Abstract

The spatial distribution of the power transfer achieved by contradirectional two-beam coupling using self-pumped photorefractive reflection gratings is investigated in two materials with different photorefractive gain coefficients, LiNbO3:Fe and KNbO3:Fe. Incremental portions of the volume grating are erased optically by inducing thin optical damage planes, reducing the overall two-beam coupling efficiency. By monitoring the effect of local grating disruption, the distribution of power transfer is spatially resolved throughout the crystal, and the results are found to be in agreement with our theoretical predictions.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. H. Ja, “Energy transfer between two beams in writing a reflection volume hologram in a dynamic medium,” Opt. Quantum Electron. 14, 547–556 (1982).
    [CrossRef]
  2. P. Yeh, “Contradirectional two-wave mixing in photorefractive media,” Opt. Commun. 45, 323–326 (1983).
    [CrossRef]
  3. J. Y. Chang, C. R. Chinjen, S. H. Duan, C. Y. Huang, C. C. Sun, “Wavelength dependence of carrier type in reduced BaTiO3,” Appl. Phys. Lett. 72, 2199–2201 (1998).
    [CrossRef]
  4. I. F. Kanaev, V. K. Malinovski, B. I. Sturman, “Induced reflection and bleaching effects in electro-optic crystals,” Sov. Phys. JETP 47, 834–837 (1978).
  5. A. Krumins, Z. Chen, T. Shiosaki, “Photorefractive reflection gratings and coupling gain in LiNbO3:Fe,” Opt. Commun. 117, 147–150 (1995).
    [CrossRef]
  6. G. Cook, C. J. Finnan, D. C. Jones, “High optical gain using counterpropagating beams in iron and terbium-doped photorefractive lithium niobate,” Appl. Phys. B 68, 911–916 (1999).
    [CrossRef]
  7. G. Cook, D. C. Jones, C. J. Finnan, L. L. Taylor, A. W. Vere, “Optical limiting with lithium niobate,” in Power-Limiting Materials and Devices, C. M. Lawson, ed., Proc. SPIE3798, 2–16 (1999).
    [CrossRef]
  8. G. Cook, D. C. Jones, C. J. Finnan, L. L. Taylor, A. W. Vere, J. P. Duignan, “Optical limiting with lithium niobate,” Mater. Res. Soc. Symp. Proc. 597, 263–274 (2000).
    [CrossRef]
  9. P. S. Brody, “Grating structure in self-pumping barium titanate by local erasure,” Appl. Phys. Lett. 53, 262–264 (1988).
    [CrossRef]
  10. S. Odoulov, K. Belabaev, I. Kiseleva, “Degenerate stimulated parametric scattering in LiTaO3,” Opt. Lett. 10, 31–33 (1985).
    [CrossRef] [PubMed]
  11. N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electro-optic crystals,” Ferroelectrics 22, 949–964 (1979).
    [CrossRef]
  12. G. Cook, J. P. Duignan, D. C. Jones, “Photovoltaic contribution to counterpropagating two-beam coupling in photorefractive lithium niobate,” Opt. Commun. 192, 393–398 (2001).
    [CrossRef]
  13. D. R. Evans, J. L. Carns, S. A. Basun, M. A. Saleh, G. Cook, “Understanding and eliminating photovoltaic-induced instabilities in contradirectional two-beam coupling in photorefractive LiNbO3:Fe,” Opt. Mater. 27, 1730–1732 (2005).
    [CrossRef]

2005 (1)

D. R. Evans, J. L. Carns, S. A. Basun, M. A. Saleh, G. Cook, “Understanding and eliminating photovoltaic-induced instabilities in contradirectional two-beam coupling in photorefractive LiNbO3:Fe,” Opt. Mater. 27, 1730–1732 (2005).
[CrossRef]

2001 (1)

G. Cook, J. P. Duignan, D. C. Jones, “Photovoltaic contribution to counterpropagating two-beam coupling in photorefractive lithium niobate,” Opt. Commun. 192, 393–398 (2001).
[CrossRef]

2000 (1)

G. Cook, D. C. Jones, C. J. Finnan, L. L. Taylor, A. W. Vere, J. P. Duignan, “Optical limiting with lithium niobate,” Mater. Res. Soc. Symp. Proc. 597, 263–274 (2000).
[CrossRef]

1999 (1)

G. Cook, C. J. Finnan, D. C. Jones, “High optical gain using counterpropagating beams in iron and terbium-doped photorefractive lithium niobate,” Appl. Phys. B 68, 911–916 (1999).
[CrossRef]

1998 (1)

J. Y. Chang, C. R. Chinjen, S. H. Duan, C. Y. Huang, C. C. Sun, “Wavelength dependence of carrier type in reduced BaTiO3,” Appl. Phys. Lett. 72, 2199–2201 (1998).
[CrossRef]

1995 (1)

A. Krumins, Z. Chen, T. Shiosaki, “Photorefractive reflection gratings and coupling gain in LiNbO3:Fe,” Opt. Commun. 117, 147–150 (1995).
[CrossRef]

1988 (1)

P. S. Brody, “Grating structure in self-pumping barium titanate by local erasure,” Appl. Phys. Lett. 53, 262–264 (1988).
[CrossRef]

1985 (1)

1983 (1)

P. Yeh, “Contradirectional two-wave mixing in photorefractive media,” Opt. Commun. 45, 323–326 (1983).
[CrossRef]

1982 (1)

Y. H. Ja, “Energy transfer between two beams in writing a reflection volume hologram in a dynamic medium,” Opt. Quantum Electron. 14, 547–556 (1982).
[CrossRef]

1979 (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electro-optic crystals,” Ferroelectrics 22, 949–964 (1979).
[CrossRef]

1978 (1)

I. F. Kanaev, V. K. Malinovski, B. I. Sturman, “Induced reflection and bleaching effects in electro-optic crystals,” Sov. Phys. JETP 47, 834–837 (1978).

Basun, S. A.

D. R. Evans, J. L. Carns, S. A. Basun, M. A. Saleh, G. Cook, “Understanding and eliminating photovoltaic-induced instabilities in contradirectional two-beam coupling in photorefractive LiNbO3:Fe,” Opt. Mater. 27, 1730–1732 (2005).
[CrossRef]

Belabaev, K.

Brody, P. S.

P. S. Brody, “Grating structure in self-pumping barium titanate by local erasure,” Appl. Phys. Lett. 53, 262–264 (1988).
[CrossRef]

Carns, J. L.

D. R. Evans, J. L. Carns, S. A. Basun, M. A. Saleh, G. Cook, “Understanding and eliminating photovoltaic-induced instabilities in contradirectional two-beam coupling in photorefractive LiNbO3:Fe,” Opt. Mater. 27, 1730–1732 (2005).
[CrossRef]

Chang, J. Y.

J. Y. Chang, C. R. Chinjen, S. H. Duan, C. Y. Huang, C. C. Sun, “Wavelength dependence of carrier type in reduced BaTiO3,” Appl. Phys. Lett. 72, 2199–2201 (1998).
[CrossRef]

Chen, Z.

A. Krumins, Z. Chen, T. Shiosaki, “Photorefractive reflection gratings and coupling gain in LiNbO3:Fe,” Opt. Commun. 117, 147–150 (1995).
[CrossRef]

Chinjen, C. R.

J. Y. Chang, C. R. Chinjen, S. H. Duan, C. Y. Huang, C. C. Sun, “Wavelength dependence of carrier type in reduced BaTiO3,” Appl. Phys. Lett. 72, 2199–2201 (1998).
[CrossRef]

Cook, G.

D. R. Evans, J. L. Carns, S. A. Basun, M. A. Saleh, G. Cook, “Understanding and eliminating photovoltaic-induced instabilities in contradirectional two-beam coupling in photorefractive LiNbO3:Fe,” Opt. Mater. 27, 1730–1732 (2005).
[CrossRef]

G. Cook, J. P. Duignan, D. C. Jones, “Photovoltaic contribution to counterpropagating two-beam coupling in photorefractive lithium niobate,” Opt. Commun. 192, 393–398 (2001).
[CrossRef]

G. Cook, D. C. Jones, C. J. Finnan, L. L. Taylor, A. W. Vere, J. P. Duignan, “Optical limiting with lithium niobate,” Mater. Res. Soc. Symp. Proc. 597, 263–274 (2000).
[CrossRef]

G. Cook, C. J. Finnan, D. C. Jones, “High optical gain using counterpropagating beams in iron and terbium-doped photorefractive lithium niobate,” Appl. Phys. B 68, 911–916 (1999).
[CrossRef]

G. Cook, D. C. Jones, C. J. Finnan, L. L. Taylor, A. W. Vere, “Optical limiting with lithium niobate,” in Power-Limiting Materials and Devices, C. M. Lawson, ed., Proc. SPIE3798, 2–16 (1999).
[CrossRef]

Duan, S. H.

J. Y. Chang, C. R. Chinjen, S. H. Duan, C. Y. Huang, C. C. Sun, “Wavelength dependence of carrier type in reduced BaTiO3,” Appl. Phys. Lett. 72, 2199–2201 (1998).
[CrossRef]

Duignan, J. P.

G. Cook, J. P. Duignan, D. C. Jones, “Photovoltaic contribution to counterpropagating two-beam coupling in photorefractive lithium niobate,” Opt. Commun. 192, 393–398 (2001).
[CrossRef]

G. Cook, D. C. Jones, C. J. Finnan, L. L. Taylor, A. W. Vere, J. P. Duignan, “Optical limiting with lithium niobate,” Mater. Res. Soc. Symp. Proc. 597, 263–274 (2000).
[CrossRef]

Evans, D. R.

D. R. Evans, J. L. Carns, S. A. Basun, M. A. Saleh, G. Cook, “Understanding and eliminating photovoltaic-induced instabilities in contradirectional two-beam coupling in photorefractive LiNbO3:Fe,” Opt. Mater. 27, 1730–1732 (2005).
[CrossRef]

Finnan, C. J.

G. Cook, D. C. Jones, C. J. Finnan, L. L. Taylor, A. W. Vere, J. P. Duignan, “Optical limiting with lithium niobate,” Mater. Res. Soc. Symp. Proc. 597, 263–274 (2000).
[CrossRef]

G. Cook, C. J. Finnan, D. C. Jones, “High optical gain using counterpropagating beams in iron and terbium-doped photorefractive lithium niobate,” Appl. Phys. B 68, 911–916 (1999).
[CrossRef]

G. Cook, D. C. Jones, C. J. Finnan, L. L. Taylor, A. W. Vere, “Optical limiting with lithium niobate,” in Power-Limiting Materials and Devices, C. M. Lawson, ed., Proc. SPIE3798, 2–16 (1999).
[CrossRef]

Huang, C. Y.

J. Y. Chang, C. R. Chinjen, S. H. Duan, C. Y. Huang, C. C. Sun, “Wavelength dependence of carrier type in reduced BaTiO3,” Appl. Phys. Lett. 72, 2199–2201 (1998).
[CrossRef]

Ja, Y. H.

Y. H. Ja, “Energy transfer between two beams in writing a reflection volume hologram in a dynamic medium,” Opt. Quantum Electron. 14, 547–556 (1982).
[CrossRef]

Jones, D. C.

G. Cook, J. P. Duignan, D. C. Jones, “Photovoltaic contribution to counterpropagating two-beam coupling in photorefractive lithium niobate,” Opt. Commun. 192, 393–398 (2001).
[CrossRef]

G. Cook, D. C. Jones, C. J. Finnan, L. L. Taylor, A. W. Vere, J. P. Duignan, “Optical limiting with lithium niobate,” Mater. Res. Soc. Symp. Proc. 597, 263–274 (2000).
[CrossRef]

G. Cook, C. J. Finnan, D. C. Jones, “High optical gain using counterpropagating beams in iron and terbium-doped photorefractive lithium niobate,” Appl. Phys. B 68, 911–916 (1999).
[CrossRef]

G. Cook, D. C. Jones, C. J. Finnan, L. L. Taylor, A. W. Vere, “Optical limiting with lithium niobate,” in Power-Limiting Materials and Devices, C. M. Lawson, ed., Proc. SPIE3798, 2–16 (1999).
[CrossRef]

Kanaev, I. F.

I. F. Kanaev, V. K. Malinovski, B. I. Sturman, “Induced reflection and bleaching effects in electro-optic crystals,” Sov. Phys. JETP 47, 834–837 (1978).

Kiseleva, I.

Krumins, A.

A. Krumins, Z. Chen, T. Shiosaki, “Photorefractive reflection gratings and coupling gain in LiNbO3:Fe,” Opt. Commun. 117, 147–150 (1995).
[CrossRef]

Kukhtarev, N. V.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electro-optic crystals,” Ferroelectrics 22, 949–964 (1979).
[CrossRef]

Malinovski, V. K.

I. F. Kanaev, V. K. Malinovski, B. I. Sturman, “Induced reflection and bleaching effects in electro-optic crystals,” Sov. Phys. JETP 47, 834–837 (1978).

Markov, V. B.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electro-optic crystals,” Ferroelectrics 22, 949–964 (1979).
[CrossRef]

Odoulov, S.

Odulov, S. G.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electro-optic crystals,” Ferroelectrics 22, 949–964 (1979).
[CrossRef]

Saleh, M. A.

D. R. Evans, J. L. Carns, S. A. Basun, M. A. Saleh, G. Cook, “Understanding and eliminating photovoltaic-induced instabilities in contradirectional two-beam coupling in photorefractive LiNbO3:Fe,” Opt. Mater. 27, 1730–1732 (2005).
[CrossRef]

Shiosaki, T.

A. Krumins, Z. Chen, T. Shiosaki, “Photorefractive reflection gratings and coupling gain in LiNbO3:Fe,” Opt. Commun. 117, 147–150 (1995).
[CrossRef]

Soskin, M. S.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electro-optic crystals,” Ferroelectrics 22, 949–964 (1979).
[CrossRef]

Sturman, B. I.

I. F. Kanaev, V. K. Malinovski, B. I. Sturman, “Induced reflection and bleaching effects in electro-optic crystals,” Sov. Phys. JETP 47, 834–837 (1978).

Sun, C. C.

J. Y. Chang, C. R. Chinjen, S. H. Duan, C. Y. Huang, C. C. Sun, “Wavelength dependence of carrier type in reduced BaTiO3,” Appl. Phys. Lett. 72, 2199–2201 (1998).
[CrossRef]

Taylor, L. L.

G. Cook, D. C. Jones, C. J. Finnan, L. L. Taylor, A. W. Vere, J. P. Duignan, “Optical limiting with lithium niobate,” Mater. Res. Soc. Symp. Proc. 597, 263–274 (2000).
[CrossRef]

G. Cook, D. C. Jones, C. J. Finnan, L. L. Taylor, A. W. Vere, “Optical limiting with lithium niobate,” in Power-Limiting Materials and Devices, C. M. Lawson, ed., Proc. SPIE3798, 2–16 (1999).
[CrossRef]

Vere, A. W.

G. Cook, D. C. Jones, C. J. Finnan, L. L. Taylor, A. W. Vere, J. P. Duignan, “Optical limiting with lithium niobate,” Mater. Res. Soc. Symp. Proc. 597, 263–274 (2000).
[CrossRef]

G. Cook, D. C. Jones, C. J. Finnan, L. L. Taylor, A. W. Vere, “Optical limiting with lithium niobate,” in Power-Limiting Materials and Devices, C. M. Lawson, ed., Proc. SPIE3798, 2–16 (1999).
[CrossRef]

Vinetskii, V. L.

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electro-optic crystals,” Ferroelectrics 22, 949–964 (1979).
[CrossRef]

Yeh, P.

P. Yeh, “Contradirectional two-wave mixing in photorefractive media,” Opt. Commun. 45, 323–326 (1983).
[CrossRef]

Appl. Phys. B (1)

G. Cook, C. J. Finnan, D. C. Jones, “High optical gain using counterpropagating beams in iron and terbium-doped photorefractive lithium niobate,” Appl. Phys. B 68, 911–916 (1999).
[CrossRef]

Appl. Phys. Lett. (2)

J. Y. Chang, C. R. Chinjen, S. H. Duan, C. Y. Huang, C. C. Sun, “Wavelength dependence of carrier type in reduced BaTiO3,” Appl. Phys. Lett. 72, 2199–2201 (1998).
[CrossRef]

P. S. Brody, “Grating structure in self-pumping barium titanate by local erasure,” Appl. Phys. Lett. 53, 262–264 (1988).
[CrossRef]

Ferroelectrics (1)

N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, V. L. Vinetskii, “Holographic storage in electro-optic crystals,” Ferroelectrics 22, 949–964 (1979).
[CrossRef]

Mater. Res. Soc. Symp. Proc. (1)

G. Cook, D. C. Jones, C. J. Finnan, L. L. Taylor, A. W. Vere, J. P. Duignan, “Optical limiting with lithium niobate,” Mater. Res. Soc. Symp. Proc. 597, 263–274 (2000).
[CrossRef]

Opt. Commun. (3)

A. Krumins, Z. Chen, T. Shiosaki, “Photorefractive reflection gratings and coupling gain in LiNbO3:Fe,” Opt. Commun. 117, 147–150 (1995).
[CrossRef]

P. Yeh, “Contradirectional two-wave mixing in photorefractive media,” Opt. Commun. 45, 323–326 (1983).
[CrossRef]

G. Cook, J. P. Duignan, D. C. Jones, “Photovoltaic contribution to counterpropagating two-beam coupling in photorefractive lithium niobate,” Opt. Commun. 192, 393–398 (2001).
[CrossRef]

Opt. Lett. (1)

Opt. Mater. (1)

D. R. Evans, J. L. Carns, S. A. Basun, M. A. Saleh, G. Cook, “Understanding and eliminating photovoltaic-induced instabilities in contradirectional two-beam coupling in photorefractive LiNbO3:Fe,” Opt. Mater. 27, 1730–1732 (2005).
[CrossRef]

Opt. Quantum Electron. (1)

Y. H. Ja, “Energy transfer between two beams in writing a reflection volume hologram in a dynamic medium,” Opt. Quantum Electron. 14, 547–556 (1982).
[CrossRef]

Sov. Phys. JETP (1)

I. F. Kanaev, V. K. Malinovski, B. I. Sturman, “Induced reflection and bleaching effects in electro-optic crystals,” Sov. Phys. JETP 47, 834–837 (1978).

Other (1)

G. Cook, D. C. Jones, C. J. Finnan, L. L. Taylor, A. W. Vere, “Optical limiting with lithium niobate,” in Power-Limiting Materials and Devices, C. M. Lawson, ed., Proc. SPIE3798, 2–16 (1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental arrangement used for selective grating erasure. V, vertical polarization; H, horizontal polarization; L1, 532 nm laser; L2, 488 nm laser; BA, beam power attenuator; FL, focusing lens; S, sample; D, detector; WP, half-wave plate; BE, beam expander; A, aperture; and CL, cylindrical lens. An optical chopper (C1 or C2) is placed in the erasure beam path. A flip mount mirror (M1) and beam splitter (BS1) are inserted into the beam path when the erasure beam originates from L1. (Inset) The monitor beam propagating down the c axis is orthogonal to the erasure beam.

Fig. 2
Fig. 2

Power detection of the monitor beam during sequential erasure of the preestablished grating in LiNbO3:Fe. (a) The top trace (left scale) represents detected light from a combination of the monitor beam and the scatter from the erasure beam while the optical chopper is not blocking the laser, and (b) the bottom trace (right scale) represents detection of the monitor beam alone while the optical chopper interrupts the erasure beam. The inset shows the data as collected.

Fig. 3
Fig. 3

Profiles of the theoretical beam intensities and space-charge field in the absence of an erasure beam for the SPTBC geometry: the steady-state theoretical intensity profiles of the pump (solid curve) and signal (dotted curve) beams for (a) LiNbO3:Fe and (b) KNbO3:Fe; and the resulting space-charge field in (c) LiNbO3:Fe and (d) KNbO3:Fe.

Fig. 4
Fig. 4

Theoretical values for the disruption of the pump (solid curve) and signal (dotted curve) beams in LiNbO3:Fe with the erasure beam placed (a) 2.5 and (b) 4.0 mm inside the front face of the crystal.

Fig. 5
Fig. 5

Experimental (squares) and theoretical (curves) profiles of the disruption of power transfer for the SPTBC configuration when applying a simultaneous erasure beam in (a) LiNbO3:Fe and (b) KNbO3:Fe.

Fig. 6
Fig. 6

Experimental (squares) and theoretical (curves) power transfer profiles for a grating recorded in LiNbO3:Fe with the pump beam traveling (a) opposite the gain direction and (b) in the gain direction when applying a sequential erasure beam.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

E P ( z , t ) = 1 2 A P ( z , t ) exp i ( k z ω t ) + c . c . ,
E S ( z , t ) = 1 2 A S ( z , t ) exp i ( + k z ω t ) + c . c . ,
I ( z , t ) = ( I P + I S ) ( 1 + A P A S * I P + I S exp ( 2 ikz ) + c . c . ) ,
E s c ( z ) = ( E 0 + i E d + E p υ ) m ( z ) 1 + E d / E q i [ E 0 / E q + ( N a / N d ) ( E p υ / E q ) ] ,
d I S d z = α I S Γ I S I P I S + I P + I D ,
d I P d z = + α I P Γ I S I P I S + I P + I D ,
d I S d z = α I S Γ I S I P I S + I P + I D + I erasure ,
d I P d z = + α I P Γ I S I P I S + I P + I D + I erasure ,

Metrics