Abstract

A two-color version of the laser-induced incandescence (2C-LII) technique was implemented for measuring absolute soot volume fraction in flames. By using a calibrated tungsten ribbon lamp, soot peak temperatures were measured as a function of fluence at several locations in an ethylene diffusion flame by using a steeply edged laser beam profile. Above a certain fluence threshold, peak temperatures were tightly distributed just above 4000 K independent of the particle size and number density. Radial profiles of soot volume fraction were obtained and compared (not calibrated) with results from the laser extinction technique. Good agreement showed the validity of the 2C-LII technique at a controlled fluence.

© 2005 Optical Society of America

Full Article  |  PDF Article

Errata

Silvana De Iuliis, Francesco Cignoli, and Giorgio Zizak, "Two-color laser-induced incandescence (2C-LII) technique for absolute soot volume fraction measurements in flames: erratum," Appl. Opt. 45, 3805-3805 (2006)
https://www.osapublishing.org/ao/abstract.cfm?uri=ao-45-16-3805

References

  • View by:
  • |
  • |
  • |

  1. A. C. Eckbreth, “Effects of laser-modulated particulate incandescence on Raman-scattering diagnostics,” J. Appl. Phys. 48, 4473–4479 (1977).
    [CrossRef]
  2. L. A. Melton, “Soot diagnostics based on laser heating,” Appl. Opt. 23, 2201–2208 (1984).
    [CrossRef] [PubMed]
  3. C. J. Dasch, “Continuous-wave probe-laser investigation of laser vaporization of small soot particles in a flame,” Appl. Opt. 23, 2209–2215 (1984).
    [CrossRef]
  4. J. E. Dec, A. O. zur Loye, D. L. Siebers, “Soot distribution in a D. I. diesel engine using 2D laser-induced incandescence imaging,” SAE paper 910224 (Society of Automotive Engineering, Warrendale, Pa., 1991).
  5. J. E. Dec, “Soot distribution in a D. I. diesel engine using 2D imaging of laser-induced incandescence, elastic scattering, and flame luminosity,” SAE paper 920115 (Society of Automotive Engineering, Warrendale, Pa., 1992).
  6. N. P. Tait, D. A. Greenhalgh, “PLIF imaging of fuel fraction in practical devices and LII imaging of soot,” Ber Bunsenges. Phys. Chem. 97, 1619–1624 (1993).
    [CrossRef]
  7. F. Cignoli, S. Benecchi, G. Zizak, “Time-delayed detection of laser-induced incandescence for the two-dimensional visualization of soot in flames,” Appl. Opt. 33, 5778–5782 (1994).
    [CrossRef] [PubMed]
  8. R. L. Vander Wal, “LIF-LII measurements in a turbulent gas-jet flame,” Exp. Fluids 23, 281–287 (1997).
    [CrossRef]
  9. D. L. Hofeldt, “Real-time soot concentration measurement technique for engine exhaust streams,” SAE paper 930079 (Society of Automotive Engineering, Warrendale, Pa.1993).
  10. B. Quay, T.-W. Lee, T. Ni, R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 384–392 (1994).
    [CrossRef]
  11. R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards a measurement of soot volume fraction,” Appl. Phys. B 59, 445–452 (1994).
    [CrossRef]
  12. R. L. Vander Wal, D. L. Dietrich, “Laser-induced incandescence applied to droplet combustion,” Appl. Opt. 34, 1103–1107 (1995).
    [CrossRef]
  13. T. Ni, J. A. Pinson, S. Gupta, R. J. Santoro, “Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence,” Appl. Opt. 34, 7083–7091 (1995).
    [CrossRef] [PubMed]
  14. J. Appel, B. Jungfleisch, M. Marquardt, R. Suntz, H. Bockhorn, “Assessment of soot volume fraction from laser-induced incandescence by comparison with extinction measurements in laminar, premixed, flat flames,” in Proceedings of the 26th International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2387–2395.
    [CrossRef]
  15. M. E. Case, D. L. Hofeldt, “Soot mass concentration measurements in diesel engine exhaust using laser-induced incendescence,” Aerosol Sci. Technol. 25, 46–60 (1996).
    [CrossRef]
  16. P. Roth, A. V. Filippov, “In situ ultrafine particle sizing by a combination of pulsed laser heatup and particle thermal emission,” J. Aerosol Sci. 27, 95–104 (1996).
    [CrossRef]
  17. S. Will, S. Schraml, A. Leipertz, “Comprehensive two-dimensional soot diagnostics based on laser-induced incandescence (LII),” in Proceedings of the 26th International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2277–2284.
    [CrossRef]
  18. B. Mewes, J. M. Seitzman, “Soot volume fraction and particle size measurements with laser-induced incandescence,” Appl. Opt. 36, 709–717 (1997).
    [CrossRef] [PubMed]
  19. D. R. Snelling, G. J. Smallwood, I. G. Campbell, J. E. Medlock, O. L. Gulder, “Development and application of laser-induced incandescence (LII) as a diagnostic for soot particulate measurements,” in Proceedings of the NATO/AGARD Propulsion and Energetics Panel, 90th Symposium on Advanced Non-intrusive Instrumentation for Propulsion Engines, Brussels, Belgium, 20–24 October 1997.
  20. S. Will, S. Schraml, A. Leipertz, “Two-dimensional sootparticle sizing by time-resolved laser-induced incandescence,” Opt. Lett. 20, 2342–2344 (1995).
    [CrossRef]
  21. S. Will, S. Schraml, K. Bader, A. Leipetz, “Performance characteristics of soot primary particle size measurements by time-resolved laser-induced incandescence,” Appl. Opt. 37, 5647–5658 (1998).
    [CrossRef]
  22. H. Geitlinger, Th. Streibel, R. Suntz, H. Bockhorn, “Two-dimensional imaging of soot volume fraction, particle number densities, and particle radii in laminar and turbulent diffusion flames,” in Proceedings of the 27th International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1998), pp. 1613–1621.
    [CrossRef]
  23. H. Geitlinger, Th. Steibel, R. Suntz, H. Bockhorn, “Statistical analysis of soot volume fractions, particle number densities, and particle radii in a turbulent diffusion flame,” Combust. Sci. Technol. 149, 115–134 (1999).
    [CrossRef]
  24. P.-E. Bengtsson, M. Aldén, “Soot-visualization strategies using laser techniques,” Appl. Phys. B 60, 51–59 (1995).
    [CrossRef]
  25. R. L. Vander Wal, “Laser-induced incandescence: detection issues,” Appl. Opt. 35, 6548–6559 (1996).
    [CrossRef] [PubMed]
  26. B. Axelsson, R. Collin, P.-E. Bengtsson, “Laser-induced incandescence for soot particle size measurements in premixed flat flames,” Appl. Opt. 39, 3683–3690 (2000).
    [CrossRef]
  27. R. L. Vander Wal, M. Y. Choi, K.-O. Lee, “The effects of rapid heating of soot: implications when using laser-induced incandescence for soot diagnostics,” Combust. Flame 102, 200–2004 (1995).
    [CrossRef]
  28. R. L. Vander Wal, K. A. Jensen, “Laser-induced incandescence: excitation intensity,” Appl. Opt. 37, 1607–1616 (1998).
    [CrossRef]
  29. R. L. Vander Wal, M. Y. Choi, “Pulsed laser heating of soot: morphological changes,” Carbon 37, 231–239 (1999).
    [CrossRef]
  30. C. R. Shaddix, K. C. Smyth, “Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996).
    [CrossRef]
  31. R. L. Vander Wal, Z. Zhou, M. Y. Choi, “Laser-induced incandescence calibration via gravimetric sampling,” Combust. Flame 105, 462–470 (1996).
    [CrossRef]
  32. M. Y. Choi, K. A. Jensen, “Calibration and correction of laser-induced incandescence for soot volume fraction measurements,” Combust. Flame 112, 485–491 (1998).
    [CrossRef]
  33. R. L. Vander Wal, “Calibration and comparison of laser-induced incandescence with cavity ring down,” in Proceedings of the 27th International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1998), pp. 59–67.
    [CrossRef]
  34. C. Moreau, J. F. Pauwels, P. Desgroux, E. Therssen, “Particle size and soot volume fraction measurements in atmospheric diffusion flame by laser-induced incandescence combined with cavity ring-down spectroscopy,” presented at the European Combustion Meeting, EMC 2003, Orleans, France, 25–28 October 2003.
  35. G. J. Smallwood, D. R. Snelling, F. Liu, O. L. Gulder, “Clouds over soot evaporation: errors in modeling laser-induced incandescence of soot,” Trans. ASME, J. Heat Transfer 123, 814–818 (2001).
    [CrossRef]
  36. H. A. Michelsen, “Understanding and predicting the temporal response of laser-induced incandescence from carbonaceous particles,” J. Chem. Phys. 118, 7012–7045 (2003).
    [CrossRef]
  37. D. R. Snelling, F. Liu, G. J. Smallwood, O. L. Gulder, “Determination of the soot absorption function and thermal accomodation coefficient using low-fluence LII in a laminar coflow ethylene diffusion flame,” Combust. Flame 136, 180–190 (2004).
    [CrossRef]
  38. M. Hofmann, W. G. Bessler, C. Schulz, H. Jander, “Laser-induced incandescence for soot diagnostics at high pressures,” Appl. Opt. 42, 2052–2062 (2003).
    [CrossRef] [PubMed]
  39. H. A. Michelsen, P. O. Witze, D. Kayes, S. Hochgreb, “Time-resolved laser-induced incandescence of soot: the influence of experimental factors and microphysical mechanisms,” Appl. Opt. 42, 557–5590 (2003).
    [CrossRef]
  40. C. Crua, D. A. Kennaird, M. R. Heikal, “Laser-induced incandescence study of diesel soot formation in a rapid compression machine at elevated pressures,” Combust. Flame 135, 475–488 (2003).
    [CrossRef]
  41. R. Starke, B. Kock, P. Roth, A. Eremin, E. Gurentsov, V. Shumova, V. Zoborov, “Shock wave induced carbon particle formation from CCL4 and C3O2 observed by laser extinction and by laser-induced incandescence (LII),” Combust. Flame 135, 77–85 (2003).
    [CrossRef]
  42. T. Lehere, H. Bockhorn, B. Jungfleisch, R. Suntz, “Development of a measuring technique for simultaneous in situ detection of nanoscaled particle size distributions and gas temperatures,” Chemosphere 51, 1055–1061 (2003).
    [CrossRef]
  43. S. Dankers, A. Leipertz, “Determination of primary particle size distributions from time- resolved laser-induced incandescence measurements,” Appl. Opt. 43, 3726–3731 (2004).
    [CrossRef] [PubMed]
  44. D. R. Snelling, G. J. Smallwood, O. L. Gulder, F. Liu, W. D. Bachalo, “A calibration-independent technique of measuring soot by laser-induced incandescence using absolute light intensity,” presented at the Second Joint Meeting of the U.S. Sections of the Combustion Institute, Oakland, Calif., 25–28 March 2001.
  45. G. J. Smallwood, D. R. Snelling, W. Stuart Neill, F. Liu, W. D. Bachalo, O. L. Gulder, “Laser-induced incandescence measurements of particulate matter emission in the exhaust of a Diesel engine,” presented at the Fifth International Symposium on Diagnostics, Modeling of Combustion in Internal Combustion Engines (COMODIA), Nagoya, Japan, 1–4 July 2001.
  46. B. F. Kock, P. Roth, “Two-color TR-LII applied to in-cylinder diesel particle sizing,” presented at The European Combustion Meeting, EMC 2003. Orleans: France, 25–28 October 2003.
  47. F. Cignoli, S. De Iuliis, V. Manta, G. Zizak, “Two-dimensional two-wavelength emission technique for soot diagnostics,” Appl. Opt. 40, 5370–5378 (2001).
    [CrossRef]
  48. E. A. Rohlfing, D. W. Chandler, “Two-color pyrometric imaging of laser-heated carbon particles in a supersonic flow,” Chem. Phys. Lett. 170, 44–50 (1990).
    [CrossRef]
  49. Y. Matsui, T. Kamimoto, S. Matsuoka, “A study on the time- and space-resolved measurement of flame temperature and soot concentration in a D. I. diesel engine by the two-color method,” SAE Tech. Paper 790491 (Society of Automotive Engineers, Warrendale, Pa., 1979).
  50. Y. Matsui, T. Kamimoto, S. Matsuoka, “A study on the application of the two-color method to the measurement of flame temperature and soot concentration in diesel engines,” SAE paper 800970 (Society of Automotive Engineers, Warrendale, Pa., 1980).
  51. X. H. Quoc, J.-M. Vignon, M. Brun, “A new approach of the two-color method for determining local instantaneous soot concentration and temperature in a D. I. diesel combustion chamber,” SAE Tech. Paper 910736 (Society of Automotive Engineers, Warrendale, Pa., 1991).
  52. N. Ladommatos, H. Zhao, “A guide to measurement of flame temperature and soot concentration in diesel engines using the two-colour method. Part I: Principles,” SAE Tech. Paper 941956 (Society of Automotive Engineers, Warrendale, Pa., 1994).
  53. S. di Stasio, P. Massoli, “Influence of the soot property uncertainties in temperature and volume-fraction measurements by two-colour pyrometry,” Meas. Sci. Technol. 5, 1453–1465 (1994).
    [CrossRef]
  54. S. De Iuliis, M. Barbini, S. Benecchi, F. Cignoli, G. Zizak, “Determination of the soot volume fraction in an ethylene diffusion flame by multiwavelength analysis of soot radiation,” Combust. Flame 115, 253–261 (1998).
    [CrossRef]
  55. W. Lee, Y. D. Na, “Soot study in laminar diffusion flames at elevated pressure using two-color pyrometry and Abel inversion,” JSME Int. J., Ser. B 43, 550–555 (2000).
    [CrossRef]
  56. T. P. Jenkins, R. K. Hanson, “Soot pyrometry using modulated absorption/emission,” Combust. Flame 126, 1669–1679 (2001).
    [CrossRef]
  57. R. G. Siddal, I. A. McGrath. “The emissivity of luminous flames,” inProceedings of the 9th International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa.1962), pp. 102–110.
  58. P. J. Pagni, S. Bard, “Particulate volume fraction in diffusion flames,” in Proceedings of the 17th International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1978), pp. 1017–1028.
  59. K. C. Smyth, C. R. Shaddix, “The elusive history of m= 1.57−0.56i for the refractive index of soot,” Combust. Flame 107, 314–320 (1996).
    [CrossRef]
  60. M. Y. Choi, G. W. Mulholland, A. Hamins, T. Kashiwagi, “Comparison of the soot volume fraction using gravimetric and light extinction techniques,” Combust. Flame 102, 161–169 (1995).
    [CrossRef]
  61. S. S. Krishnan, K.-C. Lin, G. M. Faeth, “Optical properties in the visible of overfire soot in large buoyant turbulent diffusion flames,” J. Heat Transfer 122, 517–524 (2000).
    [CrossRef]
  62. H. Chang, T. T. Charalampopoulos, “Determination of the wavelength dependence of refractive indices of flame soot,” Proc. R. Soc. London Ser. A 430, 57–591 (1990).
    [CrossRef]
  63. F. Cignoli, S. De Iuliis, G. Zizak, “A webcam as a light probe beam profiler,” Appl. Spectrosc. 58, 1372–1375 (2004).
    [CrossRef]
  64. J. C. De Vos, “A new determination of the emissivity of tungsten ribbon,” Physica (Amsterdam) 20, 690–714 (1954).
    [CrossRef]
  65. R. M. Pon, J. P. Hessler, “Spectral emissivity of tungsten: analytical exspressions for the 340 nm to 2.6 micron spectral region,” Appl. Opt. 23, 975–976 (1984).
    [CrossRef] [PubMed]
  66. C. J. Dasch, “One-dimensional tomography: a comparison of Abel, onion peeling, and filtered backprojection methods,” Appl. Opt. 31, 1146–152 (1992).
    [CrossRef] [PubMed]
  67. D. R. Snelling, F. Liu, G. J. Smallwood, O. L. Gulder, “Evaluation of the nanoscale heat and mass transfer model of LII: prediction of the excitation intensity,” presented at the 34th National Heat Transfer Conference, Pittsburgh, Pa., 20–22 August 2000.
  68. P. O. Witze, S. Hochgreb, D. Kayes, H. A. Michelsen, C. R. Shaddix, “Time-resolved laser-induced incandescence and elastic-scattering measurements in propane diffusion flame,” Appl. Opt. 40, 2443–2453 (2001).
    [CrossRef]
  69. S. Schraml, S. Dankers, K. Bader, S. Will, A. Leipertz, “Soot temperature measurements and implications for time-resolved laser-induced Incandescence (TIRE-LII),” Combust. Flame 120, 439–450 (2000).
    [CrossRef]
  70. D. R. Snelling, G. J. Smallwood, O. L. Gulder, W. D. Bachalo, S. Sankar, “Soot volume fraction characterization using the laser-induced incandescence detection method,” Tenth International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 10–12 July 2000.
  71. R. J. Hall, P. A. Bonczyk, “Sooting flame thermometry using emission/absorption tomography,” Appl. Opt. 29, 4590–4598 (1990).
    [CrossRef] [PubMed]
  72. P. S. Greenberg, J. C. Ku, “Soot volume fraction imaging,” Appl. Opt. 36, 5514–5522 (1997).
    [CrossRef] [PubMed]
  73. D. R. Snelling, K. A. Thomson, G. J. Smallwood, O. L. Gulder, “Two-dimensional imaging of soot volume fraction in laminar diffusion flames,” Appl. Opt. 38, 2478–2485 (1999).
    [CrossRef]
  74. D. R. Snelling, K. A. Thomson, G. J. Smallwood, O. L. Gulder, E. J. Weckman, R. A. Fraser, “Spectrally resolved measurement of flame radiation to determine soot temperature and concentration,” AIAA J. 40, 1789–1795 (2002).
    [CrossRef]
  75. S. De Iuliis, F. Cignoli, S. Benecchi, G. Zizak, “Determination of soot parameters by a two-angle scattering-extinction technique in an ethylene diffusion flame,” Appl. Opt. 37, 7865–7874 (1998).
    [CrossRef]
  76. S. De Iuliis, F. Cignoli, S. Benecchi, G. Zizak, “Investigation of the similarity of soot parameters in ethylene diffusion flames with different heights by extinction/scattering technique,” in Proceedings of the 27th International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1998, pp. 1549–1555.
    [CrossRef]

2004

D. R. Snelling, F. Liu, G. J. Smallwood, O. L. Gulder, “Determination of the soot absorption function and thermal accomodation coefficient using low-fluence LII in a laminar coflow ethylene diffusion flame,” Combust. Flame 136, 180–190 (2004).
[CrossRef]

S. Dankers, A. Leipertz, “Determination of primary particle size distributions from time- resolved laser-induced incandescence measurements,” Appl. Opt. 43, 3726–3731 (2004).
[CrossRef] [PubMed]

F. Cignoli, S. De Iuliis, G. Zizak, “A webcam as a light probe beam profiler,” Appl. Spectrosc. 58, 1372–1375 (2004).
[CrossRef]

2003

M. Hofmann, W. G. Bessler, C. Schulz, H. Jander, “Laser-induced incandescence for soot diagnostics at high pressures,” Appl. Opt. 42, 2052–2062 (2003).
[CrossRef] [PubMed]

H. A. Michelsen, “Understanding and predicting the temporal response of laser-induced incandescence from carbonaceous particles,” J. Chem. Phys. 118, 7012–7045 (2003).
[CrossRef]

H. A. Michelsen, P. O. Witze, D. Kayes, S. Hochgreb, “Time-resolved laser-induced incandescence of soot: the influence of experimental factors and microphysical mechanisms,” Appl. Opt. 42, 557–5590 (2003).
[CrossRef]

C. Crua, D. A. Kennaird, M. R. Heikal, “Laser-induced incandescence study of diesel soot formation in a rapid compression machine at elevated pressures,” Combust. Flame 135, 475–488 (2003).
[CrossRef]

R. Starke, B. Kock, P. Roth, A. Eremin, E. Gurentsov, V. Shumova, V. Zoborov, “Shock wave induced carbon particle formation from CCL4 and C3O2 observed by laser extinction and by laser-induced incandescence (LII),” Combust. Flame 135, 77–85 (2003).
[CrossRef]

T. Lehere, H. Bockhorn, B. Jungfleisch, R. Suntz, “Development of a measuring technique for simultaneous in situ detection of nanoscaled particle size distributions and gas temperatures,” Chemosphere 51, 1055–1061 (2003).
[CrossRef]

2002

D. R. Snelling, K. A. Thomson, G. J. Smallwood, O. L. Gulder, E. J. Weckman, R. A. Fraser, “Spectrally resolved measurement of flame radiation to determine soot temperature and concentration,” AIAA J. 40, 1789–1795 (2002).
[CrossRef]

2001

T. P. Jenkins, R. K. Hanson, “Soot pyrometry using modulated absorption/emission,” Combust. Flame 126, 1669–1679 (2001).
[CrossRef]

G. J. Smallwood, D. R. Snelling, F. Liu, O. L. Gulder, “Clouds over soot evaporation: errors in modeling laser-induced incandescence of soot,” Trans. ASME, J. Heat Transfer 123, 814–818 (2001).
[CrossRef]

P. O. Witze, S. Hochgreb, D. Kayes, H. A. Michelsen, C. R. Shaddix, “Time-resolved laser-induced incandescence and elastic-scattering measurements in propane diffusion flame,” Appl. Opt. 40, 2443–2453 (2001).
[CrossRef]

F. Cignoli, S. De Iuliis, V. Manta, G. Zizak, “Two-dimensional two-wavelength emission technique for soot diagnostics,” Appl. Opt. 40, 5370–5378 (2001).
[CrossRef]

2000

B. Axelsson, R. Collin, P.-E. Bengtsson, “Laser-induced incandescence for soot particle size measurements in premixed flat flames,” Appl. Opt. 39, 3683–3690 (2000).
[CrossRef]

W. Lee, Y. D. Na, “Soot study in laminar diffusion flames at elevated pressure using two-color pyrometry and Abel inversion,” JSME Int. J., Ser. B 43, 550–555 (2000).
[CrossRef]

S. S. Krishnan, K.-C. Lin, G. M. Faeth, “Optical properties in the visible of overfire soot in large buoyant turbulent diffusion flames,” J. Heat Transfer 122, 517–524 (2000).
[CrossRef]

S. Schraml, S. Dankers, K. Bader, S. Will, A. Leipertz, “Soot temperature measurements and implications for time-resolved laser-induced Incandescence (TIRE-LII),” Combust. Flame 120, 439–450 (2000).
[CrossRef]

1999

R. L. Vander Wal, M. Y. Choi, “Pulsed laser heating of soot: morphological changes,” Carbon 37, 231–239 (1999).
[CrossRef]

H. Geitlinger, Th. Steibel, R. Suntz, H. Bockhorn, “Statistical analysis of soot volume fractions, particle number densities, and particle radii in a turbulent diffusion flame,” Combust. Sci. Technol. 149, 115–134 (1999).
[CrossRef]

D. R. Snelling, K. A. Thomson, G. J. Smallwood, O. L. Gulder, “Two-dimensional imaging of soot volume fraction in laminar diffusion flames,” Appl. Opt. 38, 2478–2485 (1999).
[CrossRef]

1998

R. L. Vander Wal, K. A. Jensen, “Laser-induced incandescence: excitation intensity,” Appl. Opt. 37, 1607–1616 (1998).
[CrossRef]

S. Will, S. Schraml, K. Bader, A. Leipetz, “Performance characteristics of soot primary particle size measurements by time-resolved laser-induced incandescence,” Appl. Opt. 37, 5647–5658 (1998).
[CrossRef]

S. De Iuliis, F. Cignoli, S. Benecchi, G. Zizak, “Determination of soot parameters by a two-angle scattering-extinction technique in an ethylene diffusion flame,” Appl. Opt. 37, 7865–7874 (1998).
[CrossRef]

M. Y. Choi, K. A. Jensen, “Calibration and correction of laser-induced incandescence for soot volume fraction measurements,” Combust. Flame 112, 485–491 (1998).
[CrossRef]

S. De Iuliis, M. Barbini, S. Benecchi, F. Cignoli, G. Zizak, “Determination of the soot volume fraction in an ethylene diffusion flame by multiwavelength analysis of soot radiation,” Combust. Flame 115, 253–261 (1998).
[CrossRef]

1997

1996

R. L. Vander Wal, “Laser-induced incandescence: detection issues,” Appl. Opt. 35, 6548–6559 (1996).
[CrossRef] [PubMed]

M. E. Case, D. L. Hofeldt, “Soot mass concentration measurements in diesel engine exhaust using laser-induced incendescence,” Aerosol Sci. Technol. 25, 46–60 (1996).
[CrossRef]

P. Roth, A. V. Filippov, “In situ ultrafine particle sizing by a combination of pulsed laser heatup and particle thermal emission,” J. Aerosol Sci. 27, 95–104 (1996).
[CrossRef]

C. R. Shaddix, K. C. Smyth, “Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996).
[CrossRef]

R. L. Vander Wal, Z. Zhou, M. Y. Choi, “Laser-induced incandescence calibration via gravimetric sampling,” Combust. Flame 105, 462–470 (1996).
[CrossRef]

K. C. Smyth, C. R. Shaddix, “The elusive history of m= 1.57−0.56i for the refractive index of soot,” Combust. Flame 107, 314–320 (1996).
[CrossRef]

1995

M. Y. Choi, G. W. Mulholland, A. Hamins, T. Kashiwagi, “Comparison of the soot volume fraction using gravimetric and light extinction techniques,” Combust. Flame 102, 161–169 (1995).
[CrossRef]

R. L. Vander Wal, M. Y. Choi, K.-O. Lee, “The effects of rapid heating of soot: implications when using laser-induced incandescence for soot diagnostics,” Combust. Flame 102, 200–2004 (1995).
[CrossRef]

S. Will, S. Schraml, A. Leipertz, “Two-dimensional sootparticle sizing by time-resolved laser-induced incandescence,” Opt. Lett. 20, 2342–2344 (1995).
[CrossRef]

P.-E. Bengtsson, M. Aldén, “Soot-visualization strategies using laser techniques,” Appl. Phys. B 60, 51–59 (1995).
[CrossRef]

R. L. Vander Wal, D. L. Dietrich, “Laser-induced incandescence applied to droplet combustion,” Appl. Opt. 34, 1103–1107 (1995).
[CrossRef]

T. Ni, J. A. Pinson, S. Gupta, R. J. Santoro, “Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence,” Appl. Opt. 34, 7083–7091 (1995).
[CrossRef] [PubMed]

1994

F. Cignoli, S. Benecchi, G. Zizak, “Time-delayed detection of laser-induced incandescence for the two-dimensional visualization of soot in flames,” Appl. Opt. 33, 5778–5782 (1994).
[CrossRef] [PubMed]

B. Quay, T.-W. Lee, T. Ni, R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 384–392 (1994).
[CrossRef]

R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards a measurement of soot volume fraction,” Appl. Phys. B 59, 445–452 (1994).
[CrossRef]

S. di Stasio, P. Massoli, “Influence of the soot property uncertainties in temperature and volume-fraction measurements by two-colour pyrometry,” Meas. Sci. Technol. 5, 1453–1465 (1994).
[CrossRef]

1993

N. P. Tait, D. A. Greenhalgh, “PLIF imaging of fuel fraction in practical devices and LII imaging of soot,” Ber Bunsenges. Phys. Chem. 97, 1619–1624 (1993).
[CrossRef]

1992

1990

R. J. Hall, P. A. Bonczyk, “Sooting flame thermometry using emission/absorption tomography,” Appl. Opt. 29, 4590–4598 (1990).
[CrossRef] [PubMed]

H. Chang, T. T. Charalampopoulos, “Determination of the wavelength dependence of refractive indices of flame soot,” Proc. R. Soc. London Ser. A 430, 57–591 (1990).
[CrossRef]

E. A. Rohlfing, D. W. Chandler, “Two-color pyrometric imaging of laser-heated carbon particles in a supersonic flow,” Chem. Phys. Lett. 170, 44–50 (1990).
[CrossRef]

1984

1977

A. C. Eckbreth, “Effects of laser-modulated particulate incandescence on Raman-scattering diagnostics,” J. Appl. Phys. 48, 4473–4479 (1977).
[CrossRef]

1954

J. C. De Vos, “A new determination of the emissivity of tungsten ribbon,” Physica (Amsterdam) 20, 690–714 (1954).
[CrossRef]

Aldén, M.

P.-E. Bengtsson, M. Aldén, “Soot-visualization strategies using laser techniques,” Appl. Phys. B 60, 51–59 (1995).
[CrossRef]

Appel, J.

J. Appel, B. Jungfleisch, M. Marquardt, R. Suntz, H. Bockhorn, “Assessment of soot volume fraction from laser-induced incandescence by comparison with extinction measurements in laminar, premixed, flat flames,” in Proceedings of the 26th International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2387–2395.
[CrossRef]

Axelsson, B.

Bachalo, W. D.

D. R. Snelling, G. J. Smallwood, O. L. Gulder, F. Liu, W. D. Bachalo, “A calibration-independent technique of measuring soot by laser-induced incandescence using absolute light intensity,” presented at the Second Joint Meeting of the U.S. Sections of the Combustion Institute, Oakland, Calif., 25–28 March 2001.

D. R. Snelling, G. J. Smallwood, O. L. Gulder, W. D. Bachalo, S. Sankar, “Soot volume fraction characterization using the laser-induced incandescence detection method,” Tenth International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 10–12 July 2000.

G. J. Smallwood, D. R. Snelling, W. Stuart Neill, F. Liu, W. D. Bachalo, O. L. Gulder, “Laser-induced incandescence measurements of particulate matter emission in the exhaust of a Diesel engine,” presented at the Fifth International Symposium on Diagnostics, Modeling of Combustion in Internal Combustion Engines (COMODIA), Nagoya, Japan, 1–4 July 2001.

Bader, K.

S. Schraml, S. Dankers, K. Bader, S. Will, A. Leipertz, “Soot temperature measurements and implications for time-resolved laser-induced Incandescence (TIRE-LII),” Combust. Flame 120, 439–450 (2000).
[CrossRef]

S. Will, S. Schraml, K. Bader, A. Leipetz, “Performance characteristics of soot primary particle size measurements by time-resolved laser-induced incandescence,” Appl. Opt. 37, 5647–5658 (1998).
[CrossRef]

Barbini, M.

S. De Iuliis, M. Barbini, S. Benecchi, F. Cignoli, G. Zizak, “Determination of the soot volume fraction in an ethylene diffusion flame by multiwavelength analysis of soot radiation,” Combust. Flame 115, 253–261 (1998).
[CrossRef]

Bard, S.

P. J. Pagni, S. Bard, “Particulate volume fraction in diffusion flames,” in Proceedings of the 17th International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1978), pp. 1017–1028.

Benecchi, S.

S. De Iuliis, M. Barbini, S. Benecchi, F. Cignoli, G. Zizak, “Determination of the soot volume fraction in an ethylene diffusion flame by multiwavelength analysis of soot radiation,” Combust. Flame 115, 253–261 (1998).
[CrossRef]

S. De Iuliis, F. Cignoli, S. Benecchi, G. Zizak, “Determination of soot parameters by a two-angle scattering-extinction technique in an ethylene diffusion flame,” Appl. Opt. 37, 7865–7874 (1998).
[CrossRef]

F. Cignoli, S. Benecchi, G. Zizak, “Time-delayed detection of laser-induced incandescence for the two-dimensional visualization of soot in flames,” Appl. Opt. 33, 5778–5782 (1994).
[CrossRef] [PubMed]

S. De Iuliis, F. Cignoli, S. Benecchi, G. Zizak, “Investigation of the similarity of soot parameters in ethylene diffusion flames with different heights by extinction/scattering technique,” in Proceedings of the 27th International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1998, pp. 1549–1555.
[CrossRef]

Bengtsson, P.-E.

Bessler, W. G.

Bockhorn, H.

T. Lehere, H. Bockhorn, B. Jungfleisch, R. Suntz, “Development of a measuring technique for simultaneous in situ detection of nanoscaled particle size distributions and gas temperatures,” Chemosphere 51, 1055–1061 (2003).
[CrossRef]

H. Geitlinger, Th. Steibel, R. Suntz, H. Bockhorn, “Statistical analysis of soot volume fractions, particle number densities, and particle radii in a turbulent diffusion flame,” Combust. Sci. Technol. 149, 115–134 (1999).
[CrossRef]

H. Geitlinger, Th. Streibel, R. Suntz, H. Bockhorn, “Two-dimensional imaging of soot volume fraction, particle number densities, and particle radii in laminar and turbulent diffusion flames,” in Proceedings of the 27th International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1998), pp. 1613–1621.
[CrossRef]

J. Appel, B. Jungfleisch, M. Marquardt, R. Suntz, H. Bockhorn, “Assessment of soot volume fraction from laser-induced incandescence by comparison with extinction measurements in laminar, premixed, flat flames,” in Proceedings of the 26th International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2387–2395.
[CrossRef]

Bonczyk, P. A.

Brun, M.

X. H. Quoc, J.-M. Vignon, M. Brun, “A new approach of the two-color method for determining local instantaneous soot concentration and temperature in a D. I. diesel combustion chamber,” SAE Tech. Paper 910736 (Society of Automotive Engineers, Warrendale, Pa., 1991).

Campbell, I. G.

D. R. Snelling, G. J. Smallwood, I. G. Campbell, J. E. Medlock, O. L. Gulder, “Development and application of laser-induced incandescence (LII) as a diagnostic for soot particulate measurements,” in Proceedings of the NATO/AGARD Propulsion and Energetics Panel, 90th Symposium on Advanced Non-intrusive Instrumentation for Propulsion Engines, Brussels, Belgium, 20–24 October 1997.

Case, M. E.

M. E. Case, D. L. Hofeldt, “Soot mass concentration measurements in diesel engine exhaust using laser-induced incendescence,” Aerosol Sci. Technol. 25, 46–60 (1996).
[CrossRef]

Chandler, D. W.

E. A. Rohlfing, D. W. Chandler, “Two-color pyrometric imaging of laser-heated carbon particles in a supersonic flow,” Chem. Phys. Lett. 170, 44–50 (1990).
[CrossRef]

Chang, H.

H. Chang, T. T. Charalampopoulos, “Determination of the wavelength dependence of refractive indices of flame soot,” Proc. R. Soc. London Ser. A 430, 57–591 (1990).
[CrossRef]

Charalampopoulos, T. T.

H. Chang, T. T. Charalampopoulos, “Determination of the wavelength dependence of refractive indices of flame soot,” Proc. R. Soc. London Ser. A 430, 57–591 (1990).
[CrossRef]

Choi, M. Y.

R. L. Vander Wal, M. Y. Choi, “Pulsed laser heating of soot: morphological changes,” Carbon 37, 231–239 (1999).
[CrossRef]

M. Y. Choi, K. A. Jensen, “Calibration and correction of laser-induced incandescence for soot volume fraction measurements,” Combust. Flame 112, 485–491 (1998).
[CrossRef]

R. L. Vander Wal, Z. Zhou, M. Y. Choi, “Laser-induced incandescence calibration via gravimetric sampling,” Combust. Flame 105, 462–470 (1996).
[CrossRef]

R. L. Vander Wal, M. Y. Choi, K.-O. Lee, “The effects of rapid heating of soot: implications when using laser-induced incandescence for soot diagnostics,” Combust. Flame 102, 200–2004 (1995).
[CrossRef]

M. Y. Choi, G. W. Mulholland, A. Hamins, T. Kashiwagi, “Comparison of the soot volume fraction using gravimetric and light extinction techniques,” Combust. Flame 102, 161–169 (1995).
[CrossRef]

Cignoli, F.

F. Cignoli, S. De Iuliis, G. Zizak, “A webcam as a light probe beam profiler,” Appl. Spectrosc. 58, 1372–1375 (2004).
[CrossRef]

F. Cignoli, S. De Iuliis, V. Manta, G. Zizak, “Two-dimensional two-wavelength emission technique for soot diagnostics,” Appl. Opt. 40, 5370–5378 (2001).
[CrossRef]

S. De Iuliis, F. Cignoli, S. Benecchi, G. Zizak, “Determination of soot parameters by a two-angle scattering-extinction technique in an ethylene diffusion flame,” Appl. Opt. 37, 7865–7874 (1998).
[CrossRef]

S. De Iuliis, M. Barbini, S. Benecchi, F. Cignoli, G. Zizak, “Determination of the soot volume fraction in an ethylene diffusion flame by multiwavelength analysis of soot radiation,” Combust. Flame 115, 253–261 (1998).
[CrossRef]

F. Cignoli, S. Benecchi, G. Zizak, “Time-delayed detection of laser-induced incandescence for the two-dimensional visualization of soot in flames,” Appl. Opt. 33, 5778–5782 (1994).
[CrossRef] [PubMed]

S. De Iuliis, F. Cignoli, S. Benecchi, G. Zizak, “Investigation of the similarity of soot parameters in ethylene diffusion flames with different heights by extinction/scattering technique,” in Proceedings of the 27th International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1998, pp. 1549–1555.
[CrossRef]

Collin, R.

Crua, C.

C. Crua, D. A. Kennaird, M. R. Heikal, “Laser-induced incandescence study of diesel soot formation in a rapid compression machine at elevated pressures,” Combust. Flame 135, 475–488 (2003).
[CrossRef]

Dankers, S.

S. Dankers, A. Leipertz, “Determination of primary particle size distributions from time- resolved laser-induced incandescence measurements,” Appl. Opt. 43, 3726–3731 (2004).
[CrossRef] [PubMed]

S. Schraml, S. Dankers, K. Bader, S. Will, A. Leipertz, “Soot temperature measurements and implications for time-resolved laser-induced Incandescence (TIRE-LII),” Combust. Flame 120, 439–450 (2000).
[CrossRef]

Dasch, C. J.

De Iuliis, S.

F. Cignoli, S. De Iuliis, G. Zizak, “A webcam as a light probe beam profiler,” Appl. Spectrosc. 58, 1372–1375 (2004).
[CrossRef]

F. Cignoli, S. De Iuliis, V. Manta, G. Zizak, “Two-dimensional two-wavelength emission technique for soot diagnostics,” Appl. Opt. 40, 5370–5378 (2001).
[CrossRef]

S. De Iuliis, F. Cignoli, S. Benecchi, G. Zizak, “Determination of soot parameters by a two-angle scattering-extinction technique in an ethylene diffusion flame,” Appl. Opt. 37, 7865–7874 (1998).
[CrossRef]

S. De Iuliis, M. Barbini, S. Benecchi, F. Cignoli, G. Zizak, “Determination of the soot volume fraction in an ethylene diffusion flame by multiwavelength analysis of soot radiation,” Combust. Flame 115, 253–261 (1998).
[CrossRef]

S. De Iuliis, F. Cignoli, S. Benecchi, G. Zizak, “Investigation of the similarity of soot parameters in ethylene diffusion flames with different heights by extinction/scattering technique,” in Proceedings of the 27th International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1998, pp. 1549–1555.
[CrossRef]

De Vos, J. C.

J. C. De Vos, “A new determination of the emissivity of tungsten ribbon,” Physica (Amsterdam) 20, 690–714 (1954).
[CrossRef]

Dec, J. E.

J. E. Dec, A. O. zur Loye, D. L. Siebers, “Soot distribution in a D. I. diesel engine using 2D laser-induced incandescence imaging,” SAE paper 910224 (Society of Automotive Engineering, Warrendale, Pa., 1991).

J. E. Dec, “Soot distribution in a D. I. diesel engine using 2D imaging of laser-induced incandescence, elastic scattering, and flame luminosity,” SAE paper 920115 (Society of Automotive Engineering, Warrendale, Pa., 1992).

Desgroux, P.

C. Moreau, J. F. Pauwels, P. Desgroux, E. Therssen, “Particle size and soot volume fraction measurements in atmospheric diffusion flame by laser-induced incandescence combined with cavity ring-down spectroscopy,” presented at the European Combustion Meeting, EMC 2003, Orleans, France, 25–28 October 2003.

di Stasio, S.

S. di Stasio, P. Massoli, “Influence of the soot property uncertainties in temperature and volume-fraction measurements by two-colour pyrometry,” Meas. Sci. Technol. 5, 1453–1465 (1994).
[CrossRef]

Dietrich, D. L.

Eckbreth, A. C.

A. C. Eckbreth, “Effects of laser-modulated particulate incandescence on Raman-scattering diagnostics,” J. Appl. Phys. 48, 4473–4479 (1977).
[CrossRef]

Eremin, A.

R. Starke, B. Kock, P. Roth, A. Eremin, E. Gurentsov, V. Shumova, V. Zoborov, “Shock wave induced carbon particle formation from CCL4 and C3O2 observed by laser extinction and by laser-induced incandescence (LII),” Combust. Flame 135, 77–85 (2003).
[CrossRef]

Faeth, G. M.

S. S. Krishnan, K.-C. Lin, G. M. Faeth, “Optical properties in the visible of overfire soot in large buoyant turbulent diffusion flames,” J. Heat Transfer 122, 517–524 (2000).
[CrossRef]

Filippov, A. V.

P. Roth, A. V. Filippov, “In situ ultrafine particle sizing by a combination of pulsed laser heatup and particle thermal emission,” J. Aerosol Sci. 27, 95–104 (1996).
[CrossRef]

Fraser, R. A.

D. R. Snelling, K. A. Thomson, G. J. Smallwood, O. L. Gulder, E. J. Weckman, R. A. Fraser, “Spectrally resolved measurement of flame radiation to determine soot temperature and concentration,” AIAA J. 40, 1789–1795 (2002).
[CrossRef]

Geitlinger, H.

H. Geitlinger, Th. Steibel, R. Suntz, H. Bockhorn, “Statistical analysis of soot volume fractions, particle number densities, and particle radii in a turbulent diffusion flame,” Combust. Sci. Technol. 149, 115–134 (1999).
[CrossRef]

H. Geitlinger, Th. Streibel, R. Suntz, H. Bockhorn, “Two-dimensional imaging of soot volume fraction, particle number densities, and particle radii in laminar and turbulent diffusion flames,” in Proceedings of the 27th International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1998), pp. 1613–1621.
[CrossRef]

Greenberg, P. S.

Greenhalgh, D. A.

N. P. Tait, D. A. Greenhalgh, “PLIF imaging of fuel fraction in practical devices and LII imaging of soot,” Ber Bunsenges. Phys. Chem. 97, 1619–1624 (1993).
[CrossRef]

Gulder, O. L.

D. R. Snelling, F. Liu, G. J. Smallwood, O. L. Gulder, “Determination of the soot absorption function and thermal accomodation coefficient using low-fluence LII in a laminar coflow ethylene diffusion flame,” Combust. Flame 136, 180–190 (2004).
[CrossRef]

D. R. Snelling, K. A. Thomson, G. J. Smallwood, O. L. Gulder, E. J. Weckman, R. A. Fraser, “Spectrally resolved measurement of flame radiation to determine soot temperature and concentration,” AIAA J. 40, 1789–1795 (2002).
[CrossRef]

G. J. Smallwood, D. R. Snelling, F. Liu, O. L. Gulder, “Clouds over soot evaporation: errors in modeling laser-induced incandescence of soot,” Trans. ASME, J. Heat Transfer 123, 814–818 (2001).
[CrossRef]

D. R. Snelling, K. A. Thomson, G. J. Smallwood, O. L. Gulder, “Two-dimensional imaging of soot volume fraction in laminar diffusion flames,” Appl. Opt. 38, 2478–2485 (1999).
[CrossRef]

D. R. Snelling, G. J. Smallwood, O. L. Gulder, F. Liu, W. D. Bachalo, “A calibration-independent technique of measuring soot by laser-induced incandescence using absolute light intensity,” presented at the Second Joint Meeting of the U.S. Sections of the Combustion Institute, Oakland, Calif., 25–28 March 2001.

D. R. Snelling, G. J. Smallwood, I. G. Campbell, J. E. Medlock, O. L. Gulder, “Development and application of laser-induced incandescence (LII) as a diagnostic for soot particulate measurements,” in Proceedings of the NATO/AGARD Propulsion and Energetics Panel, 90th Symposium on Advanced Non-intrusive Instrumentation for Propulsion Engines, Brussels, Belgium, 20–24 October 1997.

D. R. Snelling, G. J. Smallwood, O. L. Gulder, W. D. Bachalo, S. Sankar, “Soot volume fraction characterization using the laser-induced incandescence detection method,” Tenth International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 10–12 July 2000.

G. J. Smallwood, D. R. Snelling, W. Stuart Neill, F. Liu, W. D. Bachalo, O. L. Gulder, “Laser-induced incandescence measurements of particulate matter emission in the exhaust of a Diesel engine,” presented at the Fifth International Symposium on Diagnostics, Modeling of Combustion in Internal Combustion Engines (COMODIA), Nagoya, Japan, 1–4 July 2001.

D. R. Snelling, F. Liu, G. J. Smallwood, O. L. Gulder, “Evaluation of the nanoscale heat and mass transfer model of LII: prediction of the excitation intensity,” presented at the 34th National Heat Transfer Conference, Pittsburgh, Pa., 20–22 August 2000.

Gupta, S.

Gurentsov, E.

R. Starke, B. Kock, P. Roth, A. Eremin, E. Gurentsov, V. Shumova, V. Zoborov, “Shock wave induced carbon particle formation from CCL4 and C3O2 observed by laser extinction and by laser-induced incandescence (LII),” Combust. Flame 135, 77–85 (2003).
[CrossRef]

Hall, R. J.

Hamins, A.

M. Y. Choi, G. W. Mulholland, A. Hamins, T. Kashiwagi, “Comparison of the soot volume fraction using gravimetric and light extinction techniques,” Combust. Flame 102, 161–169 (1995).
[CrossRef]

Hanson, R. K.

T. P. Jenkins, R. K. Hanson, “Soot pyrometry using modulated absorption/emission,” Combust. Flame 126, 1669–1679 (2001).
[CrossRef]

Heikal, M. R.

C. Crua, D. A. Kennaird, M. R. Heikal, “Laser-induced incandescence study of diesel soot formation in a rapid compression machine at elevated pressures,” Combust. Flame 135, 475–488 (2003).
[CrossRef]

Hessler, J. P.

Hochgreb, S.

H. A. Michelsen, P. O. Witze, D. Kayes, S. Hochgreb, “Time-resolved laser-induced incandescence of soot: the influence of experimental factors and microphysical mechanisms,” Appl. Opt. 42, 557–5590 (2003).
[CrossRef]

P. O. Witze, S. Hochgreb, D. Kayes, H. A. Michelsen, C. R. Shaddix, “Time-resolved laser-induced incandescence and elastic-scattering measurements in propane diffusion flame,” Appl. Opt. 40, 2443–2453 (2001).
[CrossRef]

Hofeldt, D. L.

M. E. Case, D. L. Hofeldt, “Soot mass concentration measurements in diesel engine exhaust using laser-induced incendescence,” Aerosol Sci. Technol. 25, 46–60 (1996).
[CrossRef]

D. L. Hofeldt, “Real-time soot concentration measurement technique for engine exhaust streams,” SAE paper 930079 (Society of Automotive Engineering, Warrendale, Pa.1993).

Hofmann, M.

Jander, H.

Jenkins, T. P.

T. P. Jenkins, R. K. Hanson, “Soot pyrometry using modulated absorption/emission,” Combust. Flame 126, 1669–1679 (2001).
[CrossRef]

Jensen, K. A.

R. L. Vander Wal, K. A. Jensen, “Laser-induced incandescence: excitation intensity,” Appl. Opt. 37, 1607–1616 (1998).
[CrossRef]

M. Y. Choi, K. A. Jensen, “Calibration and correction of laser-induced incandescence for soot volume fraction measurements,” Combust. Flame 112, 485–491 (1998).
[CrossRef]

Jungfleisch, B.

T. Lehere, H. Bockhorn, B. Jungfleisch, R. Suntz, “Development of a measuring technique for simultaneous in situ detection of nanoscaled particle size distributions and gas temperatures,” Chemosphere 51, 1055–1061 (2003).
[CrossRef]

J. Appel, B. Jungfleisch, M. Marquardt, R. Suntz, H. Bockhorn, “Assessment of soot volume fraction from laser-induced incandescence by comparison with extinction measurements in laminar, premixed, flat flames,” in Proceedings of the 26th International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2387–2395.
[CrossRef]

Kamimoto, T.

Y. Matsui, T. Kamimoto, S. Matsuoka, “A study on the application of the two-color method to the measurement of flame temperature and soot concentration in diesel engines,” SAE paper 800970 (Society of Automotive Engineers, Warrendale, Pa., 1980).

Y. Matsui, T. Kamimoto, S. Matsuoka, “A study on the time- and space-resolved measurement of flame temperature and soot concentration in a D. I. diesel engine by the two-color method,” SAE Tech. Paper 790491 (Society of Automotive Engineers, Warrendale, Pa., 1979).

Kashiwagi, T.

M. Y. Choi, G. W. Mulholland, A. Hamins, T. Kashiwagi, “Comparison of the soot volume fraction using gravimetric and light extinction techniques,” Combust. Flame 102, 161–169 (1995).
[CrossRef]

Kayes, D.

H. A. Michelsen, P. O. Witze, D. Kayes, S. Hochgreb, “Time-resolved laser-induced incandescence of soot: the influence of experimental factors and microphysical mechanisms,” Appl. Opt. 42, 557–5590 (2003).
[CrossRef]

P. O. Witze, S. Hochgreb, D. Kayes, H. A. Michelsen, C. R. Shaddix, “Time-resolved laser-induced incandescence and elastic-scattering measurements in propane diffusion flame,” Appl. Opt. 40, 2443–2453 (2001).
[CrossRef]

Kennaird, D. A.

C. Crua, D. A. Kennaird, M. R. Heikal, “Laser-induced incandescence study of diesel soot formation in a rapid compression machine at elevated pressures,” Combust. Flame 135, 475–488 (2003).
[CrossRef]

Kock, B.

R. Starke, B. Kock, P. Roth, A. Eremin, E. Gurentsov, V. Shumova, V. Zoborov, “Shock wave induced carbon particle formation from CCL4 and C3O2 observed by laser extinction and by laser-induced incandescence (LII),” Combust. Flame 135, 77–85 (2003).
[CrossRef]

Kock, B. F.

B. F. Kock, P. Roth, “Two-color TR-LII applied to in-cylinder diesel particle sizing,” presented at The European Combustion Meeting, EMC 2003. Orleans: France, 25–28 October 2003.

Krishnan, S. S.

S. S. Krishnan, K.-C. Lin, G. M. Faeth, “Optical properties in the visible of overfire soot in large buoyant turbulent diffusion flames,” J. Heat Transfer 122, 517–524 (2000).
[CrossRef]

Ku, J. C.

Ladommatos, N.

N. Ladommatos, H. Zhao, “A guide to measurement of flame temperature and soot concentration in diesel engines using the two-colour method. Part I: Principles,” SAE Tech. Paper 941956 (Society of Automotive Engineers, Warrendale, Pa., 1994).

Lee, K.-O.

R. L. Vander Wal, M. Y. Choi, K.-O. Lee, “The effects of rapid heating of soot: implications when using laser-induced incandescence for soot diagnostics,” Combust. Flame 102, 200–2004 (1995).
[CrossRef]

Lee, T.-W.

B. Quay, T.-W. Lee, T. Ni, R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 384–392 (1994).
[CrossRef]

Lee, W.

W. Lee, Y. D. Na, “Soot study in laminar diffusion flames at elevated pressure using two-color pyrometry and Abel inversion,” JSME Int. J., Ser. B 43, 550–555 (2000).
[CrossRef]

Lehere, T.

T. Lehere, H. Bockhorn, B. Jungfleisch, R. Suntz, “Development of a measuring technique for simultaneous in situ detection of nanoscaled particle size distributions and gas temperatures,” Chemosphere 51, 1055–1061 (2003).
[CrossRef]

Leipertz, A.

S. Dankers, A. Leipertz, “Determination of primary particle size distributions from time- resolved laser-induced incandescence measurements,” Appl. Opt. 43, 3726–3731 (2004).
[CrossRef] [PubMed]

S. Schraml, S. Dankers, K. Bader, S. Will, A. Leipertz, “Soot temperature measurements and implications for time-resolved laser-induced Incandescence (TIRE-LII),” Combust. Flame 120, 439–450 (2000).
[CrossRef]

S. Will, S. Schraml, A. Leipertz, “Two-dimensional sootparticle sizing by time-resolved laser-induced incandescence,” Opt. Lett. 20, 2342–2344 (1995).
[CrossRef]

S. Will, S. Schraml, A. Leipertz, “Comprehensive two-dimensional soot diagnostics based on laser-induced incandescence (LII),” in Proceedings of the 26th International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2277–2284.
[CrossRef]

Leipetz, A.

Lin, K.-C.

S. S. Krishnan, K.-C. Lin, G. M. Faeth, “Optical properties in the visible of overfire soot in large buoyant turbulent diffusion flames,” J. Heat Transfer 122, 517–524 (2000).
[CrossRef]

Liu, F.

D. R. Snelling, F. Liu, G. J. Smallwood, O. L. Gulder, “Determination of the soot absorption function and thermal accomodation coefficient using low-fluence LII in a laminar coflow ethylene diffusion flame,” Combust. Flame 136, 180–190 (2004).
[CrossRef]

G. J. Smallwood, D. R. Snelling, F. Liu, O. L. Gulder, “Clouds over soot evaporation: errors in modeling laser-induced incandescence of soot,” Trans. ASME, J. Heat Transfer 123, 814–818 (2001).
[CrossRef]

D. R. Snelling, F. Liu, G. J. Smallwood, O. L. Gulder, “Evaluation of the nanoscale heat and mass transfer model of LII: prediction of the excitation intensity,” presented at the 34th National Heat Transfer Conference, Pittsburgh, Pa., 20–22 August 2000.

D. R. Snelling, G. J. Smallwood, O. L. Gulder, F. Liu, W. D. Bachalo, “A calibration-independent technique of measuring soot by laser-induced incandescence using absolute light intensity,” presented at the Second Joint Meeting of the U.S. Sections of the Combustion Institute, Oakland, Calif., 25–28 March 2001.

G. J. Smallwood, D. R. Snelling, W. Stuart Neill, F. Liu, W. D. Bachalo, O. L. Gulder, “Laser-induced incandescence measurements of particulate matter emission in the exhaust of a Diesel engine,” presented at the Fifth International Symposium on Diagnostics, Modeling of Combustion in Internal Combustion Engines (COMODIA), Nagoya, Japan, 1–4 July 2001.

Manta, V.

Marquardt, M.

J. Appel, B. Jungfleisch, M. Marquardt, R. Suntz, H. Bockhorn, “Assessment of soot volume fraction from laser-induced incandescence by comparison with extinction measurements in laminar, premixed, flat flames,” in Proceedings of the 26th International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2387–2395.
[CrossRef]

Massoli, P.

S. di Stasio, P. Massoli, “Influence of the soot property uncertainties in temperature and volume-fraction measurements by two-colour pyrometry,” Meas. Sci. Technol. 5, 1453–1465 (1994).
[CrossRef]

Matsui, Y.

Y. Matsui, T. Kamimoto, S. Matsuoka, “A study on the application of the two-color method to the measurement of flame temperature and soot concentration in diesel engines,” SAE paper 800970 (Society of Automotive Engineers, Warrendale, Pa., 1980).

Y. Matsui, T. Kamimoto, S. Matsuoka, “A study on the time- and space-resolved measurement of flame temperature and soot concentration in a D. I. diesel engine by the two-color method,” SAE Tech. Paper 790491 (Society of Automotive Engineers, Warrendale, Pa., 1979).

Matsuoka, S.

Y. Matsui, T. Kamimoto, S. Matsuoka, “A study on the time- and space-resolved measurement of flame temperature and soot concentration in a D. I. diesel engine by the two-color method,” SAE Tech. Paper 790491 (Society of Automotive Engineers, Warrendale, Pa., 1979).

Y. Matsui, T. Kamimoto, S. Matsuoka, “A study on the application of the two-color method to the measurement of flame temperature and soot concentration in diesel engines,” SAE paper 800970 (Society of Automotive Engineers, Warrendale, Pa., 1980).

McGrath, I. A.

R. G. Siddal, I. A. McGrath. “The emissivity of luminous flames,” inProceedings of the 9th International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa.1962), pp. 102–110.

Medlock, J. E.

D. R. Snelling, G. J. Smallwood, I. G. Campbell, J. E. Medlock, O. L. Gulder, “Development and application of laser-induced incandescence (LII) as a diagnostic for soot particulate measurements,” in Proceedings of the NATO/AGARD Propulsion and Energetics Panel, 90th Symposium on Advanced Non-intrusive Instrumentation for Propulsion Engines, Brussels, Belgium, 20–24 October 1997.

Melton, L. A.

Mewes, B.

Michelsen, H. A.

H. A. Michelsen, P. O. Witze, D. Kayes, S. Hochgreb, “Time-resolved laser-induced incandescence of soot: the influence of experimental factors and microphysical mechanisms,” Appl. Opt. 42, 557–5590 (2003).
[CrossRef]

H. A. Michelsen, “Understanding and predicting the temporal response of laser-induced incandescence from carbonaceous particles,” J. Chem. Phys. 118, 7012–7045 (2003).
[CrossRef]

P. O. Witze, S. Hochgreb, D. Kayes, H. A. Michelsen, C. R. Shaddix, “Time-resolved laser-induced incandescence and elastic-scattering measurements in propane diffusion flame,” Appl. Opt. 40, 2443–2453 (2001).
[CrossRef]

Moreau, C.

C. Moreau, J. F. Pauwels, P. Desgroux, E. Therssen, “Particle size and soot volume fraction measurements in atmospheric diffusion flame by laser-induced incandescence combined with cavity ring-down spectroscopy,” presented at the European Combustion Meeting, EMC 2003, Orleans, France, 25–28 October 2003.

Mulholland, G. W.

M. Y. Choi, G. W. Mulholland, A. Hamins, T. Kashiwagi, “Comparison of the soot volume fraction using gravimetric and light extinction techniques,” Combust. Flame 102, 161–169 (1995).
[CrossRef]

Na, Y. D.

W. Lee, Y. D. Na, “Soot study in laminar diffusion flames at elevated pressure using two-color pyrometry and Abel inversion,” JSME Int. J., Ser. B 43, 550–555 (2000).
[CrossRef]

Ni, T.

T. Ni, J. A. Pinson, S. Gupta, R. J. Santoro, “Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence,” Appl. Opt. 34, 7083–7091 (1995).
[CrossRef] [PubMed]

B. Quay, T.-W. Lee, T. Ni, R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 384–392 (1994).
[CrossRef]

Pagni, P. J.

P. J. Pagni, S. Bard, “Particulate volume fraction in diffusion flames,” in Proceedings of the 17th International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1978), pp. 1017–1028.

Pauwels, J. F.

C. Moreau, J. F. Pauwels, P. Desgroux, E. Therssen, “Particle size and soot volume fraction measurements in atmospheric diffusion flame by laser-induced incandescence combined with cavity ring-down spectroscopy,” presented at the European Combustion Meeting, EMC 2003, Orleans, France, 25–28 October 2003.

Pinson, J. A.

Pon, R. M.

Quay, B.

B. Quay, T.-W. Lee, T. Ni, R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 384–392 (1994).
[CrossRef]

Quoc, X. H.

X. H. Quoc, J.-M. Vignon, M. Brun, “A new approach of the two-color method for determining local instantaneous soot concentration and temperature in a D. I. diesel combustion chamber,” SAE Tech. Paper 910736 (Society of Automotive Engineers, Warrendale, Pa., 1991).

Rohlfing, E. A.

E. A. Rohlfing, D. W. Chandler, “Two-color pyrometric imaging of laser-heated carbon particles in a supersonic flow,” Chem. Phys. Lett. 170, 44–50 (1990).
[CrossRef]

Roth, P.

R. Starke, B. Kock, P. Roth, A. Eremin, E. Gurentsov, V. Shumova, V. Zoborov, “Shock wave induced carbon particle formation from CCL4 and C3O2 observed by laser extinction and by laser-induced incandescence (LII),” Combust. Flame 135, 77–85 (2003).
[CrossRef]

P. Roth, A. V. Filippov, “In situ ultrafine particle sizing by a combination of pulsed laser heatup and particle thermal emission,” J. Aerosol Sci. 27, 95–104 (1996).
[CrossRef]

B. F. Kock, P. Roth, “Two-color TR-LII applied to in-cylinder diesel particle sizing,” presented at The European Combustion Meeting, EMC 2003. Orleans: France, 25–28 October 2003.

Sankar, S.

D. R. Snelling, G. J. Smallwood, O. L. Gulder, W. D. Bachalo, S. Sankar, “Soot volume fraction characterization using the laser-induced incandescence detection method,” Tenth International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 10–12 July 2000.

Santoro, R. J.

T. Ni, J. A. Pinson, S. Gupta, R. J. Santoro, “Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence,” Appl. Opt. 34, 7083–7091 (1995).
[CrossRef] [PubMed]

B. Quay, T.-W. Lee, T. Ni, R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 384–392 (1994).
[CrossRef]

Schraml, S.

S. Schraml, S. Dankers, K. Bader, S. Will, A. Leipertz, “Soot temperature measurements and implications for time-resolved laser-induced Incandescence (TIRE-LII),” Combust. Flame 120, 439–450 (2000).
[CrossRef]

S. Will, S. Schraml, K. Bader, A. Leipetz, “Performance characteristics of soot primary particle size measurements by time-resolved laser-induced incandescence,” Appl. Opt. 37, 5647–5658 (1998).
[CrossRef]

S. Will, S. Schraml, A. Leipertz, “Two-dimensional sootparticle sizing by time-resolved laser-induced incandescence,” Opt. Lett. 20, 2342–2344 (1995).
[CrossRef]

S. Will, S. Schraml, A. Leipertz, “Comprehensive two-dimensional soot diagnostics based on laser-induced incandescence (LII),” in Proceedings of the 26th International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2277–2284.
[CrossRef]

Schulz, C.

Seitzman, J. M.

Shaddix, C. R.

P. O. Witze, S. Hochgreb, D. Kayes, H. A. Michelsen, C. R. Shaddix, “Time-resolved laser-induced incandescence and elastic-scattering measurements in propane diffusion flame,” Appl. Opt. 40, 2443–2453 (2001).
[CrossRef]

C. R. Shaddix, K. C. Smyth, “Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996).
[CrossRef]

K. C. Smyth, C. R. Shaddix, “The elusive history of m= 1.57−0.56i for the refractive index of soot,” Combust. Flame 107, 314–320 (1996).
[CrossRef]

Shumova, V.

R. Starke, B. Kock, P. Roth, A. Eremin, E. Gurentsov, V. Shumova, V. Zoborov, “Shock wave induced carbon particle formation from CCL4 and C3O2 observed by laser extinction and by laser-induced incandescence (LII),” Combust. Flame 135, 77–85 (2003).
[CrossRef]

Siddal, R. G.

R. G. Siddal, I. A. McGrath. “The emissivity of luminous flames,” inProceedings of the 9th International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa.1962), pp. 102–110.

Siebers, D. L.

J. E. Dec, A. O. zur Loye, D. L. Siebers, “Soot distribution in a D. I. diesel engine using 2D laser-induced incandescence imaging,” SAE paper 910224 (Society of Automotive Engineering, Warrendale, Pa., 1991).

Smallwood, G. J.

D. R. Snelling, F. Liu, G. J. Smallwood, O. L. Gulder, “Determination of the soot absorption function and thermal accomodation coefficient using low-fluence LII in a laminar coflow ethylene diffusion flame,” Combust. Flame 136, 180–190 (2004).
[CrossRef]

D. R. Snelling, K. A. Thomson, G. J. Smallwood, O. L. Gulder, E. J. Weckman, R. A. Fraser, “Spectrally resolved measurement of flame radiation to determine soot temperature and concentration,” AIAA J. 40, 1789–1795 (2002).
[CrossRef]

G. J. Smallwood, D. R. Snelling, F. Liu, O. L. Gulder, “Clouds over soot evaporation: errors in modeling laser-induced incandescence of soot,” Trans. ASME, J. Heat Transfer 123, 814–818 (2001).
[CrossRef]

D. R. Snelling, K. A. Thomson, G. J. Smallwood, O. L. Gulder, “Two-dimensional imaging of soot volume fraction in laminar diffusion flames,” Appl. Opt. 38, 2478–2485 (1999).
[CrossRef]

D. R. Snelling, G. J. Smallwood, O. L. Gulder, F. Liu, W. D. Bachalo, “A calibration-independent technique of measuring soot by laser-induced incandescence using absolute light intensity,” presented at the Second Joint Meeting of the U.S. Sections of the Combustion Institute, Oakland, Calif., 25–28 March 2001.

D. R. Snelling, G. J. Smallwood, I. G. Campbell, J. E. Medlock, O. L. Gulder, “Development and application of laser-induced incandescence (LII) as a diagnostic for soot particulate measurements,” in Proceedings of the NATO/AGARD Propulsion and Energetics Panel, 90th Symposium on Advanced Non-intrusive Instrumentation for Propulsion Engines, Brussels, Belgium, 20–24 October 1997.

D. R. Snelling, G. J. Smallwood, O. L. Gulder, W. D. Bachalo, S. Sankar, “Soot volume fraction characterization using the laser-induced incandescence detection method,” Tenth International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 10–12 July 2000.

G. J. Smallwood, D. R. Snelling, W. Stuart Neill, F. Liu, W. D. Bachalo, O. L. Gulder, “Laser-induced incandescence measurements of particulate matter emission in the exhaust of a Diesel engine,” presented at the Fifth International Symposium on Diagnostics, Modeling of Combustion in Internal Combustion Engines (COMODIA), Nagoya, Japan, 1–4 July 2001.

D. R. Snelling, F. Liu, G. J. Smallwood, O. L. Gulder, “Evaluation of the nanoscale heat and mass transfer model of LII: prediction of the excitation intensity,” presented at the 34th National Heat Transfer Conference, Pittsburgh, Pa., 20–22 August 2000.

Smyth, K. C.

K. C. Smyth, C. R. Shaddix, “The elusive history of m= 1.57−0.56i for the refractive index of soot,” Combust. Flame 107, 314–320 (1996).
[CrossRef]

C. R. Shaddix, K. C. Smyth, “Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996).
[CrossRef]

Snelling, D. R.

D. R. Snelling, F. Liu, G. J. Smallwood, O. L. Gulder, “Determination of the soot absorption function and thermal accomodation coefficient using low-fluence LII in a laminar coflow ethylene diffusion flame,” Combust. Flame 136, 180–190 (2004).
[CrossRef]

D. R. Snelling, K. A. Thomson, G. J. Smallwood, O. L. Gulder, E. J. Weckman, R. A. Fraser, “Spectrally resolved measurement of flame radiation to determine soot temperature and concentration,” AIAA J. 40, 1789–1795 (2002).
[CrossRef]

G. J. Smallwood, D. R. Snelling, F. Liu, O. L. Gulder, “Clouds over soot evaporation: errors in modeling laser-induced incandescence of soot,” Trans. ASME, J. Heat Transfer 123, 814–818 (2001).
[CrossRef]

D. R. Snelling, K. A. Thomson, G. J. Smallwood, O. L. Gulder, “Two-dimensional imaging of soot volume fraction in laminar diffusion flames,” Appl. Opt. 38, 2478–2485 (1999).
[CrossRef]

D. R. Snelling, G. J. Smallwood, I. G. Campbell, J. E. Medlock, O. L. Gulder, “Development and application of laser-induced incandescence (LII) as a diagnostic for soot particulate measurements,” in Proceedings of the NATO/AGARD Propulsion and Energetics Panel, 90th Symposium on Advanced Non-intrusive Instrumentation for Propulsion Engines, Brussels, Belgium, 20–24 October 1997.

D. R. Snelling, G. J. Smallwood, O. L. Gulder, F. Liu, W. D. Bachalo, “A calibration-independent technique of measuring soot by laser-induced incandescence using absolute light intensity,” presented at the Second Joint Meeting of the U.S. Sections of the Combustion Institute, Oakland, Calif., 25–28 March 2001.

G. J. Smallwood, D. R. Snelling, W. Stuart Neill, F. Liu, W. D. Bachalo, O. L. Gulder, “Laser-induced incandescence measurements of particulate matter emission in the exhaust of a Diesel engine,” presented at the Fifth International Symposium on Diagnostics, Modeling of Combustion in Internal Combustion Engines (COMODIA), Nagoya, Japan, 1–4 July 2001.

D. R. Snelling, G. J. Smallwood, O. L. Gulder, W. D. Bachalo, S. Sankar, “Soot volume fraction characterization using the laser-induced incandescence detection method,” Tenth International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 10–12 July 2000.

D. R. Snelling, F. Liu, G. J. Smallwood, O. L. Gulder, “Evaluation of the nanoscale heat and mass transfer model of LII: prediction of the excitation intensity,” presented at the 34th National Heat Transfer Conference, Pittsburgh, Pa., 20–22 August 2000.

Starke, R.

R. Starke, B. Kock, P. Roth, A. Eremin, E. Gurentsov, V. Shumova, V. Zoborov, “Shock wave induced carbon particle formation from CCL4 and C3O2 observed by laser extinction and by laser-induced incandescence (LII),” Combust. Flame 135, 77–85 (2003).
[CrossRef]

Steibel, Th.

H. Geitlinger, Th. Steibel, R. Suntz, H. Bockhorn, “Statistical analysis of soot volume fractions, particle number densities, and particle radii in a turbulent diffusion flame,” Combust. Sci. Technol. 149, 115–134 (1999).
[CrossRef]

Streibel, Th.

H. Geitlinger, Th. Streibel, R. Suntz, H. Bockhorn, “Two-dimensional imaging of soot volume fraction, particle number densities, and particle radii in laminar and turbulent diffusion flames,” in Proceedings of the 27th International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1998), pp. 1613–1621.
[CrossRef]

Stuart Neill, W.

G. J. Smallwood, D. R. Snelling, W. Stuart Neill, F. Liu, W. D. Bachalo, O. L. Gulder, “Laser-induced incandescence measurements of particulate matter emission in the exhaust of a Diesel engine,” presented at the Fifth International Symposium on Diagnostics, Modeling of Combustion in Internal Combustion Engines (COMODIA), Nagoya, Japan, 1–4 July 2001.

Suntz, R.

T. Lehere, H. Bockhorn, B. Jungfleisch, R. Suntz, “Development of a measuring technique for simultaneous in situ detection of nanoscaled particle size distributions and gas temperatures,” Chemosphere 51, 1055–1061 (2003).
[CrossRef]

H. Geitlinger, Th. Steibel, R. Suntz, H. Bockhorn, “Statistical analysis of soot volume fractions, particle number densities, and particle radii in a turbulent diffusion flame,” Combust. Sci. Technol. 149, 115–134 (1999).
[CrossRef]

H. Geitlinger, Th. Streibel, R. Suntz, H. Bockhorn, “Two-dimensional imaging of soot volume fraction, particle number densities, and particle radii in laminar and turbulent diffusion flames,” in Proceedings of the 27th International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1998), pp. 1613–1621.
[CrossRef]

J. Appel, B. Jungfleisch, M. Marquardt, R. Suntz, H. Bockhorn, “Assessment of soot volume fraction from laser-induced incandescence by comparison with extinction measurements in laminar, premixed, flat flames,” in Proceedings of the 26th International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2387–2395.
[CrossRef]

Tait, N. P.

N. P. Tait, D. A. Greenhalgh, “PLIF imaging of fuel fraction in practical devices and LII imaging of soot,” Ber Bunsenges. Phys. Chem. 97, 1619–1624 (1993).
[CrossRef]

Therssen, E.

C. Moreau, J. F. Pauwels, P. Desgroux, E. Therssen, “Particle size and soot volume fraction measurements in atmospheric diffusion flame by laser-induced incandescence combined with cavity ring-down spectroscopy,” presented at the European Combustion Meeting, EMC 2003, Orleans, France, 25–28 October 2003.

Thomson, K. A.

D. R. Snelling, K. A. Thomson, G. J. Smallwood, O. L. Gulder, E. J. Weckman, R. A. Fraser, “Spectrally resolved measurement of flame radiation to determine soot temperature and concentration,” AIAA J. 40, 1789–1795 (2002).
[CrossRef]

D. R. Snelling, K. A. Thomson, G. J. Smallwood, O. L. Gulder, “Two-dimensional imaging of soot volume fraction in laminar diffusion flames,” Appl. Opt. 38, 2478–2485 (1999).
[CrossRef]

Vander Wal, R. L.

R. L. Vander Wal, M. Y. Choi, “Pulsed laser heating of soot: morphological changes,” Carbon 37, 231–239 (1999).
[CrossRef]

R. L. Vander Wal, K. A. Jensen, “Laser-induced incandescence: excitation intensity,” Appl. Opt. 37, 1607–1616 (1998).
[CrossRef]

R. L. Vander Wal, “LIF-LII measurements in a turbulent gas-jet flame,” Exp. Fluids 23, 281–287 (1997).
[CrossRef]

R. L. Vander Wal, Z. Zhou, M. Y. Choi, “Laser-induced incandescence calibration via gravimetric sampling,” Combust. Flame 105, 462–470 (1996).
[CrossRef]

R. L. Vander Wal, “Laser-induced incandescence: detection issues,” Appl. Opt. 35, 6548–6559 (1996).
[CrossRef] [PubMed]

R. L. Vander Wal, M. Y. Choi, K.-O. Lee, “The effects of rapid heating of soot: implications when using laser-induced incandescence for soot diagnostics,” Combust. Flame 102, 200–2004 (1995).
[CrossRef]

R. L. Vander Wal, D. L. Dietrich, “Laser-induced incandescence applied to droplet combustion,” Appl. Opt. 34, 1103–1107 (1995).
[CrossRef]

R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards a measurement of soot volume fraction,” Appl. Phys. B 59, 445–452 (1994).
[CrossRef]

R. L. Vander Wal, “Calibration and comparison of laser-induced incandescence with cavity ring down,” in Proceedings of the 27th International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1998), pp. 59–67.
[CrossRef]

Vignon, J.-M.

X. H. Quoc, J.-M. Vignon, M. Brun, “A new approach of the two-color method for determining local instantaneous soot concentration and temperature in a D. I. diesel combustion chamber,” SAE Tech. Paper 910736 (Society of Automotive Engineers, Warrendale, Pa., 1991).

Weckman, E. J.

D. R. Snelling, K. A. Thomson, G. J. Smallwood, O. L. Gulder, E. J. Weckman, R. A. Fraser, “Spectrally resolved measurement of flame radiation to determine soot temperature and concentration,” AIAA J. 40, 1789–1795 (2002).
[CrossRef]

Weiland, K. J.

R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards a measurement of soot volume fraction,” Appl. Phys. B 59, 445–452 (1994).
[CrossRef]

Will, S.

S. Schraml, S. Dankers, K. Bader, S. Will, A. Leipertz, “Soot temperature measurements and implications for time-resolved laser-induced Incandescence (TIRE-LII),” Combust. Flame 120, 439–450 (2000).
[CrossRef]

S. Will, S. Schraml, K. Bader, A. Leipetz, “Performance characteristics of soot primary particle size measurements by time-resolved laser-induced incandescence,” Appl. Opt. 37, 5647–5658 (1998).
[CrossRef]

S. Will, S. Schraml, A. Leipertz, “Two-dimensional sootparticle sizing by time-resolved laser-induced incandescence,” Opt. Lett. 20, 2342–2344 (1995).
[CrossRef]

S. Will, S. Schraml, A. Leipertz, “Comprehensive two-dimensional soot diagnostics based on laser-induced incandescence (LII),” in Proceedings of the 26th International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2277–2284.
[CrossRef]

Witze, P. O.

H. A. Michelsen, P. O. Witze, D. Kayes, S. Hochgreb, “Time-resolved laser-induced incandescence of soot: the influence of experimental factors and microphysical mechanisms,” Appl. Opt. 42, 557–5590 (2003).
[CrossRef]

P. O. Witze, S. Hochgreb, D. Kayes, H. A. Michelsen, C. R. Shaddix, “Time-resolved laser-induced incandescence and elastic-scattering measurements in propane diffusion flame,” Appl. Opt. 40, 2443–2453 (2001).
[CrossRef]

Zhao, H.

N. Ladommatos, H. Zhao, “A guide to measurement of flame temperature and soot concentration in diesel engines using the two-colour method. Part I: Principles,” SAE Tech. Paper 941956 (Society of Automotive Engineers, Warrendale, Pa., 1994).

Zhou, Z.

R. L. Vander Wal, Z. Zhou, M. Y. Choi, “Laser-induced incandescence calibration via gravimetric sampling,” Combust. Flame 105, 462–470 (1996).
[CrossRef]

Zizak, G.

F. Cignoli, S. De Iuliis, G. Zizak, “A webcam as a light probe beam profiler,” Appl. Spectrosc. 58, 1372–1375 (2004).
[CrossRef]

F. Cignoli, S. De Iuliis, V. Manta, G. Zizak, “Two-dimensional two-wavelength emission technique for soot diagnostics,” Appl. Opt. 40, 5370–5378 (2001).
[CrossRef]

S. De Iuliis, F. Cignoli, S. Benecchi, G. Zizak, “Determination of soot parameters by a two-angle scattering-extinction technique in an ethylene diffusion flame,” Appl. Opt. 37, 7865–7874 (1998).
[CrossRef]

S. De Iuliis, M. Barbini, S. Benecchi, F. Cignoli, G. Zizak, “Determination of the soot volume fraction in an ethylene diffusion flame by multiwavelength analysis of soot radiation,” Combust. Flame 115, 253–261 (1998).
[CrossRef]

F. Cignoli, S. Benecchi, G. Zizak, “Time-delayed detection of laser-induced incandescence for the two-dimensional visualization of soot in flames,” Appl. Opt. 33, 5778–5782 (1994).
[CrossRef] [PubMed]

S. De Iuliis, F. Cignoli, S. Benecchi, G. Zizak, “Investigation of the similarity of soot parameters in ethylene diffusion flames with different heights by extinction/scattering technique,” in Proceedings of the 27th International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1998, pp. 1549–1555.
[CrossRef]

Zoborov, V.

R. Starke, B. Kock, P. Roth, A. Eremin, E. Gurentsov, V. Shumova, V. Zoborov, “Shock wave induced carbon particle formation from CCL4 and C3O2 observed by laser extinction and by laser-induced incandescence (LII),” Combust. Flame 135, 77–85 (2003).
[CrossRef]

zur Loye, A. O.

J. E. Dec, A. O. zur Loye, D. L. Siebers, “Soot distribution in a D. I. diesel engine using 2D laser-induced incandescence imaging,” SAE paper 910224 (Society of Automotive Engineering, Warrendale, Pa., 1991).

Aerosol Sci. Technol.

M. E. Case, D. L. Hofeldt, “Soot mass concentration measurements in diesel engine exhaust using laser-induced incendescence,” Aerosol Sci. Technol. 25, 46–60 (1996).
[CrossRef]

AIAA J.

D. R. Snelling, K. A. Thomson, G. J. Smallwood, O. L. Gulder, E. J. Weckman, R. A. Fraser, “Spectrally resolved measurement of flame radiation to determine soot temperature and concentration,” AIAA J. 40, 1789–1795 (2002).
[CrossRef]

Appl. Opt.

L. A. Melton, “Soot diagnostics based on laser heating,” Appl. Opt. 23, 2201–2208 (1984).
[CrossRef] [PubMed]

C. J. Dasch, “Continuous-wave probe-laser investigation of laser vaporization of small soot particles in a flame,” Appl. Opt. 23, 2209–2215 (1984).
[CrossRef]

R. M. Pon, J. P. Hessler, “Spectral emissivity of tungsten: analytical exspressions for the 340 nm to 2.6 micron spectral region,” Appl. Opt. 23, 975–976 (1984).
[CrossRef] [PubMed]

R. J. Hall, P. A. Bonczyk, “Sooting flame thermometry using emission/absorption tomography,” Appl. Opt. 29, 4590–4598 (1990).
[CrossRef] [PubMed]

C. J. Dasch, “One-dimensional tomography: a comparison of Abel, onion peeling, and filtered backprojection methods,” Appl. Opt. 31, 1146–152 (1992).
[CrossRef] [PubMed]

F. Cignoli, S. Benecchi, G. Zizak, “Time-delayed detection of laser-induced incandescence for the two-dimensional visualization of soot in flames,” Appl. Opt. 33, 5778–5782 (1994).
[CrossRef] [PubMed]

B. Mewes, J. M. Seitzman, “Soot volume fraction and particle size measurements with laser-induced incandescence,” Appl. Opt. 36, 709–717 (1997).
[CrossRef] [PubMed]

P. S. Greenberg, J. C. Ku, “Soot volume fraction imaging,” Appl. Opt. 36, 5514–5522 (1997).
[CrossRef] [PubMed]

S. Will, S. Schraml, K. Bader, A. Leipetz, “Performance characteristics of soot primary particle size measurements by time-resolved laser-induced incandescence,” Appl. Opt. 37, 5647–5658 (1998).
[CrossRef]

S. De Iuliis, F. Cignoli, S. Benecchi, G. Zizak, “Determination of soot parameters by a two-angle scattering-extinction technique in an ethylene diffusion flame,” Appl. Opt. 37, 7865–7874 (1998).
[CrossRef]

R. L. Vander Wal, D. L. Dietrich, “Laser-induced incandescence applied to droplet combustion,” Appl. Opt. 34, 1103–1107 (1995).
[CrossRef]

T. Ni, J. A. Pinson, S. Gupta, R. J. Santoro, “Two-dimensional imaging of soot volume fraction by the use of laser-induced incandescence,” Appl. Opt. 34, 7083–7091 (1995).
[CrossRef] [PubMed]

R. L. Vander Wal, “Laser-induced incandescence: detection issues,” Appl. Opt. 35, 6548–6559 (1996).
[CrossRef] [PubMed]

R. L. Vander Wal, K. A. Jensen, “Laser-induced incandescence: excitation intensity,” Appl. Opt. 37, 1607–1616 (1998).
[CrossRef]

D. R. Snelling, K. A. Thomson, G. J. Smallwood, O. L. Gulder, “Two-dimensional imaging of soot volume fraction in laminar diffusion flames,” Appl. Opt. 38, 2478–2485 (1999).
[CrossRef]

B. Axelsson, R. Collin, P.-E. Bengtsson, “Laser-induced incandescence for soot particle size measurements in premixed flat flames,” Appl. Opt. 39, 3683–3690 (2000).
[CrossRef]

P. O. Witze, S. Hochgreb, D. Kayes, H. A. Michelsen, C. R. Shaddix, “Time-resolved laser-induced incandescence and elastic-scattering measurements in propane diffusion flame,” Appl. Opt. 40, 2443–2453 (2001).
[CrossRef]

F. Cignoli, S. De Iuliis, V. Manta, G. Zizak, “Two-dimensional two-wavelength emission technique for soot diagnostics,” Appl. Opt. 40, 5370–5378 (2001).
[CrossRef]

M. Hofmann, W. G. Bessler, C. Schulz, H. Jander, “Laser-induced incandescence for soot diagnostics at high pressures,” Appl. Opt. 42, 2052–2062 (2003).
[CrossRef] [PubMed]

S. Dankers, A. Leipertz, “Determination of primary particle size distributions from time- resolved laser-induced incandescence measurements,” Appl. Opt. 43, 3726–3731 (2004).
[CrossRef] [PubMed]

H. A. Michelsen, P. O. Witze, D. Kayes, S. Hochgreb, “Time-resolved laser-induced incandescence of soot: the influence of experimental factors and microphysical mechanisms,” Appl. Opt. 42, 557–5590 (2003).
[CrossRef]

Appl. Phys. B

P.-E. Bengtsson, M. Aldén, “Soot-visualization strategies using laser techniques,” Appl. Phys. B 60, 51–59 (1995).
[CrossRef]

R. L. Vander Wal, K. J. Weiland, “Laser-induced incandescence: development and characterization towards a measurement of soot volume fraction,” Appl. Phys. B 59, 445–452 (1994).
[CrossRef]

Appl. Spectrosc.

Ber Bunsenges. Phys. Chem.

N. P. Tait, D. A. Greenhalgh, “PLIF imaging of fuel fraction in practical devices and LII imaging of soot,” Ber Bunsenges. Phys. Chem. 97, 1619–1624 (1993).
[CrossRef]

Carbon

R. L. Vander Wal, M. Y. Choi, “Pulsed laser heating of soot: morphological changes,” Carbon 37, 231–239 (1999).
[CrossRef]

Chem. Phys. Lett.

E. A. Rohlfing, D. W. Chandler, “Two-color pyrometric imaging of laser-heated carbon particles in a supersonic flow,” Chem. Phys. Lett. 170, 44–50 (1990).
[CrossRef]

Chemosphere

T. Lehere, H. Bockhorn, B. Jungfleisch, R. Suntz, “Development of a measuring technique for simultaneous in situ detection of nanoscaled particle size distributions and gas temperatures,” Chemosphere 51, 1055–1061 (2003).
[CrossRef]

Combust. Flame

C. Crua, D. A. Kennaird, M. R. Heikal, “Laser-induced incandescence study of diesel soot formation in a rapid compression machine at elevated pressures,” Combust. Flame 135, 475–488 (2003).
[CrossRef]

R. Starke, B. Kock, P. Roth, A. Eremin, E. Gurentsov, V. Shumova, V. Zoborov, “Shock wave induced carbon particle formation from CCL4 and C3O2 observed by laser extinction and by laser-induced incandescence (LII),” Combust. Flame 135, 77–85 (2003).
[CrossRef]

D. R. Snelling, F. Liu, G. J. Smallwood, O. L. Gulder, “Determination of the soot absorption function and thermal accomodation coefficient using low-fluence LII in a laminar coflow ethylene diffusion flame,” Combust. Flame 136, 180–190 (2004).
[CrossRef]

S. De Iuliis, M. Barbini, S. Benecchi, F. Cignoli, G. Zizak, “Determination of the soot volume fraction in an ethylene diffusion flame by multiwavelength analysis of soot radiation,” Combust. Flame 115, 253–261 (1998).
[CrossRef]

T. P. Jenkins, R. K. Hanson, “Soot pyrometry using modulated absorption/emission,” Combust. Flame 126, 1669–1679 (2001).
[CrossRef]

C. R. Shaddix, K. C. Smyth, “Laser-induced incandescence measurements of soot production in steady and flickering methane, propane, and ethylene diffusion flames,” Combust. Flame 107, 418–452 (1996).
[CrossRef]

R. L. Vander Wal, Z. Zhou, M. Y. Choi, “Laser-induced incandescence calibration via gravimetric sampling,” Combust. Flame 105, 462–470 (1996).
[CrossRef]

M. Y. Choi, K. A. Jensen, “Calibration and correction of laser-induced incandescence for soot volume fraction measurements,” Combust. Flame 112, 485–491 (1998).
[CrossRef]

B. Quay, T.-W. Lee, T. Ni, R. J. Santoro, “Spatially resolved measurements of soot volume fraction using laser-induced incandescence,” Combust. Flame 97, 384–392 (1994).
[CrossRef]

K. C. Smyth, C. R. Shaddix, “The elusive history of m= 1.57−0.56i for the refractive index of soot,” Combust. Flame 107, 314–320 (1996).
[CrossRef]

M. Y. Choi, G. W. Mulholland, A. Hamins, T. Kashiwagi, “Comparison of the soot volume fraction using gravimetric and light extinction techniques,” Combust. Flame 102, 161–169 (1995).
[CrossRef]

R. L. Vander Wal, M. Y. Choi, K.-O. Lee, “The effects of rapid heating of soot: implications when using laser-induced incandescence for soot diagnostics,” Combust. Flame 102, 200–2004 (1995).
[CrossRef]

S. Schraml, S. Dankers, K. Bader, S. Will, A. Leipertz, “Soot temperature measurements and implications for time-resolved laser-induced Incandescence (TIRE-LII),” Combust. Flame 120, 439–450 (2000).
[CrossRef]

Combust. Sci. Technol.

H. Geitlinger, Th. Steibel, R. Suntz, H. Bockhorn, “Statistical analysis of soot volume fractions, particle number densities, and particle radii in a turbulent diffusion flame,” Combust. Sci. Technol. 149, 115–134 (1999).
[CrossRef]

Exp. Fluids

R. L. Vander Wal, “LIF-LII measurements in a turbulent gas-jet flame,” Exp. Fluids 23, 281–287 (1997).
[CrossRef]

J. Aerosol Sci.

P. Roth, A. V. Filippov, “In situ ultrafine particle sizing by a combination of pulsed laser heatup and particle thermal emission,” J. Aerosol Sci. 27, 95–104 (1996).
[CrossRef]

J. Appl. Phys.

A. C. Eckbreth, “Effects of laser-modulated particulate incandescence on Raman-scattering diagnostics,” J. Appl. Phys. 48, 4473–4479 (1977).
[CrossRef]

J. Chem. Phys.

H. A. Michelsen, “Understanding and predicting the temporal response of laser-induced incandescence from carbonaceous particles,” J. Chem. Phys. 118, 7012–7045 (2003).
[CrossRef]

J. Heat Transfer

S. S. Krishnan, K.-C. Lin, G. M. Faeth, “Optical properties in the visible of overfire soot in large buoyant turbulent diffusion flames,” J. Heat Transfer 122, 517–524 (2000).
[CrossRef]

JSME Int. J., Ser. B

W. Lee, Y. D. Na, “Soot study in laminar diffusion flames at elevated pressure using two-color pyrometry and Abel inversion,” JSME Int. J., Ser. B 43, 550–555 (2000).
[CrossRef]

Meas. Sci. Technol.

S. di Stasio, P. Massoli, “Influence of the soot property uncertainties in temperature and volume-fraction measurements by two-colour pyrometry,” Meas. Sci. Technol. 5, 1453–1465 (1994).
[CrossRef]

Opt. Lett.

Physica (Amsterdam)

J. C. De Vos, “A new determination of the emissivity of tungsten ribbon,” Physica (Amsterdam) 20, 690–714 (1954).
[CrossRef]

Proc. R. Soc. London Ser. A

H. Chang, T. T. Charalampopoulos, “Determination of the wavelength dependence of refractive indices of flame soot,” Proc. R. Soc. London Ser. A 430, 57–591 (1990).
[CrossRef]

Trans. ASME

G. J. Smallwood, D. R. Snelling, F. Liu, O. L. Gulder, “Clouds over soot evaporation: errors in modeling laser-induced incandescence of soot,” Trans. ASME, J. Heat Transfer 123, 814–818 (2001).
[CrossRef]

Other

D. R. Snelling, G. J. Smallwood, I. G. Campbell, J. E. Medlock, O. L. Gulder, “Development and application of laser-induced incandescence (LII) as a diagnostic for soot particulate measurements,” in Proceedings of the NATO/AGARD Propulsion and Energetics Panel, 90th Symposium on Advanced Non-intrusive Instrumentation for Propulsion Engines, Brussels, Belgium, 20–24 October 1997.

R. L. Vander Wal, “Calibration and comparison of laser-induced incandescence with cavity ring down,” in Proceedings of the 27th International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1998), pp. 59–67.
[CrossRef]

C. Moreau, J. F. Pauwels, P. Desgroux, E. Therssen, “Particle size and soot volume fraction measurements in atmospheric diffusion flame by laser-induced incandescence combined with cavity ring-down spectroscopy,” presented at the European Combustion Meeting, EMC 2003, Orleans, France, 25–28 October 2003.

S. Will, S. Schraml, A. Leipertz, “Comprehensive two-dimensional soot diagnostics based on laser-induced incandescence (LII),” in Proceedings of the 26th International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2277–2284.
[CrossRef]

J. Appel, B. Jungfleisch, M. Marquardt, R. Suntz, H. Bockhorn, “Assessment of soot volume fraction from laser-induced incandescence by comparison with extinction measurements in laminar, premixed, flat flames,” in Proceedings of the 26th International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1996), pp. 2387–2395.
[CrossRef]

D. L. Hofeldt, “Real-time soot concentration measurement technique for engine exhaust streams,” SAE paper 930079 (Society of Automotive Engineering, Warrendale, Pa.1993).

J. E. Dec, A. O. zur Loye, D. L. Siebers, “Soot distribution in a D. I. diesel engine using 2D laser-induced incandescence imaging,” SAE paper 910224 (Society of Automotive Engineering, Warrendale, Pa., 1991).

J. E. Dec, “Soot distribution in a D. I. diesel engine using 2D imaging of laser-induced incandescence, elastic scattering, and flame luminosity,” SAE paper 920115 (Society of Automotive Engineering, Warrendale, Pa., 1992).

R. G. Siddal, I. A. McGrath. “The emissivity of luminous flames,” inProceedings of the 9th International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa.1962), pp. 102–110.

P. J. Pagni, S. Bard, “Particulate volume fraction in diffusion flames,” in Proceedings of the 17th International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1978), pp. 1017–1028.

Y. Matsui, T. Kamimoto, S. Matsuoka, “A study on the time- and space-resolved measurement of flame temperature and soot concentration in a D. I. diesel engine by the two-color method,” SAE Tech. Paper 790491 (Society of Automotive Engineers, Warrendale, Pa., 1979).

Y. Matsui, T. Kamimoto, S. Matsuoka, “A study on the application of the two-color method to the measurement of flame temperature and soot concentration in diesel engines,” SAE paper 800970 (Society of Automotive Engineers, Warrendale, Pa., 1980).

X. H. Quoc, J.-M. Vignon, M. Brun, “A new approach of the two-color method for determining local instantaneous soot concentration and temperature in a D. I. diesel combustion chamber,” SAE Tech. Paper 910736 (Society of Automotive Engineers, Warrendale, Pa., 1991).

N. Ladommatos, H. Zhao, “A guide to measurement of flame temperature and soot concentration in diesel engines using the two-colour method. Part I: Principles,” SAE Tech. Paper 941956 (Society of Automotive Engineers, Warrendale, Pa., 1994).

H. Geitlinger, Th. Streibel, R. Suntz, H. Bockhorn, “Two-dimensional imaging of soot volume fraction, particle number densities, and particle radii in laminar and turbulent diffusion flames,” in Proceedings of the 27th International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1998), pp. 1613–1621.
[CrossRef]

D. R. Snelling, G. J. Smallwood, O. L. Gulder, F. Liu, W. D. Bachalo, “A calibration-independent technique of measuring soot by laser-induced incandescence using absolute light intensity,” presented at the Second Joint Meeting of the U.S. Sections of the Combustion Institute, Oakland, Calif., 25–28 March 2001.

G. J. Smallwood, D. R. Snelling, W. Stuart Neill, F. Liu, W. D. Bachalo, O. L. Gulder, “Laser-induced incandescence measurements of particulate matter emission in the exhaust of a Diesel engine,” presented at the Fifth International Symposium on Diagnostics, Modeling of Combustion in Internal Combustion Engines (COMODIA), Nagoya, Japan, 1–4 July 2001.

B. F. Kock, P. Roth, “Two-color TR-LII applied to in-cylinder diesel particle sizing,” presented at The European Combustion Meeting, EMC 2003. Orleans: France, 25–28 October 2003.

D. R. Snelling, G. J. Smallwood, O. L. Gulder, W. D. Bachalo, S. Sankar, “Soot volume fraction characterization using the laser-induced incandescence detection method,” Tenth International Symposium on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 10–12 July 2000.

D. R. Snelling, F. Liu, G. J. Smallwood, O. L. Gulder, “Evaluation of the nanoscale heat and mass transfer model of LII: prediction of the excitation intensity,” presented at the 34th National Heat Transfer Conference, Pittsburgh, Pa., 20–22 August 2000.

S. De Iuliis, F. Cignoli, S. Benecchi, G. Zizak, “Investigation of the similarity of soot parameters in ethylene diffusion flames with different heights by extinction/scattering technique,” in Proceedings of the 27th International Symposium on Combustion (The Combustion Institute, Pittsburgh, Pa., 1998, pp. 1549–1555.
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental apparatus for 2C-LII measurements.

Fig. 2
Fig. 2

Typical incandescence time decay curves at 450 and 600 nm.

Fig. 3
Fig. 3

Temporal behavior of soot temperature during and after the laser pulse.

Fig. 4
Fig. 4

Statistics from a set of gate averaged signals from different gate times. In the legend peak refers to the mean value of the absolute peak in each curve.

Fig. 5
Fig. 5

LII gate averaged peak signals (at 450 and 600 nm) versus laser fluence: different symbols refer to different independent measurements.

Fig. 6
Fig. 6

Behavior of maximum soot temperature for increasing laser fluence as derived from the same data of Fig. 5.

Fig. 7
Fig. 7

Radial profile of maximum soot temperature.

Fig. 8
Fig. 8

Comparison of fυ obtained from LII measurements (closed symbols) and from extinction measurements (open symbols).

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

T max T g + 6 π E ( m ) R 0 λ exc ρ soot c soot ,
E ( m ) = Im ( m 2 1 m 2 + 2 ) = 6 n k ( n 2 k 2 + 2 ) 2 + 4 n 2 k 2 .
I s λ ( T s , f υ ) = τ s ( λ ) R BB ( T s , λ ) ɛ s ( f υ , λ ) Δ λ s ,
ɛ s ( f υ , λ ) = 1 exp ( K λ L ) ,
K λ = f υ 6 π E ( m ) λ = f υ K ext λ = f υ 1 abs ,
T s = C 2 ( 1 λ 1 1 λ 2 ) ln [ ( λ 1 λ 2 ) 5 ( I s 1 I s 2 ) ( abs 1 abs 2 ) ( Δ λ s 2 Δ λ s 1 ) × ( τ s 2 τ s 1 ) ] 1 ,
I L λ = τ L ( λ ) R BB ( T L , λ ) ɛ L ( T L , λ ) Δ λ L ,
( τ s 2 τ s 1 ) = ( τ L 2 τ L 1 ) = ( ɛ L 1 ɛ L 2 ) ( Δ λ L 1 Δ λ L 2 ) ( I L 2 I L 1 ) ( λ 2 λ 1 ) 5 exp ( C 2 λ 2 T L C 2 λ 1 T L ) .
T s = C 2 ( 1 λ 1 1 λ 2 ) ln [ ( I s 1 I s 2 ) ( abs 1 abs 2 ) ( Δ λ s 2 Δ λ s 1 ) ( I L 2 I L 1 ) ( ɛ L 1 ɛ L 2 ) × ( Δ λ L 1 Δ λ L 2 ) + C 2 T L ( 1 λ 2 1 λ 1 ) ] 1 .
f υ = abs L ɛ L I s I L Δ λ L Δ λ s τ L τ s exp [ C 2 λ ( 1 T L 1 T s ) ] .
Δ R / R = [ ( Δ I 1 / I 1 ) 2 + ( Δ I 2 / I 2 ) 2 ] 1 / 2 ,
Δ T s / T s = T s / [ C 2 ( 1 / λ 1 1 / λ 2 ) ] Δ R / R .
Δ f υ / f υ = [ ( Δ I s / I s ) 2 + ( C 2 / ( λ T s ) 2 ( Δ T s / T s ) 2 ] 1 / 2 .

Metrics