Abstract

A new fabrication method to improve the optical extraction efficiency of light-emitting devices is presented. The morphology of a self-assembled block copolymer was transferred to the surface of a compound semiconductor to achieve a subwavelength columnar structure. The optical extraction efficiency of the substrates with subwavelength columnar structures of 350 nm pillar height, 130 nm diameter, and 180 nm pitch, improved 2.2 times compared to unprocessed substrates. This method does not require expensive exposure lithography tools and is therefore suitable for conventional semiconductor processes.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. K. Krames, H. Amano, J. J. Brown, P. L. Heremans, “Introduction to the issue on high-efficiency light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8, 185–188 (2002).
    [CrossRef]
  2. K. Streubel, N. Linder, R. Wirth, A. Jaeger, “High brightness AlGalnP light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8, 321–332 (2002).
    [CrossRef]
  3. I. Akasaki, “Nitride semiconductors—impact on the future world,” J. Cryst. Growth 237–239, 905–911 (2002).
    [CrossRef]
  4. R. Windisch, C. Rooman, B. Dutta, A. Knobloch, G. Borghs, G. H. Döhler, P. Heremans, “Light-extraction mechanisms in high-efficiency surface-textured light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8, 248–255 (2002).
    [CrossRef]
  5. M. E. Warren, R. E. Smith, G. A. Vawter, J. R. Wendt, “High-efficiency subwavelength diffractive optical-element in GaAs for 975 nm,” Opt. Lett. 20, 1441–1443 (1995).
    [CrossRef] [PubMed]
  6. F. T. Chen, H. G. Craighead, “Diffractive phase elements based on two-dimensional artificial dielectrics,” Opt. Lett. 20, 121–123 (1995).
    [CrossRef] [PubMed]
  7. P. Lalanne, S. Astilean, P. Chavel, E. Cambril, H. Launois, “Design and fabrication of blazed binary diffractive elements with sampling periods smaller than the structural cutoff,” J. Opt. Soc. Am. A 16, 1143–1156 (1999).
    [CrossRef]
  8. H. Toyota, K. Takahara, M. Okano, T. Yotsuya, H. Kikuta, “Fabrication of microcone array for antireflection structured surface using metal dotted pattern,” Jpn. J. Appl. Phys., Part 2 40, L747–L749 (2001).
    [CrossRef]
  9. Y. Kanamori, M. Sasaki, K. Hane, “Broadband antireflection gratings fabricated upon silicone substrate,” Opt. Lett. 24, 1422–1424 (1999).
    [CrossRef]
  10. Y. Kanamori, H. Kikuta, K. Hane, “Broadband antireflection gratings for glass substrates fabricated by fast atom beam etching,” Jpn. J. Appl. Phys. Part 2 39, L735–L737 (2000).
    [CrossRef]
  11. Y. Kanamori, K. Hane, H. Sai, H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett. 78, 142–143 (2001).
    [CrossRef]
  12. T. Nakanishi, T Hiraoka, A. Fujimoto, K. Asakawa, “Nanopatterning using an embedded particle monolayer as an etch mask,” in Proceedings of the International 2004 Microprocess and Nanotechnology Conference, Osaka, Japan, 2004, pp. 300–301.
  13. M. Park, C. Harrison, P. M. Chaikin, R. A. Register, D. H. Adamson, “Block copolymer lithography: Periodic arrays of 1011 holes in 1 square centimeter,” Science 276, 1401–1404 (1997).
    [CrossRef]
  14. K. Asakawa, T. Hiraoka, “Nanopatterning with microdomains of block copolymers using reactiveion etching selectivity,” Jpn. J. Appl. Phys. Part 1 41, 6112–6118 (2002).
    [CrossRef]
  15. K. Asakawa, T. Hiraoka, Y. Akasaka, Y. Hotta, “Method for manufacturing porous structure and method for forming pattern,” U.S. patent6,565,763 (20May2003).
  16. K. Asakawa, T. Hiraoka, H. Hieda, M. Sakurai, Y. Kamata, K. Naito, “Nanopatterning for patterned media using block copolymer,” J. Photopolym. Sci. Technol. 15, 465–470 (2002).
    [CrossRef]
  17. N. Naito, H. Hieda, M. Sakurai, Y. Kamata, K. Asakawa, “2.5-inch disk patterned media prepared by an artificially assisted self-assembling method,” IEEE Trans. Magn. 38, 1949–1951 (2002).
    [CrossRef]
  18. K. Asakawa, A. Fujimoto, H. Sugiyama, K. Ohashi, K. Suzuki, J. Tonotani, “Light-emitting device and method for manufacturing the same,” U.S. patent6,825,056 (30November2004).
  19. M. G. Moharan, T. K. Gaylord, “Rigorous coupled-wave analysis of planar-grating diffraction,” J. Opt. Soc. Am. 71, 811–818 (1981).
    [CrossRef]
  20. G. R. Strobl, The Physics of Polymers (Springer, 1997).
    [CrossRef]
  21. H. Gokan, S. Esho, Y. Ohnishi, “Dry etch resistance of organic materials,” J. Electrochem. Soc. 130, 143–146 (1983).
    [CrossRef]
  22. J. Brandrup, Polymer Handbook (Wiley, 1999).
  23. P. J. Flory, Principles of Polymer Chemistry (Cornell University Press, 1953).
  24. A. M. Mayers, T. P. Russell, S. K. Satija, C. F. Majkrzak, “Homopolymer distribution in ordered block copolymers,” Macromolecules 25, 6523–6531 (1992).
    [CrossRef]
  25. T. P. Russell, R. P. Hjelm, P. A. Seeger, “Temperature dependence of the interaction parameter of polystyrene and poly(methyl methacrylate),” Macromolecules 23, 890–893 (1990).
    [CrossRef]
  26. T. L. Morkved, M. Lu, A. M. Urbas, E. E. Ehrichs, H. M. Jaeger, P. Mansky, T. P. Russell, “Local control of microdomain orientation in diblock copolymer thin films with electric fields,” Science 273, 931–933 (1996).
    [CrossRef] [PubMed]

2002 (7)

R. K. Krames, H. Amano, J. J. Brown, P. L. Heremans, “Introduction to the issue on high-efficiency light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8, 185–188 (2002).
[CrossRef]

K. Streubel, N. Linder, R. Wirth, A. Jaeger, “High brightness AlGalnP light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8, 321–332 (2002).
[CrossRef]

I. Akasaki, “Nitride semiconductors—impact on the future world,” J. Cryst. Growth 237–239, 905–911 (2002).
[CrossRef]

R. Windisch, C. Rooman, B. Dutta, A. Knobloch, G. Borghs, G. H. Döhler, P. Heremans, “Light-extraction mechanisms in high-efficiency surface-textured light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8, 248–255 (2002).
[CrossRef]

K. Asakawa, T. Hiraoka, “Nanopatterning with microdomains of block copolymers using reactiveion etching selectivity,” Jpn. J. Appl. Phys. Part 1 41, 6112–6118 (2002).
[CrossRef]

K. Asakawa, T. Hiraoka, H. Hieda, M. Sakurai, Y. Kamata, K. Naito, “Nanopatterning for patterned media using block copolymer,” J. Photopolym. Sci. Technol. 15, 465–470 (2002).
[CrossRef]

N. Naito, H. Hieda, M. Sakurai, Y. Kamata, K. Asakawa, “2.5-inch disk patterned media prepared by an artificially assisted self-assembling method,” IEEE Trans. Magn. 38, 1949–1951 (2002).
[CrossRef]

2001 (2)

H. Toyota, K. Takahara, M. Okano, T. Yotsuya, H. Kikuta, “Fabrication of microcone array for antireflection structured surface using metal dotted pattern,” Jpn. J. Appl. Phys., Part 2 40, L747–L749 (2001).
[CrossRef]

Y. Kanamori, K. Hane, H. Sai, H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett. 78, 142–143 (2001).
[CrossRef]

2000 (1)

Y. Kanamori, H. Kikuta, K. Hane, “Broadband antireflection gratings for glass substrates fabricated by fast atom beam etching,” Jpn. J. Appl. Phys. Part 2 39, L735–L737 (2000).
[CrossRef]

1999 (2)

1997 (1)

M. Park, C. Harrison, P. M. Chaikin, R. A. Register, D. H. Adamson, “Block copolymer lithography: Periodic arrays of 1011 holes in 1 square centimeter,” Science 276, 1401–1404 (1997).
[CrossRef]

1996 (1)

T. L. Morkved, M. Lu, A. M. Urbas, E. E. Ehrichs, H. M. Jaeger, P. Mansky, T. P. Russell, “Local control of microdomain orientation in diblock copolymer thin films with electric fields,” Science 273, 931–933 (1996).
[CrossRef] [PubMed]

1995 (2)

1992 (1)

A. M. Mayers, T. P. Russell, S. K. Satija, C. F. Majkrzak, “Homopolymer distribution in ordered block copolymers,” Macromolecules 25, 6523–6531 (1992).
[CrossRef]

1990 (1)

T. P. Russell, R. P. Hjelm, P. A. Seeger, “Temperature dependence of the interaction parameter of polystyrene and poly(methyl methacrylate),” Macromolecules 23, 890–893 (1990).
[CrossRef]

1983 (1)

H. Gokan, S. Esho, Y. Ohnishi, “Dry etch resistance of organic materials,” J. Electrochem. Soc. 130, 143–146 (1983).
[CrossRef]

1981 (1)

Adamson, D. H.

M. Park, C. Harrison, P. M. Chaikin, R. A. Register, D. H. Adamson, “Block copolymer lithography: Periodic arrays of 1011 holes in 1 square centimeter,” Science 276, 1401–1404 (1997).
[CrossRef]

Akasaka, Y.

K. Asakawa, T. Hiraoka, Y. Akasaka, Y. Hotta, “Method for manufacturing porous structure and method for forming pattern,” U.S. patent6,565,763 (20May2003).

Akasaki, I.

I. Akasaki, “Nitride semiconductors—impact on the future world,” J. Cryst. Growth 237–239, 905–911 (2002).
[CrossRef]

Amano, H.

R. K. Krames, H. Amano, J. J. Brown, P. L. Heremans, “Introduction to the issue on high-efficiency light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8, 185–188 (2002).
[CrossRef]

Asakawa, K.

K. Asakawa, T. Hiraoka, “Nanopatterning with microdomains of block copolymers using reactiveion etching selectivity,” Jpn. J. Appl. Phys. Part 1 41, 6112–6118 (2002).
[CrossRef]

K. Asakawa, T. Hiraoka, H. Hieda, M. Sakurai, Y. Kamata, K. Naito, “Nanopatterning for patterned media using block copolymer,” J. Photopolym. Sci. Technol. 15, 465–470 (2002).
[CrossRef]

N. Naito, H. Hieda, M. Sakurai, Y. Kamata, K. Asakawa, “2.5-inch disk patterned media prepared by an artificially assisted self-assembling method,” IEEE Trans. Magn. 38, 1949–1951 (2002).
[CrossRef]

K. Asakawa, T. Hiraoka, Y. Akasaka, Y. Hotta, “Method for manufacturing porous structure and method for forming pattern,” U.S. patent6,565,763 (20May2003).

T. Nakanishi, T Hiraoka, A. Fujimoto, K. Asakawa, “Nanopatterning using an embedded particle monolayer as an etch mask,” in Proceedings of the International 2004 Microprocess and Nanotechnology Conference, Osaka, Japan, 2004, pp. 300–301.

K. Asakawa, A. Fujimoto, H. Sugiyama, K. Ohashi, K. Suzuki, J. Tonotani, “Light-emitting device and method for manufacturing the same,” U.S. patent6,825,056 (30November2004).

Astilean, S.

Borghs, G.

R. Windisch, C. Rooman, B. Dutta, A. Knobloch, G. Borghs, G. H. Döhler, P. Heremans, “Light-extraction mechanisms in high-efficiency surface-textured light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8, 248–255 (2002).
[CrossRef]

Brandrup, J.

J. Brandrup, Polymer Handbook (Wiley, 1999).

Brown, J. J.

R. K. Krames, H. Amano, J. J. Brown, P. L. Heremans, “Introduction to the issue on high-efficiency light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8, 185–188 (2002).
[CrossRef]

Cambril, E.

Chaikin, P. M.

M. Park, C. Harrison, P. M. Chaikin, R. A. Register, D. H. Adamson, “Block copolymer lithography: Periodic arrays of 1011 holes in 1 square centimeter,” Science 276, 1401–1404 (1997).
[CrossRef]

Chavel, P.

Chen, F. T.

Craighead, H. G.

Döhler, G. H.

R. Windisch, C. Rooman, B. Dutta, A. Knobloch, G. Borghs, G. H. Döhler, P. Heremans, “Light-extraction mechanisms in high-efficiency surface-textured light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8, 248–255 (2002).
[CrossRef]

Dutta, B.

R. Windisch, C. Rooman, B. Dutta, A. Knobloch, G. Borghs, G. H. Döhler, P. Heremans, “Light-extraction mechanisms in high-efficiency surface-textured light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8, 248–255 (2002).
[CrossRef]

Ehrichs, E. E.

T. L. Morkved, M. Lu, A. M. Urbas, E. E. Ehrichs, H. M. Jaeger, P. Mansky, T. P. Russell, “Local control of microdomain orientation in diblock copolymer thin films with electric fields,” Science 273, 931–933 (1996).
[CrossRef] [PubMed]

Esho, S.

H. Gokan, S. Esho, Y. Ohnishi, “Dry etch resistance of organic materials,” J. Electrochem. Soc. 130, 143–146 (1983).
[CrossRef]

Flory, P. J.

P. J. Flory, Principles of Polymer Chemistry (Cornell University Press, 1953).

Fujimoto, A.

T. Nakanishi, T Hiraoka, A. Fujimoto, K. Asakawa, “Nanopatterning using an embedded particle monolayer as an etch mask,” in Proceedings of the International 2004 Microprocess and Nanotechnology Conference, Osaka, Japan, 2004, pp. 300–301.

K. Asakawa, A. Fujimoto, H. Sugiyama, K. Ohashi, K. Suzuki, J. Tonotani, “Light-emitting device and method for manufacturing the same,” U.S. patent6,825,056 (30November2004).

Gaylord, T. K.

Gokan, H.

H. Gokan, S. Esho, Y. Ohnishi, “Dry etch resistance of organic materials,” J. Electrochem. Soc. 130, 143–146 (1983).
[CrossRef]

Hane, K.

Y. Kanamori, K. Hane, H. Sai, H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett. 78, 142–143 (2001).
[CrossRef]

Y. Kanamori, H. Kikuta, K. Hane, “Broadband antireflection gratings for glass substrates fabricated by fast atom beam etching,” Jpn. J. Appl. Phys. Part 2 39, L735–L737 (2000).
[CrossRef]

Y. Kanamori, M. Sasaki, K. Hane, “Broadband antireflection gratings fabricated upon silicone substrate,” Opt. Lett. 24, 1422–1424 (1999).
[CrossRef]

Harrison, C.

M. Park, C. Harrison, P. M. Chaikin, R. A. Register, D. H. Adamson, “Block copolymer lithography: Periodic arrays of 1011 holes in 1 square centimeter,” Science 276, 1401–1404 (1997).
[CrossRef]

Heremans, P.

R. Windisch, C. Rooman, B. Dutta, A. Knobloch, G. Borghs, G. H. Döhler, P. Heremans, “Light-extraction mechanisms in high-efficiency surface-textured light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8, 248–255 (2002).
[CrossRef]

Heremans, P. L.

R. K. Krames, H. Amano, J. J. Brown, P. L. Heremans, “Introduction to the issue on high-efficiency light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8, 185–188 (2002).
[CrossRef]

Hieda, H.

K. Asakawa, T. Hiraoka, H. Hieda, M. Sakurai, Y. Kamata, K. Naito, “Nanopatterning for patterned media using block copolymer,” J. Photopolym. Sci. Technol. 15, 465–470 (2002).
[CrossRef]

N. Naito, H. Hieda, M. Sakurai, Y. Kamata, K. Asakawa, “2.5-inch disk patterned media prepared by an artificially assisted self-assembling method,” IEEE Trans. Magn. 38, 1949–1951 (2002).
[CrossRef]

Hiraoka, T

T. Nakanishi, T Hiraoka, A. Fujimoto, K. Asakawa, “Nanopatterning using an embedded particle monolayer as an etch mask,” in Proceedings of the International 2004 Microprocess and Nanotechnology Conference, Osaka, Japan, 2004, pp. 300–301.

Hiraoka, T.

K. Asakawa, T. Hiraoka, H. Hieda, M. Sakurai, Y. Kamata, K. Naito, “Nanopatterning for patterned media using block copolymer,” J. Photopolym. Sci. Technol. 15, 465–470 (2002).
[CrossRef]

K. Asakawa, T. Hiraoka, “Nanopatterning with microdomains of block copolymers using reactiveion etching selectivity,” Jpn. J. Appl. Phys. Part 1 41, 6112–6118 (2002).
[CrossRef]

K. Asakawa, T. Hiraoka, Y. Akasaka, Y. Hotta, “Method for manufacturing porous structure and method for forming pattern,” U.S. patent6,565,763 (20May2003).

Hjelm, R. P.

T. P. Russell, R. P. Hjelm, P. A. Seeger, “Temperature dependence of the interaction parameter of polystyrene and poly(methyl methacrylate),” Macromolecules 23, 890–893 (1990).
[CrossRef]

Hotta, Y.

K. Asakawa, T. Hiraoka, Y. Akasaka, Y. Hotta, “Method for manufacturing porous structure and method for forming pattern,” U.S. patent6,565,763 (20May2003).

Jaeger, A.

K. Streubel, N. Linder, R. Wirth, A. Jaeger, “High brightness AlGalnP light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8, 321–332 (2002).
[CrossRef]

Jaeger, H. M.

T. L. Morkved, M. Lu, A. M. Urbas, E. E. Ehrichs, H. M. Jaeger, P. Mansky, T. P. Russell, “Local control of microdomain orientation in diblock copolymer thin films with electric fields,” Science 273, 931–933 (1996).
[CrossRef] [PubMed]

Kamata, Y.

N. Naito, H. Hieda, M. Sakurai, Y. Kamata, K. Asakawa, “2.5-inch disk patterned media prepared by an artificially assisted self-assembling method,” IEEE Trans. Magn. 38, 1949–1951 (2002).
[CrossRef]

K. Asakawa, T. Hiraoka, H. Hieda, M. Sakurai, Y. Kamata, K. Naito, “Nanopatterning for patterned media using block copolymer,” J. Photopolym. Sci. Technol. 15, 465–470 (2002).
[CrossRef]

Kanamori, Y.

Y. Kanamori, K. Hane, H. Sai, H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett. 78, 142–143 (2001).
[CrossRef]

Y. Kanamori, H. Kikuta, K. Hane, “Broadband antireflection gratings for glass substrates fabricated by fast atom beam etching,” Jpn. J. Appl. Phys. Part 2 39, L735–L737 (2000).
[CrossRef]

Y. Kanamori, M. Sasaki, K. Hane, “Broadband antireflection gratings fabricated upon silicone substrate,” Opt. Lett. 24, 1422–1424 (1999).
[CrossRef]

Kikuta, H.

H. Toyota, K. Takahara, M. Okano, T. Yotsuya, H. Kikuta, “Fabrication of microcone array for antireflection structured surface using metal dotted pattern,” Jpn. J. Appl. Phys., Part 2 40, L747–L749 (2001).
[CrossRef]

Y. Kanamori, H. Kikuta, K. Hane, “Broadband antireflection gratings for glass substrates fabricated by fast atom beam etching,” Jpn. J. Appl. Phys. Part 2 39, L735–L737 (2000).
[CrossRef]

Knobloch, A.

R. Windisch, C. Rooman, B. Dutta, A. Knobloch, G. Borghs, G. H. Döhler, P. Heremans, “Light-extraction mechanisms in high-efficiency surface-textured light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8, 248–255 (2002).
[CrossRef]

Krames, R. K.

R. K. Krames, H. Amano, J. J. Brown, P. L. Heremans, “Introduction to the issue on high-efficiency light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8, 185–188 (2002).
[CrossRef]

Lalanne, P.

Launois, H.

Linder, N.

K. Streubel, N. Linder, R. Wirth, A. Jaeger, “High brightness AlGalnP light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8, 321–332 (2002).
[CrossRef]

Lu, M.

T. L. Morkved, M. Lu, A. M. Urbas, E. E. Ehrichs, H. M. Jaeger, P. Mansky, T. P. Russell, “Local control of microdomain orientation in diblock copolymer thin films with electric fields,” Science 273, 931–933 (1996).
[CrossRef] [PubMed]

Majkrzak, C. F.

A. M. Mayers, T. P. Russell, S. K. Satija, C. F. Majkrzak, “Homopolymer distribution in ordered block copolymers,” Macromolecules 25, 6523–6531 (1992).
[CrossRef]

Mansky, P.

T. L. Morkved, M. Lu, A. M. Urbas, E. E. Ehrichs, H. M. Jaeger, P. Mansky, T. P. Russell, “Local control of microdomain orientation in diblock copolymer thin films with electric fields,” Science 273, 931–933 (1996).
[CrossRef] [PubMed]

Mayers, A. M.

A. M. Mayers, T. P. Russell, S. K. Satija, C. F. Majkrzak, “Homopolymer distribution in ordered block copolymers,” Macromolecules 25, 6523–6531 (1992).
[CrossRef]

Moharan, M. G.

Morkved, T. L.

T. L. Morkved, M. Lu, A. M. Urbas, E. E. Ehrichs, H. M. Jaeger, P. Mansky, T. P. Russell, “Local control of microdomain orientation in diblock copolymer thin films with electric fields,” Science 273, 931–933 (1996).
[CrossRef] [PubMed]

Naito, K.

K. Asakawa, T. Hiraoka, H. Hieda, M. Sakurai, Y. Kamata, K. Naito, “Nanopatterning for patterned media using block copolymer,” J. Photopolym. Sci. Technol. 15, 465–470 (2002).
[CrossRef]

Naito, N.

N. Naito, H. Hieda, M. Sakurai, Y. Kamata, K. Asakawa, “2.5-inch disk patterned media prepared by an artificially assisted self-assembling method,” IEEE Trans. Magn. 38, 1949–1951 (2002).
[CrossRef]

Nakanishi, T.

T. Nakanishi, T Hiraoka, A. Fujimoto, K. Asakawa, “Nanopatterning using an embedded particle monolayer as an etch mask,” in Proceedings of the International 2004 Microprocess and Nanotechnology Conference, Osaka, Japan, 2004, pp. 300–301.

Ohashi, K.

K. Asakawa, A. Fujimoto, H. Sugiyama, K. Ohashi, K. Suzuki, J. Tonotani, “Light-emitting device and method for manufacturing the same,” U.S. patent6,825,056 (30November2004).

Ohnishi, Y.

H. Gokan, S. Esho, Y. Ohnishi, “Dry etch resistance of organic materials,” J. Electrochem. Soc. 130, 143–146 (1983).
[CrossRef]

Okano, M.

H. Toyota, K. Takahara, M. Okano, T. Yotsuya, H. Kikuta, “Fabrication of microcone array for antireflection structured surface using metal dotted pattern,” Jpn. J. Appl. Phys., Part 2 40, L747–L749 (2001).
[CrossRef]

Park, M.

M. Park, C. Harrison, P. M. Chaikin, R. A. Register, D. H. Adamson, “Block copolymer lithography: Periodic arrays of 1011 holes in 1 square centimeter,” Science 276, 1401–1404 (1997).
[CrossRef]

Register, R. A.

M. Park, C. Harrison, P. M. Chaikin, R. A. Register, D. H. Adamson, “Block copolymer lithography: Periodic arrays of 1011 holes in 1 square centimeter,” Science 276, 1401–1404 (1997).
[CrossRef]

Rooman, C.

R. Windisch, C. Rooman, B. Dutta, A. Knobloch, G. Borghs, G. H. Döhler, P. Heremans, “Light-extraction mechanisms in high-efficiency surface-textured light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8, 248–255 (2002).
[CrossRef]

Russell, T. P.

T. L. Morkved, M. Lu, A. M. Urbas, E. E. Ehrichs, H. M. Jaeger, P. Mansky, T. P. Russell, “Local control of microdomain orientation in diblock copolymer thin films with electric fields,” Science 273, 931–933 (1996).
[CrossRef] [PubMed]

A. M. Mayers, T. P. Russell, S. K. Satija, C. F. Majkrzak, “Homopolymer distribution in ordered block copolymers,” Macromolecules 25, 6523–6531 (1992).
[CrossRef]

T. P. Russell, R. P. Hjelm, P. A. Seeger, “Temperature dependence of the interaction parameter of polystyrene and poly(methyl methacrylate),” Macromolecules 23, 890–893 (1990).
[CrossRef]

Sai, H.

Y. Kanamori, K. Hane, H. Sai, H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett. 78, 142–143 (2001).
[CrossRef]

Sakurai, M.

N. Naito, H. Hieda, M. Sakurai, Y. Kamata, K. Asakawa, “2.5-inch disk patterned media prepared by an artificially assisted self-assembling method,” IEEE Trans. Magn. 38, 1949–1951 (2002).
[CrossRef]

K. Asakawa, T. Hiraoka, H. Hieda, M. Sakurai, Y. Kamata, K. Naito, “Nanopatterning for patterned media using block copolymer,” J. Photopolym. Sci. Technol. 15, 465–470 (2002).
[CrossRef]

Sasaki, M.

Satija, S. K.

A. M. Mayers, T. P. Russell, S. K. Satija, C. F. Majkrzak, “Homopolymer distribution in ordered block copolymers,” Macromolecules 25, 6523–6531 (1992).
[CrossRef]

Seeger, P. A.

T. P. Russell, R. P. Hjelm, P. A. Seeger, “Temperature dependence of the interaction parameter of polystyrene and poly(methyl methacrylate),” Macromolecules 23, 890–893 (1990).
[CrossRef]

Smith, R. E.

Streubel, K.

K. Streubel, N. Linder, R. Wirth, A. Jaeger, “High brightness AlGalnP light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8, 321–332 (2002).
[CrossRef]

Strobl, G. R.

G. R. Strobl, The Physics of Polymers (Springer, 1997).
[CrossRef]

Sugiyama, H.

K. Asakawa, A. Fujimoto, H. Sugiyama, K. Ohashi, K. Suzuki, J. Tonotani, “Light-emitting device and method for manufacturing the same,” U.S. patent6,825,056 (30November2004).

Suzuki, K.

K. Asakawa, A. Fujimoto, H. Sugiyama, K. Ohashi, K. Suzuki, J. Tonotani, “Light-emitting device and method for manufacturing the same,” U.S. patent6,825,056 (30November2004).

Takahara, K.

H. Toyota, K. Takahara, M. Okano, T. Yotsuya, H. Kikuta, “Fabrication of microcone array for antireflection structured surface using metal dotted pattern,” Jpn. J. Appl. Phys., Part 2 40, L747–L749 (2001).
[CrossRef]

Tonotani, J.

K. Asakawa, A. Fujimoto, H. Sugiyama, K. Ohashi, K. Suzuki, J. Tonotani, “Light-emitting device and method for manufacturing the same,” U.S. patent6,825,056 (30November2004).

Toyota, H.

H. Toyota, K. Takahara, M. Okano, T. Yotsuya, H. Kikuta, “Fabrication of microcone array for antireflection structured surface using metal dotted pattern,” Jpn. J. Appl. Phys., Part 2 40, L747–L749 (2001).
[CrossRef]

Urbas, A. M.

T. L. Morkved, M. Lu, A. M. Urbas, E. E. Ehrichs, H. M. Jaeger, P. Mansky, T. P. Russell, “Local control of microdomain orientation in diblock copolymer thin films with electric fields,” Science 273, 931–933 (1996).
[CrossRef] [PubMed]

Vawter, G. A.

Warren, M. E.

Wendt, J. R.

Windisch, R.

R. Windisch, C. Rooman, B. Dutta, A. Knobloch, G. Borghs, G. H. Döhler, P. Heremans, “Light-extraction mechanisms in high-efficiency surface-textured light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8, 248–255 (2002).
[CrossRef]

Wirth, R.

K. Streubel, N. Linder, R. Wirth, A. Jaeger, “High brightness AlGalnP light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8, 321–332 (2002).
[CrossRef]

Yotsuya, T.

H. Toyota, K. Takahara, M. Okano, T. Yotsuya, H. Kikuta, “Fabrication of microcone array for antireflection structured surface using metal dotted pattern,” Jpn. J. Appl. Phys., Part 2 40, L747–L749 (2001).
[CrossRef]

Yugami, H.

Y. Kanamori, K. Hane, H. Sai, H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett. 78, 142–143 (2001).
[CrossRef]

Appl. Phys. Lett. (1)

Y. Kanamori, K. Hane, H. Sai, H. Yugami, “100 nm period silicon antireflection structures fabricated using a porous alumina membrane mask,” Appl. Phys. Lett. 78, 142–143 (2001).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (3)

R. K. Krames, H. Amano, J. J. Brown, P. L. Heremans, “Introduction to the issue on high-efficiency light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8, 185–188 (2002).
[CrossRef]

K. Streubel, N. Linder, R. Wirth, A. Jaeger, “High brightness AlGalnP light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8, 321–332 (2002).
[CrossRef]

R. Windisch, C. Rooman, B. Dutta, A. Knobloch, G. Borghs, G. H. Döhler, P. Heremans, “Light-extraction mechanisms in high-efficiency surface-textured light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8, 248–255 (2002).
[CrossRef]

IEEE Trans. Magn. (1)

N. Naito, H. Hieda, M. Sakurai, Y. Kamata, K. Asakawa, “2.5-inch disk patterned media prepared by an artificially assisted self-assembling method,” IEEE Trans. Magn. 38, 1949–1951 (2002).
[CrossRef]

J. Cryst. Growth (1)

I. Akasaki, “Nitride semiconductors—impact on the future world,” J. Cryst. Growth 237–239, 905–911 (2002).
[CrossRef]

J. Electrochem. Soc. (1)

H. Gokan, S. Esho, Y. Ohnishi, “Dry etch resistance of organic materials,” J. Electrochem. Soc. 130, 143–146 (1983).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

J. Photopolym. Sci. Technol. (1)

K. Asakawa, T. Hiraoka, H. Hieda, M. Sakurai, Y. Kamata, K. Naito, “Nanopatterning for patterned media using block copolymer,” J. Photopolym. Sci. Technol. 15, 465–470 (2002).
[CrossRef]

Jpn. J. Appl. Phys. (3)

H. Toyota, K. Takahara, M. Okano, T. Yotsuya, H. Kikuta, “Fabrication of microcone array for antireflection structured surface using metal dotted pattern,” Jpn. J. Appl. Phys., Part 2 40, L747–L749 (2001).
[CrossRef]

Y. Kanamori, H. Kikuta, K. Hane, “Broadband antireflection gratings for glass substrates fabricated by fast atom beam etching,” Jpn. J. Appl. Phys. Part 2 39, L735–L737 (2000).
[CrossRef]

K. Asakawa, T. Hiraoka, “Nanopatterning with microdomains of block copolymers using reactiveion etching selectivity,” Jpn. J. Appl. Phys. Part 1 41, 6112–6118 (2002).
[CrossRef]

Macromolecules (2)

A. M. Mayers, T. P. Russell, S. K. Satija, C. F. Majkrzak, “Homopolymer distribution in ordered block copolymers,” Macromolecules 25, 6523–6531 (1992).
[CrossRef]

T. P. Russell, R. P. Hjelm, P. A. Seeger, “Temperature dependence of the interaction parameter of polystyrene and poly(methyl methacrylate),” Macromolecules 23, 890–893 (1990).
[CrossRef]

Opt. Lett. (3)

Science (2)

T. L. Morkved, M. Lu, A. M. Urbas, E. E. Ehrichs, H. M. Jaeger, P. Mansky, T. P. Russell, “Local control of microdomain orientation in diblock copolymer thin films with electric fields,” Science 273, 931–933 (1996).
[CrossRef] [PubMed]

M. Park, C. Harrison, P. M. Chaikin, R. A. Register, D. H. Adamson, “Block copolymer lithography: Periodic arrays of 1011 holes in 1 square centimeter,” Science 276, 1401–1404 (1997).
[CrossRef]

Other (6)

K. Asakawa, A. Fujimoto, H. Sugiyama, K. Ohashi, K. Suzuki, J. Tonotani, “Light-emitting device and method for manufacturing the same,” U.S. patent6,825,056 (30November2004).

G. R. Strobl, The Physics of Polymers (Springer, 1997).
[CrossRef]

J. Brandrup, Polymer Handbook (Wiley, 1999).

P. J. Flory, Principles of Polymer Chemistry (Cornell University Press, 1953).

K. Asakawa, T. Hiraoka, Y. Akasaka, Y. Hotta, “Method for manufacturing porous structure and method for forming pattern,” U.S. patent6,565,763 (20May2003).

T. Nakanishi, T Hiraoka, A. Fujimoto, K. Asakawa, “Nanopatterning using an embedded particle monolayer as an etch mask,” in Proceedings of the International 2004 Microprocess and Nanotechnology Conference, Osaka, Japan, 2004, pp. 300–301.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic process of fabricating an optical extraction columnar structure on a substrate.

Fig. 2
Fig. 2

Chemical structure of PS–PMMA block copolymer and a schematic of the self-assembled structure.

Fig. 3
Fig. 3

Change in the microphase-separated patterns of blends of PS–PMMA block copolymer and PMMA homopolymer by mixing ratio. The numbers in parentheses are diameters of PS spheres.

Fig. 4
Fig. 4

Change in the microphase-separated patterns of 6:4 blends of PS–PMMA block copolymer and PMMA homopolymer observed by AFM at various annealing temperatures. Spherical domains become more circular in shape as they get to higher temperatures, but if they exceed 240 °C, the polymer starts decomposing.

Fig. 5
Fig. 5

Chemical formula of SOG (methyl siloxane) used as an etch mask of GaP etching.

Fig. 6
Fig. 6

AFM image (1) and SEM image (2)–(5) after each processing step. (1) Microphase-separated structure of PS–PMMA. (2) Remaining PS after PMMA of PS–PMMA was removed by O2 plasma etching. (3) SOG pattern transferred from PS pattern by CF4 RIE. (4) GaP substrate was etched by BCl3/Cl2/CF4 and a columnar structure was formed. (5) GaP cylinders were tapered by Ar sputtering.

Fig. 7
Fig. 7

Diagram of a light-extraction efficiency measuring device. Red fluorescent material generated light (λ = 600 nm) and it entered from the back. The light traveling through the substrate was collected by an integrating sphere and measured.

Fig. 8
Fig. 8

Photograph of the samples observed from the processed side surface (upper). The red light (λ = 600 nm) enters from the back. The extraction efficiency of light increased 2.2 times for the processed sample (right) as compared to the flat surface sample (left) and the SEM image of the columnar structure of the processed GaP substrate surface (lower).

Tables (1)

Tables Icon

Table 1 Etch Rate of Several Materials Under RIE of BCI3/CI2 = 5/20 SCCM with Capacity-Coupling-Type Plasma (ICP), Incidence Electric Power/Bias Electric Power = 100/100 W, 5 mTorr

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

R etch N / ( N C N O ) ,

Metrics