Abstract

Laser-beam-intensity fluctuations between an uplink (ground to satellite) and a downlink (satellite to ground) are described. The dependence of the beam radius on log-intensity variance in the uplink and the dependence of receiving-aperture diameter on the log-intensity variance in the downlink using a known theory were calculated. Statistical analysis of the experimental data on the laser links was performed, and high correlation coefficients of 0.94 between the normalized intensity variances of the uplink and those of the stellar scintillation were obtained. The beam-pointing error in the satelliteborne laser transmitter chiefly caused fluctuations in the downlink.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. L. Fried, “Scintillation of a ground-to-space laser illuminator,” J. Opt. Soc. Am. 57, 980–983 (1967).
    [CrossRef]
  2. D. L. Fried, “Aperture averaging of scintillation,” J. Opt. Soc. Am. 57, 169–175 (1967).
    [CrossRef]
  3. P. J. Titterton, “Scintillation and transmitter-averaging over vertical paths,” J. Opt. Soc. Am. 63, 439–444 (1973).
    [CrossRef]
  4. L. C. Andrews, R. L. Phillips, C. Y. Hopen, “Scintillation model for a satellite communication link at large zenith angles,” Opt. Eng. 39, 3272–3280 (2000).
    [CrossRef]
  5. P. O. Minott, “Scintillation in an earth-to-space propagation path,” J. Opt. Soc. Am. 62, 885–888 (1972).
    [CrossRef]
  6. P. A. Lightsey, “Scintillation in ground-to-space and retrorefiected laser beams,” Opt. Eng. 33, 2535–2543 (1994).
    [CrossRef]
  7. J. L. Bufton, “Scintillation statistics measured in an earth–space–earth retroreflector link,” Appl. Opt. 16, 2654–2660 (1977).
    [CrossRef] [PubMed]
  8. J. D. Shelton, “Turbulence-induced scintillation on Gaussian-beam waves: theoretical prediction and observations from a laser-illuminated satellite,” J. Opt. Soc. Am. A 12, 2172–2181 (1995).
    [CrossRef]
  9. K. Komatu, S. Kanda, K. Hirako, T. Ohashi, M. Shikatani, Y. Arimoto, T. Aruga, “Laser beam acquisition and tracking system for ETS-VI laser communication equipment (LCE),” in Free-Space Laser Communication Technologies II, D. L. Begley, B. D. Seery, eds., Proc. SPIE1218, 96–107 (1990).
    [CrossRef]
  10. J. W. Goodman, “Imaging in the presence of randomly inhomogeneous media,” in Statistical Optics (Wiley, New York, 1985), pp. 361–464.
  11. L. C. Andrews, R. L. Phillips, “Laser satellite communication systems,” in Laser Beam Propagation Through Random Media (SPIE Press, Bellingham, Wash., 1998), pp. 223–262.
  12. H. T. Yura, W. G. McKinley, “Optical scintillation statistics for IR ground-to-space laser communication systems,” Appl. Opt. 22, 3353–3358 (1983).
    [CrossRef] [PubMed]
  13. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978), Vol. 2.
  14. R. K. Tyson, “Adaptive optics and ground-to-space laser communications,” Appl. Opt. 35, 3640–3646 (1996).
    [CrossRef] [PubMed]
  15. M. Toyoda, K. Araki, Y. Suzuki, “Ground-to-satellite narrow-laser-beam pointing by use of a backscattered image,” Appl. Opt. 40, 5295–5303 (2001).
    [CrossRef]
  16. V. I. Tatarski, Wave Propagation in a Turbulent Medium (McGraw-Hill, New York, 1961).

2001 (1)

2000 (1)

L. C. Andrews, R. L. Phillips, C. Y. Hopen, “Scintillation model for a satellite communication link at large zenith angles,” Opt. Eng. 39, 3272–3280 (2000).
[CrossRef]

1996 (1)

1995 (1)

1994 (1)

P. A. Lightsey, “Scintillation in ground-to-space and retrorefiected laser beams,” Opt. Eng. 33, 2535–2543 (1994).
[CrossRef]

1983 (1)

1977 (1)

1973 (1)

1972 (1)

1967 (2)

Andrews, L. C.

L. C. Andrews, R. L. Phillips, C. Y. Hopen, “Scintillation model for a satellite communication link at large zenith angles,” Opt. Eng. 39, 3272–3280 (2000).
[CrossRef]

L. C. Andrews, R. L. Phillips, “Laser satellite communication systems,” in Laser Beam Propagation Through Random Media (SPIE Press, Bellingham, Wash., 1998), pp. 223–262.

Araki, K.

Arimoto, Y.

K. Komatu, S. Kanda, K. Hirako, T. Ohashi, M. Shikatani, Y. Arimoto, T. Aruga, “Laser beam acquisition and tracking system for ETS-VI laser communication equipment (LCE),” in Free-Space Laser Communication Technologies II, D. L. Begley, B. D. Seery, eds., Proc. SPIE1218, 96–107 (1990).
[CrossRef]

Aruga, T.

K. Komatu, S. Kanda, K. Hirako, T. Ohashi, M. Shikatani, Y. Arimoto, T. Aruga, “Laser beam acquisition and tracking system for ETS-VI laser communication equipment (LCE),” in Free-Space Laser Communication Technologies II, D. L. Begley, B. D. Seery, eds., Proc. SPIE1218, 96–107 (1990).
[CrossRef]

Bufton, J. L.

Fried, D. L.

Goodman, J. W.

J. W. Goodman, “Imaging in the presence of randomly inhomogeneous media,” in Statistical Optics (Wiley, New York, 1985), pp. 361–464.

Hirako, K.

K. Komatu, S. Kanda, K. Hirako, T. Ohashi, M. Shikatani, Y. Arimoto, T. Aruga, “Laser beam acquisition and tracking system for ETS-VI laser communication equipment (LCE),” in Free-Space Laser Communication Technologies II, D. L. Begley, B. D. Seery, eds., Proc. SPIE1218, 96–107 (1990).
[CrossRef]

Hopen, C. Y.

L. C. Andrews, R. L. Phillips, C. Y. Hopen, “Scintillation model for a satellite communication link at large zenith angles,” Opt. Eng. 39, 3272–3280 (2000).
[CrossRef]

Ishimaru, A.

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978), Vol. 2.

Kanda, S.

K. Komatu, S. Kanda, K. Hirako, T. Ohashi, M. Shikatani, Y. Arimoto, T. Aruga, “Laser beam acquisition and tracking system for ETS-VI laser communication equipment (LCE),” in Free-Space Laser Communication Technologies II, D. L. Begley, B. D. Seery, eds., Proc. SPIE1218, 96–107 (1990).
[CrossRef]

Komatu, K.

K. Komatu, S. Kanda, K. Hirako, T. Ohashi, M. Shikatani, Y. Arimoto, T. Aruga, “Laser beam acquisition and tracking system for ETS-VI laser communication equipment (LCE),” in Free-Space Laser Communication Technologies II, D. L. Begley, B. D. Seery, eds., Proc. SPIE1218, 96–107 (1990).
[CrossRef]

Lightsey, P. A.

P. A. Lightsey, “Scintillation in ground-to-space and retrorefiected laser beams,” Opt. Eng. 33, 2535–2543 (1994).
[CrossRef]

McKinley, W. G.

Minott, P. O.

Ohashi, T.

K. Komatu, S. Kanda, K. Hirako, T. Ohashi, M. Shikatani, Y. Arimoto, T. Aruga, “Laser beam acquisition and tracking system for ETS-VI laser communication equipment (LCE),” in Free-Space Laser Communication Technologies II, D. L. Begley, B. D. Seery, eds., Proc. SPIE1218, 96–107 (1990).
[CrossRef]

Phillips, R. L.

L. C. Andrews, R. L. Phillips, C. Y. Hopen, “Scintillation model for a satellite communication link at large zenith angles,” Opt. Eng. 39, 3272–3280 (2000).
[CrossRef]

L. C. Andrews, R. L. Phillips, “Laser satellite communication systems,” in Laser Beam Propagation Through Random Media (SPIE Press, Bellingham, Wash., 1998), pp. 223–262.

Shelton, J. D.

Shikatani, M.

K. Komatu, S. Kanda, K. Hirako, T. Ohashi, M. Shikatani, Y. Arimoto, T. Aruga, “Laser beam acquisition and tracking system for ETS-VI laser communication equipment (LCE),” in Free-Space Laser Communication Technologies II, D. L. Begley, B. D. Seery, eds., Proc. SPIE1218, 96–107 (1990).
[CrossRef]

Suzuki, Y.

Tatarski, V. I.

V. I. Tatarski, Wave Propagation in a Turbulent Medium (McGraw-Hill, New York, 1961).

Titterton, P. J.

Toyoda, M.

Tyson, R. K.

Yura, H. T.

Appl. Opt. (4)

J. Opt. Soc. Am. (4)

J. Opt. Soc. Am. A (1)

Opt. Eng. (2)

P. A. Lightsey, “Scintillation in ground-to-space and retrorefiected laser beams,” Opt. Eng. 33, 2535–2543 (1994).
[CrossRef]

L. C. Andrews, R. L. Phillips, C. Y. Hopen, “Scintillation model for a satellite communication link at large zenith angles,” Opt. Eng. 39, 3272–3280 (2000).
[CrossRef]

Other (5)

K. Komatu, S. Kanda, K. Hirako, T. Ohashi, M. Shikatani, Y. Arimoto, T. Aruga, “Laser beam acquisition and tracking system for ETS-VI laser communication equipment (LCE),” in Free-Space Laser Communication Technologies II, D. L. Begley, B. D. Seery, eds., Proc. SPIE1218, 96–107 (1990).
[CrossRef]

J. W. Goodman, “Imaging in the presence of randomly inhomogeneous media,” in Statistical Optics (Wiley, New York, 1985), pp. 361–464.

L. C. Andrews, R. L. Phillips, “Laser satellite communication systems,” in Laser Beam Propagation Through Random Media (SPIE Press, Bellingham, Wash., 1998), pp. 223–262.

A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, New York, 1978), Vol. 2.

V. I. Tatarski, Wave Propagation in a Turbulent Medium (McGraw-Hill, New York, 1961).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Laser communication between the satellite and the ground station.

Fig. 2
Fig. 2

Calculated relationship between the normalized log-intensity variance of the uplink BI,up(0)/BI,up,plane and the beam radius for two types of Cn2(h).

Fig. 3
Fig. 3

Calculated aperture-diameter dependence of normalized log-intensity variance of the downlink BI,down/BI,down, non-AP for two types of Cn2(h).

Fig. 4
Fig. 4

Schematic of the optical layout of satelliteborne equipment.

Fig. 5
Fig. 5

Schematic of the optical layout of ground equipment.

Fig. 6
Fig. 6

Relationships between the normalized intensity variance of the uplink, σI,up2/I0,up2, and that of the stellar scintillation observed with a 0.2 m diameter telescope, σI,star (0.2 m)2/I0,star (0.2 m)2, and a 1.5 m diameter telescope, σI,star (1.5 m)2/I0,star (1.5 m)2.

Fig. 7
Fig. 7

Time variations of the downlink observed by (a) a 0.2 m diameter telescope and (b) a 1.5 m diameter telescope.

Tables (4)

Tables Icon

Table 1 Major Specifications of Laser Transmitting and Receiving Part of Satelliteborne Equipment

Tables Icon

Table 2 Major Specifications of the Laser Transmitting and Receiving Part of Ground Equipment

Tables Icon

Table 3 Observation Conditions of Stellar Scintillation

Tables Icon

Table 4 Normalized Variance of Intensity Fluctuations of Uplink and That of Stellar Scintillation Observed by 0.2-m and 1.5-m-diam Telescopes

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

B I , up ( 0 ) = 0.033 × 16 π 2 k 2 sec Θ [ H 0 H C n 2 ( h ) d h × κ 0 κ max κ 8 / 3 d κ exp ( H h k cos Θ γ i , up κ 2 ) × sin 2 ( H h 2 k cos Θ γ r , up κ 2 ) ] ,
γ r , up i γ i , up = 1 + i α up ( h H 0 ) sec Θ 1 + i α up ( H H 0 ) sec Θ
α up = λ up π W 0 , up 2 + i 1 R 0 , up .
B I , down = 0.033 × 16 π 2 k 2 sec Θ { H 0 H C n 2 ( h ) d h × κ 0 κ max κ 8 / 3 d κ sin 2 ( h H 0 2 k cos Θ κ 2 ) × [ 2 J 1 ( κ D / 2 ) κ D / 2 ] 2 } ,
σ I , up 2 I 0 , up 2
σ I , star ( 0.2 m ) 2 I 0 , star ( 0.2 m ) 2
σ I , star ( 1.5 m ) 2 I 0 , star ( 1.5 m ) 2

Metrics