioprocess and clinical monitoring,” Trends Biotechnol. 13, 106–115 (1995).
[CrossRef] [PubMed]

J. Enderlein, “Maximum-likelihood criterion and single-molecule detection,” Appl. Opt. 34, 514–526 (1995).
[CrossRef] [PubMed]

1993 (1)

H. Szmacinski, J. R. Lakowicz, “Optical measurements of pH using fluorescence lifetimes and phase-modulation fluorometry,” Anal. Chem. 65, 1668–1674 (1993).
[CrossRef] [PubMed]

1991 (4)

G. Marriott, R. M. Clegg, D. J. Arndtjovin, T. M. Jovin, “Time resolved imaging microscopy—Phosphorescence and delayed fluorescence imaging,” Biophys. J. 60, 1374–1387 (1991).

Z. Bajzer, T. M. Therneau, J. C. Sharp, F. G. Prendergast, “Maximum-likelihood method for the analysis of time-resolved fluorescence decay curves,” Eur. Biophys. J. Biophys. Lett. 20, 247–262 (1991).
[CrossRef]

T. Q. Ni, L. A. Melton, “Fluorescence lifetime imaging—An approach for fuel equivalence ratio imaging,” Appl. Spectrosc. 45, 938–943 (1991).
[CrossRef]

X. F. Wang, T. Uchida, D. M. Coleman, S. Minami, “A 2-dimensional fluorescence lifetime imaging-system using a gated image intensifier,” Appl. Spectrosc. 45, 360–366 (1991).
[CrossRef]

1988 (2)

M. Unser, M. Eden, “Maximum-likelihood estimation of linear signal parameters for Poisson processes,” IEEE Trans. Acoust. Speech Signal Process. 36, 942–945 (1988).
[CrossRef]

M. E. Lippitsch, J. Pusterhofer, M. J. P. Leiner, O. S. Wolfbeis, “Fibre-optic oxygen sensor with the fluorescence decay time as the information carrier,” Anal. Chim. Acta 205, 1–6 (1988).
[CrossRef]

1976 (1)

1967 (1)

P. Fellgett, “Conclusions on multiplex methods,” J. Phys. (Paris) 28, 165–171 (1967).
[CrossRef]

Agronskaia, A. V.

H. C. Gerritsen, M. A. H. Asselbergs, A. V. Agronskaia, W. G. J. H. M. Van Sark, “Fluorescence lifetime imaging in scanning microscopes: acquisition speed, photon economy and lifetime resolution,” J. Microsc. (Oxford) 206, 218–224 (2002).
[CrossRef]

Alvarez, F.

Ambrose, W. P.

J. Enderlein, P. M. Goodwin, A. VanOrden, W. P. Ambrose, R. Erdmann, R. A. Keller, “A maximum likelihood estimator to distinguish single molecules by their fluorescence decays,” Chem. Phys. Lett. 270, 464–470 (1997).
[CrossRef]

Anders, R.

D. Schweitzer, A. Kolb, M. Hammer, R. Anders, “Time-correlated measurement of autofluorescence. A method to detect metabolic changes in the fundus,” Ophthalmologe 99, 774–779 (2002).
[CrossRef] [PubMed]

Anderson, M. F.

A. G. Tkachenko, H. Xie, D. Coleman, W. Glomm, J. Ryan, M. F. Anderson, S. Franzen, D. L. Feldheim, “Multifunctional gold nanoparticle-peptide complexes for nuclear targeting,” J. Am. Chem. Soc. 125, 4700–4701 (2003).
[CrossRef] [PubMed]

ArdenJacob, J.

M. Köllner, A. Fischer, J. ArdenJacob, K. H. Drexhage, R. Muller, S. Seeger, J. Wolfrum, “Fluorescence pattern recognition for ultrasensitive molecule identification: comparison of experimental data and theoretical approximations,” Phys. Lett. 250, 355–360 (1996).

Arndtjovin, D. J.

G. Marriott, R. M. Clegg, D. J. Arndtjovin, T. M. Jovin, “Time resolved imaging microscopy—Phosphorescence and delayed fluorescence imaging,” Biophys. J. 60, 1374–1387 (1991).

Asselbergs, M. A. H.

H. C. Gerritsen, M. A. H. Asselbergs, A. V. Agronskaia, W. G. J. H. M. Van Sark, “Fluorescence lifetime imaging in scanning microscopes: acquisition speed, photon economy and lifetime resolution,” J. Microsc. (Oxford) 206, 218–224 (2002).
[CrossRef]

Bajzer, Z.

Z. Bajzer, T. M. Therneau, J. C. Sharp, F. G. Prendergast, “Maximum-likelihood method for the analysis of time-resolved fluorescence decay curves,” Eur. Biophys. J. Biophys. Lett. 20, 247–262 (1991).
[CrossRef]

Bambot, S.

S. Bambot, J. R. Lakowicz, G. Rao, “Potential applications of life-time-based, phase-modulation fluorometry in bioprocess and clinical monitoring,” Trends Biotechnol. 13, 106–115 (1995).
[CrossRef] [PubMed]

Battaglia, C.

Broers, J. L. V.

M. van Zandvoort, C. J. de Grauw, H. C. Gerritsen, J. L. V. Broers, M. Egbrink, F. C. S. Ramaekers, D. W. Slaaf, “Discrimination of DNA and RNA in cells by a vital fluorescent probe: lifetime imaging of syto13 in healthy and apoptotic cells,” Cytometry 47, 226–235 (2002).
[CrossRef] [PubMed]

Chen, G. Q.

G. Q. Chen, E. Mei, W. F. Gu, X. B. Zeng, Y. Zeng, “Instrument for Hadamard-transform 3-dimensional fluorescence microscope image analysis,” Anal. Chim. Acta 300, 261–267 (1995).
[CrossRef]

Clegg, R. M.

G. Marriott, R. M. Clegg, D. J. Arndtjovin, T. M. Jovin, “Time resolved imaging microscopy—Phosphorescence and delayed fluorescence imaging,” Biophys. J. 60, 1374–1387 (1991).

Coleman, D.

A. G. Tkachenko, H. Xie, D. Coleman, W. Glomm, J. Ryan, M. F. Anderson, S. Franzen, D. L. Feldheim, “Multifunctional gold nanoparticle-peptide complexes for nuclear targeting,” J. Am. Chem. Soc. 125, 4700–4701 (2003).
[CrossRef] [PubMed]

Coleman, D. M.

Comelli, D.

Consolandi, C.

Cubeddu, R.

R. Cubeddu, D. Comelli, C. D’Andrea, P. Taroni, G. Valentini, “Time-resolved fluorescence imaging in biology and medicine,” J. Phys. 35, R61–R76 (2002).

G. Valentini, C. d’Andrea, D. Comelli, A. Pifferi, P. Taroni, A. Torricelli, R. Cubeddu, C. Battaglia, C. Consolandi, G. Salani, L. Rossi Bernardi, G. de Bellis, “Time-resolved DNA-microarray reading by an intensified CCD for ultimate sensitivity,” Opt. Lett. 25, 1648–1650 (2000).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, F. Rinaldi, E. Sorbellini, “Fluorescence lifetime imaging: an application to the detection of skin tumors,” IEEE J. Sel. Top. Quantum Electron. 5, 923–929 (1999).
[CrossRef]

D’Andrea, C.

Dayel, M. J.

de Bellis, G.

de Grauw, C. J.

M. van Zandvoort, C. J. de Grauw, H. C. Gerritsen, J. L. V. Broers, M. Egbrink, F. C. S. Ramaekers, D. W. Slaaf, “Discrimination of DNA and RNA in cells by a vital fluorescent probe: lifetime imaging of syto13 in healthy and apoptotic cells,” Cytometry 47, 226–235 (2002).
[CrossRef] [PubMed]

DeVerse, R. A.

R. A. DeVerse, R. M. Hammaker, W. G. Fateley, “Hadamard transform Raman imagery with a digital micro-mirror array,” Vib. Spectrosc. 19, 177–186 (1999).
[CrossRef]

Dowling, K.

Drexhage, K. H.

M. Köllner, A. Fischer, J. ArdenJacob, K. H. Drexhage, R. Muller, S. Seeger, J. Wolfrum, “Fluorescence pattern recognition for ultrasensitive molecule identification: comparison of experimental data and theoretical approximations,” Phys. Lett. 250, 355–360 (1996).

Dymoke Bradshaw, A. K. L.

Eden, M.

M. Unser, M. Eden, “Maximum-likelihood estimation of linear signal parameters for Poisson processes,” IEEE Trans. Acoust. Speech Signal Process. 36, 942–945 (1988).
[CrossRef]

Egbrink, M.

M. van Zandvoort, C. J. de Grauw, H. C. Gerritsen, J. L. V. Broers, M. Egbrink, F. C. S. Ramaekers, D. W. Slaaf, “Discrimination of DNA and RNA in cells by a vital fluorescent probe: lifetime imaging of syto13 in healthy and apoptotic cells,” Cytometry 47, 226–235 (2002).
[CrossRef] [PubMed]

Elson, D. S.

Enderlein, J.

J. Enderlein, P. M. Goodwin, A. VanOrden, W. P. Ambrose, R. Erdmann, R. A. Keller, “A maximum likelihood estimator to distinguish single molecules by their fluorescence decays,” Chem. Phys. Lett. 270, 464–470 (1997).
[CrossRef]

J. Enderlein, “Maximum-likelihood criterion and single-molecule detection,” Appl. Opt. 34, 514–526 (1995).
[CrossRef] [PubMed]

Erdmann, R.

J. Enderlein, P. M. Goodwin, A. VanOrden, W. P. Ambrose, R. Erdmann, R. A. Keller, “A maximum likelihood estimator to distinguish single molecules by their fluorescence decays,” Chem. Phys. Lett. 270, 464–470 (1997).
[CrossRef]

Evans, D.

E. Waddell, Y. Wang, W. Stryjewski, S. McWhorter, A. C. Henry, D. Evans, R. L. McCarley, S. A. Soper, “High-resolution near-infrared imaging of DNA microarrays with time-resolved acquisition of fluorescence lifetimes,” Anal. Chem. 72, 5907–5917 (2000).
[CrossRef]

Fateley, W. G.

R. A. DeVerse, R. M. Hammaker, W. G. Fateley, “Hadamard transform Raman imagery with a digital micro-mirror array,” Vib. Spectrosc. 19, 177–186 (1999).
[CrossRef]

Feldheim, D. L.

A. G. Tkachenko, H. Xie, D. Coleman, W. Glomm, J. Ryan, M. F. Anderson, S. Franzen, D. L. Feldheim, “Multifunctional gold nanoparticle-peptide complexes for nuclear targeting,” J. Am. Chem. Soc. 125, 4700–4701 (2003).
[CrossRef] [PubMed]

Fellgett, P.

P. Fellgett, “Conclusions on multiplex methods,” J. Phys. (Paris) 28, 165–171 (1967).
[CrossRef]

Fischer, A.

M. Köllner, A. Fischer, J. ArdenJacob, K. H. Drexhage, R. Muller, S. Seeger, J. Wolfrum, “Fluorescence pattern recognition for ultrasensitive molecule identification: comparison of experimental data and theoretical approximations,” Phys. Lett. 250, 355–360 (1996).

Franzen, S.

A. G. Tkachenko, H. Xie, D. Coleman, W. Glomm, J. Ryan, M. F. Anderson, S. Franzen, D. L. Feldheim, “Multifunctional gold nanoparticle-peptide complexes for nuclear targeting,” J. Am. Chem. Soc. 125, 4700–4701 (2003).
[CrossRef] [PubMed]

French, P. M. W.

Gambaruto, G. L.

Gerritsen, H. C.

H. C. Gerritsen, M. A. H. Asselbergs, A. V. Agronskaia, W. G. J. H. M. Van Sark, “Fluorescence lifetime imaging in scanning microscopes: acquisition speed, photon economy and lifetime resolution,” J. Microsc. (Oxford) 206, 218–224 (2002).
[CrossRef]

M. van Zandvoort, C. J. de Grauw, H. C. Gerritsen, J. L. V. Broers, M. Egbrink, F. C. S. Ramaekers, D. W. Slaaf, “Discrimination of DNA and RNA in cells by a vital fluorescent probe: lifetime imaging of syto13 in healthy and apoptotic cells,” Cytometry 47, 226–235 (2002).
[CrossRef] [PubMed]

Glomm, W.

A. G. Tkachenko, H. Xie, D. Coleman, W. Glomm, J. Ryan, M. F. Anderson, S. Franzen, D. L. Feldheim, “Multifunctional gold nanoparticle-peptide complexes for nuclear targeting,” J. Am. Chem. Soc. 125, 4700–4701 (2003).
[CrossRef] [PubMed]

Goodwin, P. M.

J. Enderlein, P. M. Goodwin, A. VanOrden, W. P. Ambrose, R. Erdmann, R. A. Keller, “A maximum likelihood estimator to distinguish single molecules by their fluorescence decays,” Chem. Phys. Lett. 270, 464–470 (1997).
[CrossRef]

Gu, W. F.

G. Q. Chen, E. Mei, W. F. Gu, X. B. Zeng, Y. Zeng, “Instrument for Hadamard-transform 3-dimensional fluorescence microscope image analysis,” Anal. Chim. Acta 300, 261–267 (1995).
[CrossRef]

Hammaker, R. M.

R. A. DeVerse, R. M. Hammaker, W. G. Fateley, “Hadamard transform Raman imagery with a digital micro-mirror array,” Vib. Spectrosc. 19, 177–186 (1999).
[CrossRef]

Hammer, M.

D. Schweitzer, A. Kolb, M. Hammer, R. Anders, “Time-correlated measurement of autofluorescence. A method to detect metabolic changes in the fundus,” Ophthalmologe 99, 774–779 (2002).
[CrossRef] [PubMed]

Hanley, Q. S.

Hares, J. D.

Harwit, M.

Henry, A. C.

E. Waddell, Y. Wang, W. Stryjewski, S. McWhorter, A. C. Henry, D. Evans, R. L. McCarley, S. A. Soper, “High-resolution near-infrared imaging of DNA microarrays with time-resolved acquisition of fluorescence lifetimes,” Anal. Chem. 72, 5907–5917 (2000).
[CrossRef]

Jovin, T. M.

G. Marriott, R. M. Clegg, D. J. Arndtjovin, T. M. Jovin, “Time resolved imaging microscopy—Phosphorescence and delayed fluorescence imaging,” Biophys. J. 60, 1374–1387 (1991).

Keller, R. A.

J. Enderlein, P. M. Goodwin, A. VanOrden, W. P. Ambrose, R. Erdmann, R. A. Keller, “A maximum likelihood estimator to distinguish single molecules by their fluorescence decays,” Chem. Phys. Lett. 270, 464–470 (1997).
[CrossRef]

Kolb, A.

D. Schweitzer, A. Kolb, M. Hammer, R. Anders, “Time-correlated measurement of autofluorescence. A method to detect metabolic changes in the fundus,” Ophthalmologe 99, 774–779 (2002).
[CrossRef] [PubMed]

Köllner, M.

M. Köllner, A. Fischer, J. ArdenJacob, K. H. Drexhage, R. Muller, S. Seeger, J. Wolfrum, “Fluorescence pattern recognition for ultrasensitive molecule identification: comparison of experimental data and theoretical approximations,” Phys. Lett. 250, 355–360 (1996).

Lakowicz, J. R.

H. J. Lin, H. Szmacinski, J. R. Lakowicz, “Lifetime-based pH sensors: indicators for acidic environments,” Anal. Biochem. 269, 162–167 (1999).
[CrossRef] [PubMed]

H. Szmacinski, J. R. Lakowicz, “Sodium green as a potential probe for intracellular sodium imaging based on fluorescence lifetime,” Anal. Biochem. 250, 131–138 (1997).
[CrossRef] [PubMed]

S. Bambot, J. R. Lakowicz, G. Rao, “Potential applications of life-time-based, phase-modulation fluorometry in bioprocess and clinical monitoring,” Trends Biotechnol. 13, 106–115 (1995).
[CrossRef] [PubMed]

H. Szmacinski, J. R. Lakowicz, “Optical measurements of pH using fluorescence lifetimes and phase-modulation fluorometry,” Anal. Chem. 65, 1668–1674 (1993).
[CrossRef] [PubMed]

Lalani, E. N.

P. J. Tadrous, J. Siegel, P. M. W. French, S. Shousha, E. N. Lalani, G. W. H. Stamp, “Fluorescence lifetime imaging of unstained tissues: early results in human breast cancer,” J. Pathol. 199, 309–317 (2003).
[CrossRef] [PubMed]

Lee, K. C. B.

Leiner, M. J. P.

M. E. Lippitsch, J. Pusterhofer, M. J. P. Leiner, O. S. Wolfbeis, “Fibre-optic oxygen sensor with the fluorescence decay time as the information carrier,” Anal. Chim. Acta 205, 1–6 (1988).
[CrossRef]

Leveque-Fort, S.

Lever, M. J.

Lin, H. J.

H. J. Lin, H. Szmacinski, J. R. Lakowicz, “Lifetime-based pH sensors: indicators for acidic environments,” Anal. Biochem. 269, 162–167 (1999).
[CrossRef] [PubMed]

Lippitsch, M. E.

M. E. Lippitsch, J. Pusterhofer, M. J. P. Leiner, O. S. Wolfbeis, “Fibre-optic oxygen sensor with the fluorescence decay time as the information carrier,” Anal. Chim. Acta 205, 1–6 (1988).
[CrossRef]

Marriott, G.

G. Marriott, R. M. Clegg, D. J. Arndtjovin, T. M. Jovin, “Time resolved imaging microscopy—Phosphorescence and delayed fluorescence imaging,” Biophys. J. 60, 1374–1387 (1991).

McCarley, R. L.

E. Waddell, Y. Wang, W. Stryjewski, S. McWhorter, A. C. Henry, D. Evans, R. L. McCarley, S. A. Soper, “High-resolution near-infrared imaging of DNA microarrays with time-resolved acquisition of fluorescence lifetimes,” Anal. Chem. 72, 5907–5917 (2000).
[CrossRef]

McWhorter, S.

E. Waddell, Y. Wang, W. Stryjewski, S. McWhorter, A. C. Henry, D. Evans, R. L. McCarley, S. A. Soper, “High-resolution near-infrared imaging of DNA microarrays with time-resolved acquisition of fluorescence lifetimes,” Anal. Chem. 72, 5907–5917 (2000).
[CrossRef]

Mei, E.

G. Q. Chen, E. Mei, W. F. Gu, X. B. Zeng, Y. Zeng, “Instrument for Hadamard-transform 3-dimensional fluorescence microscope image analysis,” Anal. Chim. Acta 300, 261–267 (1995).
[CrossRef]

Melton, L. A.

Minami, S.

Muller, R.

M. Köllner, A. Fischer, J. ArdenJacob, K. H. Drexhage, R. Muller, S. Seeger, J. Wolfrum, “Fluorescence pattern recognition for ultrasensitive molecule identification: comparison of experimental data and theoretical approximations,” Phys. Lett. 250, 355–360 (1996).

Ni, T. Q.

O’Connor, D. V.

D. Phillips, D. V. O’Connor, Time-Correlated Single Photon Counting (Academic, 1984).

Papoulis, A.

A. Papoulis, S. U. Pillai, Probability, Random Variables and Stochastic Processes (McGraw-Hill, 2002).

Phillips, D.

D. Phillips, D. V. O’Connor, Time-Correlated Single Photon Counting (Academic, 1984).

Pifferi, A.

G. Valentini, C. d’Andrea, D. Comelli, A. Pifferi, P. Taroni, A. Torricelli, R. Cubeddu, C. Battaglia, C. Consolandi, G. Salani, L. Rossi Bernardi, G. de Bellis, “Time-resolved DNA-microarray reading by an intensified CCD for ultimate sensitivity,” Opt. Lett. 25, 1648–1650 (2000).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, F. Rinaldi, E. Sorbellini, “Fluorescence lifetime imaging: an application to the detection of skin tumors,” IEEE J. Sel. Top. Quantum Electron. 5, 923–929 (1999).
[CrossRef]

Pillai, S. U.

A. Papoulis, S. U. Pillai, Probability, Random Variables and Stochastic Processes (McGraw-Hill, 2002).

Prendergast, F. G.

Z. Bajzer, T. M. Therneau, J. C. Sharp, F. G. Prendergast, “Maximum-likelihood method for the analysis of time-resolved fluorescence decay curves,” Eur. Biophys. J. Biophys. Lett. 20, 247–262 (1991).
[CrossRef]

Pusterhofer, J.

M. E. Lippitsch, J. Pusterhofer, M. J. P. Leiner, O. S. Wolfbeis, “Fibre-optic oxygen sensor with the fluorescence decay time as the information carrier,” Anal. Chim. Acta 205, 1–6 (1988).
[CrossRef]

Ramaekers, F. C. S.

M. van Zandvoort, C. J. de Grauw, H. C. Gerritsen, J. L. V. Broers, M. Egbrink, F. C. S. Ramaekers, D. W. Slaaf, “Discrimination of DNA and RNA in cells by a vital fluorescent probe: lifetime imaging of syto13 in healthy and apoptotic cells,” Cytometry 47, 226–235 (2002).
[CrossRef] [PubMed]

Rao, G.

S. Bambot, J. R. Lakowicz, G. Rao, “Potential applications of life-time-based, phase-modulation fluorometry in bioprocess and clinical monitoring,” Trends Biotechnol. 13, 106–115 (1995).
[CrossRef] [PubMed]

Rinaldi, F.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, F. Rinaldi, E. Sorbellini, “Fluorescence lifetime imaging: an application to the detection of skin tumors,” IEEE J. Sel. Top. Quantum Electron. 5, 923–929 (1999).
[CrossRef]

Rossi Bernardi, L.

Ryan, J.

A. G. Tkachenko, H. Xie, D. Coleman, W. Glomm, J. Ryan, M. F. Anderson, S. Franzen, D. L. Feldheim, “Multifunctional gold nanoparticle-peptide complexes for nuclear targeting,” J. Am. Chem. Soc. 125, 4700–4701 (2003).
[CrossRef] [PubMed]

Salani, G.

Sandison, A.

Schweitzer, D.

D. Schweitzer, A. Kolb, M. Hammer, R. Anders, “Time-correlated measurement of autofluorescence. A method to detect metabolic changes in the fundus,” Ophthalmologe 99, 774–779 (2002).
[CrossRef] [PubMed]

Seeger, S.

M. Köllner, A. Fischer, J. ArdenJacob, K. H. Drexhage, R. Muller, S. Seeger, J. Wolfrum, “Fluorescence pattern recognition for ultrasensitive molecule identification: comparison of experimental data and theoretical approximations,” Phys. Lett. 250, 355–360 (1996).

Sharp, J. C.

Z. Bajzer, T. M. Therneau, J. C. Sharp, F. G. Prendergast, “Maximum-likelihood method for the analysis of time-resolved fluorescence decay curves,” Eur. Biophys. J. Biophys. Lett. 20, 247–262 (1991).
[CrossRef]

Shousha, S.

P. J. Tadrous, J. Siegel, P. M. W. French, S. Shousha, E. N. Lalani, G. W. H. Stamp, “Fluorescence lifetime imaging of unstained tissues: early results in human breast cancer,” J. Pathol. 199, 309–317 (2003).
[CrossRef] [PubMed]

Siegel, J.

Slaaf, D. W.

M. van Zandvoort, C. J. de Grauw, H. C. Gerritsen, J. L. V. Broers, M. Egbrink, F. C. S. Ramaekers, D. W. Slaaf, “Discrimination of DNA and RNA in cells by a vital fluorescent probe: lifetime imaging of syto13 in healthy and apoptotic cells,” Cytometry 47, 226–235 (2002).
[CrossRef] [PubMed]

Sloane, N. J. A.

Soper, S. A.

E. Waddell, Y. Wang, W. Stryjewski, S. McWhorter, A. C. Henry, D. Evans, R. L. McCarley, S. A. Soper, “High-resolution near-infrared imaging of DNA microarrays with time-resolved acquisition of fluorescence lifetimes,” Anal. Chem. 72, 5907–5917 (2000).
[CrossRef]

Sorbellini, E.

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, F. Rinaldi, E. Sorbellini, “Fluorescence lifetime imaging: an application to the detection of skin tumors,” IEEE J. Sel. Top. Quantum Electron. 5, 923–929 (1999).
[CrossRef]

Stamp, G. W. H.

Stryjewski, W.

E. Waddell, Y. Wang, W. Stryjewski, S. McWhorter, A. C. Henry, D. Evans, R. L. McCarley, S. A. Soper, “High-resolution near-infrared imaging of DNA microarrays with time-resolved acquisition of fluorescence lifetimes,” Anal. Chem. 72, 5907–5917 (2000).
[CrossRef]

Szmacinski, H.

H. J. Lin, H. Szmacinski, J. R. Lakowicz, “Lifetime-based pH sensors: indicators for acidic environments,” Anal. Biochem. 269, 162–167 (1999).
[CrossRef] [PubMed]

H. Szmacinski, J. R. Lakowicz, “Sodium green as a potential probe for intracellular sodium imaging based on fluorescence lifetime,” Anal. Biochem. 250, 131–138 (1997).
[CrossRef] [PubMed]

H. Szmacinski, J. R. Lakowicz, “Optical measurements of pH using fluorescence lifetimes and phase-modulation fluorometry,” Anal. Chem. 65, 1668–1674 (1993).
[CrossRef] [PubMed]

Tadrous, P. J.

Taroni, P.

R. Cubeddu, D. Comelli, C. D’Andrea, P. Taroni, G. Valentini, “Time-resolved fluorescence imaging in biology and medicine,” J. Phys. 35, R61–R76 (2002).

G. Valentini, C. d’Andrea, D. Comelli, A. Pifferi, P. Taroni, A. Torricelli, R. Cubeddu, C. Battaglia, C. Consolandi, G. Salani, L. Rossi Bernardi, G. de Bellis, “Time-resolved DNA-microarray reading by an intensified CCD for ultimate sensitivity,” Opt. Lett. 25, 1648–1650 (2000).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, F. Rinaldi, E. Sorbellini, “Fluorescence lifetime imaging: an application to the detection of skin tumors,” IEEE J. Sel. Top. Quantum Electron. 5, 923–929 (1999).
[CrossRef]

Therneau, T. M.

Z. Bajzer, T. M. Therneau, J. C. Sharp, F. G. Prendergast, “Maximum-likelihood method for the analysis of time-resolved fluorescence decay curves,” Eur. Biophys. J. Biophys. Lett. 20, 247–262 (1991).
[CrossRef]

Tkachenko, A. G.

A. G. Tkachenko, H. Xie, D. Coleman, W. Glomm, J. Ryan, M. F. Anderson, S. Franzen, D. L. Feldheim, “Multifunctional gold nanoparticle-peptide complexes for nuclear targeting,” J. Am. Chem. Soc. 125, 4700–4701 (2003).
[CrossRef] [PubMed]

Torricelli, A.

G. Valentini, C. d’Andrea, D. Comelli, A. Pifferi, P. Taroni, A. Torricelli, R. Cubeddu, C. Battaglia, C. Consolandi, G. Salani, L. Rossi Bernardi, G. de Bellis, “Time-resolved DNA-microarray reading by an intensified CCD for ultimate sensitivity,” Opt. Lett. 25, 1648–1650 (2000).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, F. Rinaldi, E. Sorbellini, “Fluorescence lifetime imaging: an application to the detection of skin tumors,” IEEE J. Sel. Top. Quantum Electron. 5, 923–929 (1999).
[CrossRef]

Uchida, T.

Unser, M.

M. Unser, M. Eden, “Maximum-likelihood estimation of linear signal parameters for Poisson processes,” IEEE Trans. Acoust. Speech Signal Process. 36, 942–945 (1988).
[CrossRef]

Valentini, G.

R. Cubeddu, D. Comelli, C. D’Andrea, P. Taroni, G. Valentini, “Time-resolved fluorescence imaging in biology and medicine,” J. Phys. 35, R61–R76 (2002).

G. Valentini, C. d’Andrea, D. Comelli, A. Pifferi, P. Taroni, A. Torricelli, R. Cubeddu, C. Battaglia, C. Consolandi, G. Salani, L. Rossi Bernardi, G. de Bellis, “Time-resolved DNA-microarray reading by an intensified CCD for ultimate sensitivity,” Opt. Lett. 25, 1648–1650 (2000).
[CrossRef]

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, F. Rinaldi, E. Sorbellini, “Fluorescence lifetime imaging: an application to the detection of skin tumors,” IEEE J. Sel. Top. Quantum Electron. 5, 923–929 (1999).
[CrossRef]

Valeur, Bernard

Bernard Valeur, Molecular Fluorescence (Wiley-VCH, 2002).

Van Sark, W. G. J. H. M.

H. C. Gerritsen, M. A. H. Asselbergs, A. V. Agronskaia, W. G. J. H. M. Van Sark, “Fluorescence lifetime imaging in scanning microscopes: acquisition speed, photon economy and lifetime resolution,” J. Microsc. (Oxford) 206, 218–224 (2002).
[CrossRef]

van Zandvoort, M.

M. van Zandvoort, C. J. de Grauw, H. C. Gerritsen, J. L. V. Broers, M. Egbrink, F. C. S. Ramaekers, D. W. Slaaf, “Discrimination of DNA and RNA in cells by a vital fluorescent probe: lifetime imaging of syto13 in healthy and apoptotic cells,” Cytometry 47, 226–235 (2002).
[CrossRef] [PubMed]

VanOrden, A.

J. Enderlein, P. M. Goodwin, A. VanOrden, W. P. Ambrose, R. Erdmann, R. A. Keller, “A maximum likelihood estimator to distinguish single molecules by their fluorescence decays,” Chem. Phys. Lett. 270, 464–470 (1997).
[CrossRef]

Vlanclas, A.

Waddell, E.

E. Waddell, Y. Wang, W. Stryjewski, S. McWhorter, A. C. Henry, D. Evans, R. L. McCarley, S. A. Soper, “High-resolution near-infrared imaging of DNA microarrays with time-resolved acquisition of fluorescence lifetimes,” Anal. Chem. 72, 5907–5917 (2000).
[CrossRef]

Wallace, A. L.

Wang, X. F.

Wang, Y.

E. Waddell, Y. Wang, W. Stryjewski, S. McWhorter, A. C. Henry, D. Evans, R. L. McCarley, S. A. Soper, “High-resolution near-infrared imaging of DNA microarrays with time-resolved acquisition of fluorescence lifetimes,” Anal. Chem. 72, 5907–5917 (2000).
[CrossRef]

Watson, T. F.

Webb, S. E. D.

Wolfbeis, O. S.

M. E. Lippitsch, J. Pusterhofer, M. J. P. Leiner, O. S. Wolfbeis, “Fibre-optic oxygen sensor with the fluorescence decay time as the information carrier,” Anal. Chim. Acta 205, 1–6 (1988).
[CrossRef]

Wolfrum, J.

M. Köllner, A. Fischer, J. ArdenJacob, K. H. Drexhage, R. Muller, S. Seeger, J. Wolfrum, “Fluorescence pattern recognition for ultrasensitive molecule identification: comparison of experimental data and theoretical approximations,” Phys. Lett. 250, 355–360 (1996).

Xie, H.

A. G. Tkachenko, H. Xie, D. Coleman, W. Glomm, J. Ryan, M. F. Anderson, S. Franzen, D. L. Feldheim, “Multifunctional gold nanoparticle-peptide complexes for nuclear targeting,” J. Am. Chem. Soc. 125, 4700–4701 (2003).
[CrossRef] [PubMed]

Zeng, X. B.

G. Q. Chen, E. Mei, W. F. Gu, X. B. Zeng, Y. Zeng, “Instrument for Hadamard-transform 3-dimensional fluorescence microscope image analysis,” Anal. Chim. Acta 300, 261–267 (1995).
[CrossRef]

Zeng, Y.

G. Q. Chen, E. Mei, W. F. Gu, X. B. Zeng, Y. Zeng, “Instrument for Hadamard-transform 3-dimensional fluorescence microscope image analysis,” Anal. Chim. Acta 300, 261–267 (1995).
[CrossRef]

Anal. Biochem. (2)

H. J. Lin, H. Szmacinski, J. R. Lakowicz, “Lifetime-based pH sensors: indicators for acidic environments,” Anal. Biochem. 269, 162–167 (1999).
[CrossRef] [PubMed]

H. Szmacinski, J. R. Lakowicz, “Sodium green as a potential probe for intracellular sodium imaging based on fluorescence lifetime,” Anal. Biochem. 250, 131–138 (1997).
[CrossRef] [PubMed]

Anal. Chem. (2)

H. Szmacinski, J. R. Lakowicz, “Optical measurements of pH using fluorescence lifetimes and phase-modulation fluorometry,” Anal. Chem. 65, 1668–1674 (1993).
[CrossRef] [PubMed]

E. Waddell, Y. Wang, W. Stryjewski, S. McWhorter, A. C. Henry, D. Evans, R. L. McCarley, S. A. Soper, “High-resolution near-infrared imaging of DNA microarrays with time-resolved acquisition of fluorescence lifetimes,” Anal. Chem. 72, 5907–5917 (2000).
[CrossRef]

Anal. Chim. Acta (2)

M. E. Lippitsch, J. Pusterhofer, M. J. P. Leiner, O. S. Wolfbeis, “Fibre-optic oxygen sensor with the fluorescence decay time as the information carrier,” Anal. Chim. Acta 205, 1–6 (1988).
[CrossRef]

G. Q. Chen, E. Mei, W. F. Gu, X. B. Zeng, Y. Zeng, “Instrument for Hadamard-transform 3-dimensional fluorescence microscope image analysis,” Anal. Chim. Acta 300, 261–267 (1995).
[CrossRef]

Appl. Opt. (3)

Appl. Spectrosc. (3)

Biophys. J. (1)

G. Marriott, R. M. Clegg, D. J. Arndtjovin, T. M. Jovin, “Time resolved imaging microscopy—Phosphorescence and delayed fluorescence imaging,” Biophys. J. 60, 1374–1387 (1991).

Chem. Phys. Lett. (1)

J. Enderlein, P. M. Goodwin, A. VanOrden, W. P. Ambrose, R. Erdmann, R. A. Keller, “A maximum likelihood estimator to distinguish single molecules by their fluorescence decays,” Chem. Phys. Lett. 270, 464–470 (1997).
[CrossRef]

Cytometry (1)

M. van Zandvoort, C. J. de Grauw, H. C. Gerritsen, J. L. V. Broers, M. Egbrink, F. C. S. Ramaekers, D. W. Slaaf, “Discrimination of DNA and RNA in cells by a vital fluorescent probe: lifetime imaging of syto13 in healthy and apoptotic cells,” Cytometry 47, 226–235 (2002).
[CrossRef] [PubMed]

Eur. Biophys. J. Biophys. Lett. (1)

Z. Bajzer, T. M. Therneau, J. C. Sharp, F. G. Prendergast, “Maximum-likelihood method for the analysis of time-resolved fluorescence decay curves,” Eur. Biophys. J. Biophys. Lett. 20, 247–262 (1991).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

R. Cubeddu, A. Pifferi, P. Taroni, A. Torricelli, G. Valentini, F. Rinaldi, E. Sorbellini, “Fluorescence lifetime imaging: an application to the detection of skin tumors,” IEEE J. Sel. Top. Quantum Electron. 5, 923–929 (1999).
[CrossRef]

IEEE Trans. Acoust. Speech Signal Process. (1)

M. Unser, M. Eden, “Maximum-likelihood estimation of linear signal parameters for Poisson processes,” IEEE Trans. Acoust. Speech Signal Process. 36, 942–945 (1988).
[CrossRef]

J. Am. Chem. Soc. (1)

A. G. Tkachenko, H. Xie, D. Coleman, W. Glomm, J. Ryan, M. F. Anderson, S. Franzen, D. L. Feldheim, “Multifunctional gold nanoparticle-peptide complexes for nuclear targeting,” J. Am. Chem. Soc. 125, 4700–4701 (2003).
[CrossRef] [PubMed]

J. Microsc. (Oxford) (1)

H. C. Gerritsen, M. A. H. Asselbergs, A. V. Agronskaia, W. G. J. H. M. Van Sark, “Fluorescence lifetime imaging in scanning microscopes: acquisition speed, photon economy and lifetime resolution,” J. Microsc. (Oxford) 206, 218–224 (2002).
[CrossRef]

J. Pathol. (1)

P. J. Tadrous, J. Siegel, P. M. W. French, S. Shousha, E. N. Lalani, G. W. H. Stamp, “Fluorescence lifetime imaging of unstained tissues: early results in human breast cancer,” J. Pathol. 199, 309–317 (2003).
[CrossRef] [PubMed]

J. Phys. (1)

R. Cubeddu, D. Comelli, C. D’Andrea, P. Taroni, G. Valentini, “Time-resolved fluorescence imaging in biology and medicine,” J. Phys. 35, R61–R76 (2002).

J. Phys. (Paris) (1)

P. Fellgett, “Conclusions on multiplex methods,” J. Phys. (Paris) 28, 165–171 (1967).
[CrossRef]

Ophthalmologe (1)

D. Schweitzer, A. Kolb, M. Hammer, R. Anders, “Time-correlated measurement of autofluorescence. A method to detect metabolic changes in the fundus,” Ophthalmologe 99, 774–779 (2002).
[CrossRef] [PubMed]

Opt. Lett. (2)

Phys. Lett. (1)

M. Köllner, A. Fischer, J. ArdenJacob, K. H. Drexhage, R. Muller, S. Seeger, J. Wolfrum, “Fluorescence pattern recognition for ultrasensitive molecule identification: comparison of experimental data and theoretical approximations,” Phys. Lett. 250, 355–360 (1996).

Trends Biotechnol. (1)

S. Bambot, J. R. Lakowicz, G. Rao, “Potential applications of life-time-based, phase-modulation fluorometry in bioprocess and clinical monitoring,” Trends Biotechnol. 13, 106–115 (1995).
[CrossRef] [PubMed]

Vib. Spectrosc. (1)

R. A. DeVerse, R. M. Hammaker, W. G. Fateley, “Hadamard transform Raman imagery with a digital micro-mirror array,” Vib. Spectrosc. 19, 177–186 (1999).
[CrossRef]

Other (4)

D. Phillips, D. V. O’Connor, Time-Correlated Single Photon Counting (Academic, 1984).

A. Papoulis, S. U. Pillai, Probability, Random Variables and Stochastic Processes (McGraw-Hill, 2002).

M. Harwit, N. J. A. Sloane, Hadamard Transform Optics (Academic, 1979).

Bernard Valeur, Molecular Fluorescence (Wiley-VCH, 2002).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Schematic representation of a HI device.

Fig. 2
Fig. 2

Probability distributions for the difference of two Poisson random variables. Open squares, exact distribution; open inverted triangles, Gaussian approximation.

Fig. 3
Fig. 3

Result of a simulation for lifetime imaging by scanning. Solid line, real lifetime distribution; triangles, estimates.

Fig. 4
Fig. 4

Simulation with the same parameters as for Fig. 3, based on HLI.

Fig. 5
Fig. 5

Scanning approach: histogram obtained for one pixel.

Fig. 6
Fig. 6

HLI: histogram obtained for one pixel.

Fig. 7
Fig. 7

Standard deviations of the estimator τ ̂. Filled squares, HLI; filled inverted triangles, lifetime imaging, scanning approach.

Fig. 8
Fig. 8

Estimates for the ratio r of fluorescence signals with decay times of 4 and 1. Solid line, real values of r. Scanning was simulated.

Fig. 9
Fig. 9

HLI simulation, estimates for r. Simulation parameters are identical to those of Fig. 8.

Fig. 10
Fig. 10

Fluorophore identification for known lifetimes of 2 and 4 ns. The actual distribution of the lifetimes is 4 ns in the upper half and 2 ns in the lower half. (a) shows estimates based on raster scanning, whereas (b) was obtained by HLI. The dark counts constitute 90% of the overall signal.

Fig. 11
Fig. 11

Errors in fluorophore identification. The graphs show the average number of misidentified pixels per picture as a function of dark counts; (τ1, τ2) = (1 ns, 4 ns). Filled squares, estimates obtained with Hadamard transformation; filled inverted triangles, estimates obtained with scanning.

Fig. 12
Fig. 12

Same as Fig. 11 but with (τ1, τ2) = (2 ns, 3 ns).

Equations (41)

Equations on this page are rendered with MathJax. Learn more.

H j i = ± 1 ,
i = 1 n H j i = 0 , j 1 ,
H = H T ,
H 1 = 1 n H ,
H 2 = [ 1 1 1 1 ] .
x i j = X i + q i j .
y = diag ( Hx ) ,
z = H 1 y = H 1 diag ( Hx ) .
y = diag ( Ix ) .
z = X + H 1 diag ( Hq ) + H 1 e .
σ h σ h = [ H 1 diag ( Hq ) + H 1 e ] [ H 1 diag ( Hq ) + H 1 e ] ,
σ h = 1 n diag ( q ) diag ( q ) + e 2 .
z = X + diag ( q ) + e .
σ sc = diag ( q q ) + e e .
L ( τ i ) = l = 1 m P Z i l ( z i l | τ i ; D , { z j l j i } ) .
τ ̂ i = arg { max [ L ( τ i ) ] τ i } .
Y = diag ( HX ) .
Z = H 1 Y
= 1 n H diag ( HX ) .
Z i = 1 n [ T r ( A i + X ) Tr ( A i X ) ] ,
A i j k ± : = Θ ( H i j H j k ) ,
A i j k : = Θ ( H i j H j k ) ,
Θ ( x ) : = { 0 , x < 0 1 2 , x = 0 1 , x > 0 .
A i j i + = Θ ( H i j H j i ) = ( H i j ) 2 = 1 , j .
j = 1 n H i j H j k = 0 , i k ,
j = 1 n A i j k + = n 2 , i k .
P Z i ( z i ) = P 1 n [ Tr ( A i + X ) Tr ( A i X ) ] ( z i ) = P Tr ( A i + X ) T r ( A i X ) ( n z i )
P R + S + T + ( w ) = P R * P S * P T * | w ,
P R S ( u ) = P R * P S | u .
P R ( r ) = R r r ! exp ( R ) ,
P U ( u ) = k = 0 P R ( u + k ) P S ( k ) = exp [ ( R + S ) ] R u k = 0 ( R S ) k k ! ( u + k ) .
I n ( z ) = ( z 2 ) n k = 0 ( z 2 4 ) k k ! ( k + n ) ! ,
P U ( u ) = exp [ ( R + S ) ] ( R S ) u / 2 I u ( 2 R S ) .
Tr ( A i + X ) = n 2 X i + n 2 j = 1 n X j ,
Tr ( A i X ) = n 2 X i + n 2 j = 1 n X j .
P Z i ( z i ) = exp [ ( V i + W i ) ] × ( V i W i ) n z i / 2 I n z i ( 2 V i W i ) ,
V i : = Tr ( A i + X ) ,
W i : = Tr ( A i X ) .
V i : = Tr ( A i + X ) + n D ,
W i : = Tr ( A i X ) + n D .
L ( r ) = l = 1 m P Z i l ( z i l | r ; τ 1 , τ 2 , D , { z j l j i } ) ,

Metrics