Abstract

An in-line type micropulse lidar (MPL) with an annular beam was designed and the transmitting and receiving characteristics were analyzed. Because the in-line MPL utilizes a common telescope for a transmitter and a receiver and the annular beam always overlaps with the receiver’s field of view (FOV), it can measure near-range lidar echoes with a narrow FOV. The transmitting annular beam changes its shape to a nearly nondiffractive beam through propagation. It improves the spatial resolution of the lidar observation. The receiving characteristics showed the ideal lidar echo variation, which was inversely proportional to the square of the distance the beam propagated, even if it was in the near range.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Trauger, J. T. Sroga, F. L. Roesler, J. A. Weinman, “High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1: Theory and instrumentation,” Appl. Opt. 22, 3716–3724 (1983).
    [CrossRef] [PubMed]
  2. J. T. Sroga, E. W. Eloranta, S. T. Shipley, F. L. Roesler, P. J. Tryon, “High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 2: Calibration and data analysis,” Appl. Opt. 22, 3725–3732 (1983).
    [CrossRef] [PubMed]
  3. H. Shimizu, S. A. Lee, C. Y. She, “High spectral resolution lidar system with atomic blocking filters for measuring atmospheric parameters,” Appl. Opt. 22, 1373–1381 (1983).
    [CrossRef] [PubMed]
  4. J. D. Spinhirne, “Micro pulse lidar,” IEEE Trans. Geosci. Remote Sens. 31, 48–55 (1993).
    [CrossRef]
  5. J. D. Spinhirne, “Micro pulse lidar systems and applications,” in Proceedings of 17th International Laser Radar Conference1994, pp. 162–165.
  6. C. J. Grund, S. P. Sandberg, “Depolarization and backscatter lidar for unattended operation,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer, Berlin, 1996), pp. 3–6.
  7. H. S. Lee, I. H. Hwang, J. D. Spinhirne, V. S. Scott, “Micro pulse lidar for aerosol and cloud measurement,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer, Berlin, 1996), pp. 7–10.
  8. I. H. Hwang, M. K. Nam, B. Ranganayakamma, H. S. Lee, “A compact eye-safe dual wavelength lidar and application in biological aerosol detection,” in Lidar Remote Sensing in Atmospheric and Earth Sciences, Proceedings of the 21st International Laser Radar Conference, Part I, L. Bissonnette, G. Roy, G. Vallee, eds. (Defence R&D, Canada, 2002), pp. 205–208.
  9. T. Shiina, E. Minami, M. Ito, Y. Okamura, “Optical circulator for in-line type compact lidar,” Appl. Opt. 41, 3900–3905 (2002).
    [CrossRef] [PubMed]
  10. T. Shiina, K. Yoshida, M. Ito, Y. Okamura, “In-line type micropulse lidar with an annular beam,” Appl. Opt. 44, 7408–7414 (2005).
  11. K. Kono, M. Irie, T. Minemonto, “Generation of nearly diffraction-free beam using a new optical system,” Opt. Rev. 4, 423–428 (1997).
    [CrossRef]
  12. K. Kono, Y. Mitarai, T. Minemoto, “New super-resolution optics with double-concave-cone lens for optical disk memories,” Opt. Mem. Neural Networks 5, 279–285 (1996).
  13. R. M. Measures, Laser Remote Sensing (Wiley, New York, 1984).
  14. T. Halldorsson, J. Langerholc, “Geometrical form factors for the lidar function,” Appl. Opt. 17, 240–244 (1978).
    [CrossRef] [PubMed]
  15. J. Harms, “Lidar return signals for coaxial and noncoaxial systems with central obstruction,” Appl. Opt. 18, 1559–1566 (1979).
    [CrossRef] [PubMed]
  16. N. Sugimoto, I. Matsui, Y. Sasano, “Design of lidar transmitter-receiver optics for lower atmospheric observations: Geometrical form factor in lidar equation,” Jpn. J. Opt. 19, 687–693 (1990).
  17. L. L. Doskolovich, S. N. Khonina, V. V. Kotlyar, I. V. Nikolsky, V. A. Soifer, G. V. Uspleniev, “Focusators into a ring,” Opt. Quant. Electron. 25, 801–814 (1993).
    [CrossRef]
  18. V. Soifer, V. Kotlyar, L. Doskolovich, Iterative Methods for Diffractive Optical Elements Computation (Taylor & Francis, London, 1997).
  19. J. Durnin, J. J. Miceli, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
    [CrossRef] [PubMed]
  20. G. Indebetouw, “Nondiffracting optical fields: Some remarks on their analysis and synthesis,” J. Opt. Soc. Am. A 6, 150–152 (1989).
    [CrossRef]
  21. G. Scott, N. McArdle, “Efficient generation of nearly diffraction-free beams using an axicon,” Opt. Eng. 31, 2640–2643 (1992).
    [CrossRef]
  22. R. Arimoto, C. Saloma, T. Tanaka, S. Kawata, “Imaging properties of axicon in a scanning optical system,” Appl. Opt. 31, 6653–6657 (1992).
    [CrossRef] [PubMed]
  23. P. Belanger, M. Rioux, “Ring pattern of a lens–axicon doublet illuminated by a Gaussian beam,” Appl. Opt. 17, 1080–1086 (1978).
    [CrossRef]

2005 (1)

T. Shiina, K. Yoshida, M. Ito, Y. Okamura, “In-line type micropulse lidar with an annular beam,” Appl. Opt. 44, 7408–7414 (2005).

2002 (1)

1997 (1)

K. Kono, M. Irie, T. Minemonto, “Generation of nearly diffraction-free beam using a new optical system,” Opt. Rev. 4, 423–428 (1997).
[CrossRef]

1996 (1)

K. Kono, Y. Mitarai, T. Minemoto, “New super-resolution optics with double-concave-cone lens for optical disk memories,” Opt. Mem. Neural Networks 5, 279–285 (1996).

1994 (1)

J. D. Spinhirne, “Micro pulse lidar systems and applications,” in Proceedings of 17th International Laser Radar Conference1994, pp. 162–165.

1993 (2)

J. D. Spinhirne, “Micro pulse lidar,” IEEE Trans. Geosci. Remote Sens. 31, 48–55 (1993).
[CrossRef]

L. L. Doskolovich, S. N. Khonina, V. V. Kotlyar, I. V. Nikolsky, V. A. Soifer, G. V. Uspleniev, “Focusators into a ring,” Opt. Quant. Electron. 25, 801–814 (1993).
[CrossRef]

1992 (2)

G. Scott, N. McArdle, “Efficient generation of nearly diffraction-free beams using an axicon,” Opt. Eng. 31, 2640–2643 (1992).
[CrossRef]

R. Arimoto, C. Saloma, T. Tanaka, S. Kawata, “Imaging properties of axicon in a scanning optical system,” Appl. Opt. 31, 6653–6657 (1992).
[CrossRef] [PubMed]

1990 (1)

N. Sugimoto, I. Matsui, Y. Sasano, “Design of lidar transmitter-receiver optics for lower atmospheric observations: Geometrical form factor in lidar equation,” Jpn. J. Opt. 19, 687–693 (1990).

1989 (1)

1987 (1)

J. Durnin, J. J. Miceli, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[CrossRef] [PubMed]

1983 (3)

1979 (1)

1978 (2)

Arimoto, R.

Belanger, P.

Doskolovich, L.

V. Soifer, V. Kotlyar, L. Doskolovich, Iterative Methods for Diffractive Optical Elements Computation (Taylor & Francis, London, 1997).

Doskolovich, L. L.

L. L. Doskolovich, S. N. Khonina, V. V. Kotlyar, I. V. Nikolsky, V. A. Soifer, G. V. Uspleniev, “Focusators into a ring,” Opt. Quant. Electron. 25, 801–814 (1993).
[CrossRef]

Durnin, J.

J. Durnin, J. J. Miceli, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[CrossRef] [PubMed]

Eloranta, E. W.

Grund, C. J.

C. J. Grund, S. P. Sandberg, “Depolarization and backscatter lidar for unattended operation,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer, Berlin, 1996), pp. 3–6.

Halldorsson, T.

Harms, J.

Hwang, I. H.

H. S. Lee, I. H. Hwang, J. D. Spinhirne, V. S. Scott, “Micro pulse lidar for aerosol and cloud measurement,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer, Berlin, 1996), pp. 7–10.

I. H. Hwang, M. K. Nam, B. Ranganayakamma, H. S. Lee, “A compact eye-safe dual wavelength lidar and application in biological aerosol detection,” in Lidar Remote Sensing in Atmospheric and Earth Sciences, Proceedings of the 21st International Laser Radar Conference, Part I, L. Bissonnette, G. Roy, G. Vallee, eds. (Defence R&D, Canada, 2002), pp. 205–208.

Indebetouw, G.

Irie, M.

K. Kono, M. Irie, T. Minemonto, “Generation of nearly diffraction-free beam using a new optical system,” Opt. Rev. 4, 423–428 (1997).
[CrossRef]

Ito, M.

T. Shiina, K. Yoshida, M. Ito, Y. Okamura, “In-line type micropulse lidar with an annular beam,” Appl. Opt. 44, 7408–7414 (2005).

T. Shiina, E. Minami, M. Ito, Y. Okamura, “Optical circulator for in-line type compact lidar,” Appl. Opt. 41, 3900–3905 (2002).
[CrossRef] [PubMed]

Kawata, S.

Khonina, S. N.

L. L. Doskolovich, S. N. Khonina, V. V. Kotlyar, I. V. Nikolsky, V. A. Soifer, G. V. Uspleniev, “Focusators into a ring,” Opt. Quant. Electron. 25, 801–814 (1993).
[CrossRef]

Kono, K.

K. Kono, M. Irie, T. Minemonto, “Generation of nearly diffraction-free beam using a new optical system,” Opt. Rev. 4, 423–428 (1997).
[CrossRef]

K. Kono, Y. Mitarai, T. Minemoto, “New super-resolution optics with double-concave-cone lens for optical disk memories,” Opt. Mem. Neural Networks 5, 279–285 (1996).

Kotlyar, V.

V. Soifer, V. Kotlyar, L. Doskolovich, Iterative Methods for Diffractive Optical Elements Computation (Taylor & Francis, London, 1997).

Kotlyar, V. V.

L. L. Doskolovich, S. N. Khonina, V. V. Kotlyar, I. V. Nikolsky, V. A. Soifer, G. V. Uspleniev, “Focusators into a ring,” Opt. Quant. Electron. 25, 801–814 (1993).
[CrossRef]

Langerholc, J.

Lee, H. S.

I. H. Hwang, M. K. Nam, B. Ranganayakamma, H. S. Lee, “A compact eye-safe dual wavelength lidar and application in biological aerosol detection,” in Lidar Remote Sensing in Atmospheric and Earth Sciences, Proceedings of the 21st International Laser Radar Conference, Part I, L. Bissonnette, G. Roy, G. Vallee, eds. (Defence R&D, Canada, 2002), pp. 205–208.

H. S. Lee, I. H. Hwang, J. D. Spinhirne, V. S. Scott, “Micro pulse lidar for aerosol and cloud measurement,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer, Berlin, 1996), pp. 7–10.

Lee, S. A.

Matsui, I.

N. Sugimoto, I. Matsui, Y. Sasano, “Design of lidar transmitter-receiver optics for lower atmospheric observations: Geometrical form factor in lidar equation,” Jpn. J. Opt. 19, 687–693 (1990).

McArdle, N.

G. Scott, N. McArdle, “Efficient generation of nearly diffraction-free beams using an axicon,” Opt. Eng. 31, 2640–2643 (1992).
[CrossRef]

Measures, R. M.

R. M. Measures, Laser Remote Sensing (Wiley, New York, 1984).

Miceli, J. J.

J. Durnin, J. J. Miceli, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[CrossRef] [PubMed]

Minami, E.

Minemonto, T.

K. Kono, M. Irie, T. Minemonto, “Generation of nearly diffraction-free beam using a new optical system,” Opt. Rev. 4, 423–428 (1997).
[CrossRef]

Minemoto, T.

K. Kono, Y. Mitarai, T. Minemoto, “New super-resolution optics with double-concave-cone lens for optical disk memories,” Opt. Mem. Neural Networks 5, 279–285 (1996).

Mitarai, Y.

K. Kono, Y. Mitarai, T. Minemoto, “New super-resolution optics with double-concave-cone lens for optical disk memories,” Opt. Mem. Neural Networks 5, 279–285 (1996).

Nam, M. K.

I. H. Hwang, M. K. Nam, B. Ranganayakamma, H. S. Lee, “A compact eye-safe dual wavelength lidar and application in biological aerosol detection,” in Lidar Remote Sensing in Atmospheric and Earth Sciences, Proceedings of the 21st International Laser Radar Conference, Part I, L. Bissonnette, G. Roy, G. Vallee, eds. (Defence R&D, Canada, 2002), pp. 205–208.

Nikolsky, I. V.

L. L. Doskolovich, S. N. Khonina, V. V. Kotlyar, I. V. Nikolsky, V. A. Soifer, G. V. Uspleniev, “Focusators into a ring,” Opt. Quant. Electron. 25, 801–814 (1993).
[CrossRef]

Okamura, Y.

T. Shiina, K. Yoshida, M. Ito, Y. Okamura, “In-line type micropulse lidar with an annular beam,” Appl. Opt. 44, 7408–7414 (2005).

T. Shiina, E. Minami, M. Ito, Y. Okamura, “Optical circulator for in-line type compact lidar,” Appl. Opt. 41, 3900–3905 (2002).
[CrossRef] [PubMed]

Ranganayakamma, B.

I. H. Hwang, M. K. Nam, B. Ranganayakamma, H. S. Lee, “A compact eye-safe dual wavelength lidar and application in biological aerosol detection,” in Lidar Remote Sensing in Atmospheric and Earth Sciences, Proceedings of the 21st International Laser Radar Conference, Part I, L. Bissonnette, G. Roy, G. Vallee, eds. (Defence R&D, Canada, 2002), pp. 205–208.

Rioux, M.

Roesler, F. L.

Saloma, C.

Sandberg, S. P.

C. J. Grund, S. P. Sandberg, “Depolarization and backscatter lidar for unattended operation,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer, Berlin, 1996), pp. 3–6.

Sasano, Y.

N. Sugimoto, I. Matsui, Y. Sasano, “Design of lidar transmitter-receiver optics for lower atmospheric observations: Geometrical form factor in lidar equation,” Jpn. J. Opt. 19, 687–693 (1990).

Scott, G.

G. Scott, N. McArdle, “Efficient generation of nearly diffraction-free beams using an axicon,” Opt. Eng. 31, 2640–2643 (1992).
[CrossRef]

Scott, V. S.

H. S. Lee, I. H. Hwang, J. D. Spinhirne, V. S. Scott, “Micro pulse lidar for aerosol and cloud measurement,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer, Berlin, 1996), pp. 7–10.

She, C. Y.

Shiina, T.

T. Shiina, K. Yoshida, M. Ito, Y. Okamura, “In-line type micropulse lidar with an annular beam,” Appl. Opt. 44, 7408–7414 (2005).

T. Shiina, E. Minami, M. Ito, Y. Okamura, “Optical circulator for in-line type compact lidar,” Appl. Opt. 41, 3900–3905 (2002).
[CrossRef] [PubMed]

Shimizu, H.

Shipley, S. T.

Soifer, V.

V. Soifer, V. Kotlyar, L. Doskolovich, Iterative Methods for Diffractive Optical Elements Computation (Taylor & Francis, London, 1997).

Soifer, V. A.

L. L. Doskolovich, S. N. Khonina, V. V. Kotlyar, I. V. Nikolsky, V. A. Soifer, G. V. Uspleniev, “Focusators into a ring,” Opt. Quant. Electron. 25, 801–814 (1993).
[CrossRef]

Spinhirne, J. D.

J. D. Spinhirne, “Micro pulse lidar systems and applications,” in Proceedings of 17th International Laser Radar Conference1994, pp. 162–165.

J. D. Spinhirne, “Micro pulse lidar,” IEEE Trans. Geosci. Remote Sens. 31, 48–55 (1993).
[CrossRef]

H. S. Lee, I. H. Hwang, J. D. Spinhirne, V. S. Scott, “Micro pulse lidar for aerosol and cloud measurement,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer, Berlin, 1996), pp. 7–10.

Sroga, J. T.

Sugimoto, N.

N. Sugimoto, I. Matsui, Y. Sasano, “Design of lidar transmitter-receiver optics for lower atmospheric observations: Geometrical form factor in lidar equation,” Jpn. J. Opt. 19, 687–693 (1990).

Tanaka, T.

Tracy, D. H.

Trauger, J. T.

Tryon, P. J.

Uspleniev, G. V.

L. L. Doskolovich, S. N. Khonina, V. V. Kotlyar, I. V. Nikolsky, V. A. Soifer, G. V. Uspleniev, “Focusators into a ring,” Opt. Quant. Electron. 25, 801–814 (1993).
[CrossRef]

Weinman, J. A.

Yoshida, K.

T. Shiina, K. Yoshida, M. Ito, Y. Okamura, “In-line type micropulse lidar with an annular beam,” Appl. Opt. 44, 7408–7414 (2005).

Appl. Opt. (9)

S. T. Shipley, D. H. Tracy, E. W. Eloranta, J. T. Trauger, J. T. Sroga, F. L. Roesler, J. A. Weinman, “High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 1: Theory and instrumentation,” Appl. Opt. 22, 3716–3724 (1983).
[CrossRef] [PubMed]

J. T. Sroga, E. W. Eloranta, S. T. Shipley, F. L. Roesler, P. J. Tryon, “High spectral resolution lidar to measure optical scattering properties of atmospheric aerosols. 2: Calibration and data analysis,” Appl. Opt. 22, 3725–3732 (1983).
[CrossRef] [PubMed]

H. Shimizu, S. A. Lee, C. Y. She, “High spectral resolution lidar system with atomic blocking filters for measuring atmospheric parameters,” Appl. Opt. 22, 1373–1381 (1983).
[CrossRef] [PubMed]

T. Shiina, E. Minami, M. Ito, Y. Okamura, “Optical circulator for in-line type compact lidar,” Appl. Opt. 41, 3900–3905 (2002).
[CrossRef] [PubMed]

T. Shiina, K. Yoshida, M. Ito, Y. Okamura, “In-line type micropulse lidar with an annular beam,” Appl. Opt. 44, 7408–7414 (2005).

T. Halldorsson, J. Langerholc, “Geometrical form factors for the lidar function,” Appl. Opt. 17, 240–244 (1978).
[CrossRef] [PubMed]

J. Harms, “Lidar return signals for coaxial and noncoaxial systems with central obstruction,” Appl. Opt. 18, 1559–1566 (1979).
[CrossRef] [PubMed]

R. Arimoto, C. Saloma, T. Tanaka, S. Kawata, “Imaging properties of axicon in a scanning optical system,” Appl. Opt. 31, 6653–6657 (1992).
[CrossRef] [PubMed]

P. Belanger, M. Rioux, “Ring pattern of a lens–axicon doublet illuminated by a Gaussian beam,” Appl. Opt. 17, 1080–1086 (1978).
[CrossRef]

IEEE Trans. Geosci. Remote Sens. (1)

J. D. Spinhirne, “Micro pulse lidar,” IEEE Trans. Geosci. Remote Sens. 31, 48–55 (1993).
[CrossRef]

J. Opt. Soc. Am. A (1)

Jpn. J. Opt. (1)

N. Sugimoto, I. Matsui, Y. Sasano, “Design of lidar transmitter-receiver optics for lower atmospheric observations: Geometrical form factor in lidar equation,” Jpn. J. Opt. 19, 687–693 (1990).

Opt. Eng. (1)

G. Scott, N. McArdle, “Efficient generation of nearly diffraction-free beams using an axicon,” Opt. Eng. 31, 2640–2643 (1992).
[CrossRef]

Opt. Mem. Neural Networks (1)

K. Kono, Y. Mitarai, T. Minemoto, “New super-resolution optics with double-concave-cone lens for optical disk memories,” Opt. Mem. Neural Networks 5, 279–285 (1996).

Opt. Quant. Electron. (1)

L. L. Doskolovich, S. N. Khonina, V. V. Kotlyar, I. V. Nikolsky, V. A. Soifer, G. V. Uspleniev, “Focusators into a ring,” Opt. Quant. Electron. 25, 801–814 (1993).
[CrossRef]

Opt. Rev. (1)

K. Kono, M. Irie, T. Minemonto, “Generation of nearly diffraction-free beam using a new optical system,” Opt. Rev. 4, 423–428 (1997).
[CrossRef]

Phys. Rev. Lett. (1)

J. Durnin, J. J. Miceli, “Diffraction-free beams,” Phys. Rev. Lett. 58, 1499–1501 (1987).
[CrossRef] [PubMed]

Proceedings of 17th International Laser Radar Conference (1)

J. D. Spinhirne, “Micro pulse lidar systems and applications,” in Proceedings of 17th International Laser Radar Conference1994, pp. 162–165.

Other (5)

C. J. Grund, S. P. Sandberg, “Depolarization and backscatter lidar for unattended operation,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer, Berlin, 1996), pp. 3–6.

H. S. Lee, I. H. Hwang, J. D. Spinhirne, V. S. Scott, “Micro pulse lidar for aerosol and cloud measurement,” in Advances in Atmospheric Remote Sensing with Lidar, A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer, Berlin, 1996), pp. 7–10.

I. H. Hwang, M. K. Nam, B. Ranganayakamma, H. S. Lee, “A compact eye-safe dual wavelength lidar and application in biological aerosol detection,” in Lidar Remote Sensing in Atmospheric and Earth Sciences, Proceedings of the 21st International Laser Radar Conference, Part I, L. Bissonnette, G. Roy, G. Vallee, eds. (Defence R&D, Canada, 2002), pp. 205–208.

R. M. Measures, Laser Remote Sensing (Wiley, New York, 1984).

V. Soifer, V. Kotlyar, L. Doskolovich, Iterative Methods for Diffractive Optical Elements Computation (Taylor & Francis, London, 1997).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Wavefront transducer.

Fig. 2
Fig. 2

Reference frames of the transmitting and the receiving condition on the in-line type lidar operation.

Fig. 3
Fig. 3

Propagation of the annular beam. The beam is fully collimated. The distance was calculated with a telescope diameter of 30 cmϕ and a wavelength of 1.047 µm.

Fig. 4
Fig. 4

Variation of the center peak intensity of the nondiffractive beam due to the propagated distance.

Fig. 5
Fig. 5

Efficiency distribution of the reflecting telescope with the FSA at the near distance. The distance was calculated with the same conditions as described in Fig. 3.

Fig. 6
Fig. 6

Arrangements of lidar optics.

Fig. 7
Fig. 7

Variations of geometric form factors Y(L) with the three lidars.

Fig. 8
Fig. 8

Estimation of signal-to-noise ratio with three lidars.

Fig. 9
Fig. 9

Estimation of cloud echo with the in-line type MPL.

Tables (1)

Tables Icon

Table 1 Specifications for Three Lidars

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

g ( x ) = 1 π h 2 exp [ ( x h ) 2 ] .
a 1 ( r ) = R r r g ( R r ) = R r r 1 π h 2 × exp [ ( R r h ) 2 ] .
a 2 ( r 2 ) = c a 1 ( r ) exp ( k l r s ) ( 1 + cos η ) r d r d θ ,
P r ( L ) = P 0 K A r c τ 2 β ( L ) Y ( L ) T ( L ) 2 / L 2 + P b , T ( L ) = exp [ 0 L α ( l ) d l ] ,
SNR = M n Δ t / h υ P r ( L ) μ P r ( L ) + P d ,
m = λ L R 2 ,

Metrics