Abstract

Optical films containing the genetic variant bacteriorhodopsin BR-D96N were experimentally studied in view of their properties as media for holographic storage. Different polarization recording schemes were tested and compared. The influence of the polarization states of the recording and readout waves on the retrieved diffractive image’s intensity and its signal-to-noise ratio were analyzed. The experimental results showed that, compared with the other tested polarization relations during holographic recording, the discrimination between the polarization states of diffracted and scattered light is optimized with orthogonal circular polarization of the recording beams, and thus a high signal-to-noise ratio and a high diffraction efficiency are obtained. Using a He–Ne laser (633 nm, 3 mW) for recording and readout, a spatial light modulator as a data input element, and a 2D-CCD sensor for data capture in a Fourier-transform holographic setup, a storage density of 2 × 108 bits/cm was obtained on a 60 × 42 µm2 area in the BR-D96N film. The readout of encoded binary data was possible with a zero-error rate at the tested storage density.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Nikolova, T. Todorov, P. Stefanova, “Polarization sensibility of the photodichroic holographic recording,” Opt. Commun. 24, 44–46 (1978).
    [Crossref]
  2. J. M. C. Jonathan, M. May, “Anisotropy induced in a silver–silver chloride emulsion by two coherent and perpendicular light vibrations,” Opt. Commun. 29, 7–12 (1979).
    [Crossref]
  3. É. S. Gomelauri, G. A. Kakauridze, D. V. Loladze, V. G. Shaverdova, “Silver halide recording materials for polarization holography,” Tech. Phys. 39, 780–782 (1994).
  4. S. Calixto, C. Solano, R. A. Lessard, “Real-time optical image processing and polarization holography with dyed gelatin,” Appl. Opt. 24, 2941–2947 (1985).
    [Crossref] [PubMed]
  5. J. J. A. Couture, “Polarization holographic characterization of organic azo dyes/PVA films for real time applications,” Appl. Opt. 30, 2858–2866 (1991).
    [Crossref] [PubMed]
  6. C. Sánchez, R. Alcalá, S. Hvilsted, P. S. Ramanujam, “High diffraction efficiency polarization gratings recorded by biphotonic holography in an azobenzene liquid crystalline polyester,” Appl. Phys. Lett. 78, 3944–3946 (2001).
    [Crossref]
  7. R. Raschellà, I. Marino, P. P. Lottici, D. Bersani, “Polarization holographic gratings in hybrid solgel films doped with Disperse Red 1,” Opt. Lett. 28, 2240–2242 (2003).
    [Crossref] [PubMed]
  8. B. Yao, Y. Zheng, Y. Wang, M. Lei, G. Chen, N. Hampp, “Kinetic spectra of light-adaptation dark-adaptation and M-intermediate of BR-D96N,” Opt. Commun. 218, 125–130 (2003).
    [Crossref]
  9. N. Hampp, R. Thoma, D. Oesterhelt, C. Bräuchle, “Biological photochrome bacteriorhodopsin and its genetic variant Asp96 → Asn as media for optical pattern recognition,” Appl. Opt. 31, 1834–1841 (1992).
    [Crossref] [PubMed]
  10. Y. Okada-Shudo, “Polarization holography with bacteriorhodopsin,” in Linear and Nonlinear Optics of Organic Materials, M. Eich, M. G. Kuzyk, eds., Proc. SPIE4461, 138–145 (2001).
    [Crossref]
  11. W. D. Koek, N. Bhattacharya, J. J. M. Braat, “Holographic simultaneous readout polarization multiplexing based on photoinduced anisotropy in bacteriorhodopsin,” Opt. Lett. 29, 101–103 (2004).
    [Crossref] [PubMed]

2004 (1)

2003 (2)

R. Raschellà, I. Marino, P. P. Lottici, D. Bersani, “Polarization holographic gratings in hybrid solgel films doped with Disperse Red 1,” Opt. Lett. 28, 2240–2242 (2003).
[Crossref] [PubMed]

B. Yao, Y. Zheng, Y. Wang, M. Lei, G. Chen, N. Hampp, “Kinetic spectra of light-adaptation dark-adaptation and M-intermediate of BR-D96N,” Opt. Commun. 218, 125–130 (2003).
[Crossref]

2001 (1)

C. Sánchez, R. Alcalá, S. Hvilsted, P. S. Ramanujam, “High diffraction efficiency polarization gratings recorded by biphotonic holography in an azobenzene liquid crystalline polyester,” Appl. Phys. Lett. 78, 3944–3946 (2001).
[Crossref]

1994 (1)

É. S. Gomelauri, G. A. Kakauridze, D. V. Loladze, V. G. Shaverdova, “Silver halide recording materials for polarization holography,” Tech. Phys. 39, 780–782 (1994).

1992 (1)

1991 (1)

1985 (1)

1979 (1)

J. M. C. Jonathan, M. May, “Anisotropy induced in a silver–silver chloride emulsion by two coherent and perpendicular light vibrations,” Opt. Commun. 29, 7–12 (1979).
[Crossref]

1978 (1)

L. Nikolova, T. Todorov, P. Stefanova, “Polarization sensibility of the photodichroic holographic recording,” Opt. Commun. 24, 44–46 (1978).
[Crossref]

Alcalá, R.

C. Sánchez, R. Alcalá, S. Hvilsted, P. S. Ramanujam, “High diffraction efficiency polarization gratings recorded by biphotonic holography in an azobenzene liquid crystalline polyester,” Appl. Phys. Lett. 78, 3944–3946 (2001).
[Crossref]

Bersani, D.

Bhattacharya, N.

Braat, J. J. M.

Bräuchle, C.

Calixto, S.

Chen, G.

B. Yao, Y. Zheng, Y. Wang, M. Lei, G. Chen, N. Hampp, “Kinetic spectra of light-adaptation dark-adaptation and M-intermediate of BR-D96N,” Opt. Commun. 218, 125–130 (2003).
[Crossref]

Couture, J. J. A.

Gomelauri, É. S.

É. S. Gomelauri, G. A. Kakauridze, D. V. Loladze, V. G. Shaverdova, “Silver halide recording materials for polarization holography,” Tech. Phys. 39, 780–782 (1994).

Hampp, N.

B. Yao, Y. Zheng, Y. Wang, M. Lei, G. Chen, N. Hampp, “Kinetic spectra of light-adaptation dark-adaptation and M-intermediate of BR-D96N,” Opt. Commun. 218, 125–130 (2003).
[Crossref]

N. Hampp, R. Thoma, D. Oesterhelt, C. Bräuchle, “Biological photochrome bacteriorhodopsin and its genetic variant Asp96 → Asn as media for optical pattern recognition,” Appl. Opt. 31, 1834–1841 (1992).
[Crossref] [PubMed]

Hvilsted, S.

C. Sánchez, R. Alcalá, S. Hvilsted, P. S. Ramanujam, “High diffraction efficiency polarization gratings recorded by biphotonic holography in an azobenzene liquid crystalline polyester,” Appl. Phys. Lett. 78, 3944–3946 (2001).
[Crossref]

Jonathan, J. M. C.

J. M. C. Jonathan, M. May, “Anisotropy induced in a silver–silver chloride emulsion by two coherent and perpendicular light vibrations,” Opt. Commun. 29, 7–12 (1979).
[Crossref]

Kakauridze, G. A.

É. S. Gomelauri, G. A. Kakauridze, D. V. Loladze, V. G. Shaverdova, “Silver halide recording materials for polarization holography,” Tech. Phys. 39, 780–782 (1994).

Koek, W. D.

Lei, M.

B. Yao, Y. Zheng, Y. Wang, M. Lei, G. Chen, N. Hampp, “Kinetic spectra of light-adaptation dark-adaptation and M-intermediate of BR-D96N,” Opt. Commun. 218, 125–130 (2003).
[Crossref]

Lessard, R. A.

Loladze, D. V.

É. S. Gomelauri, G. A. Kakauridze, D. V. Loladze, V. G. Shaverdova, “Silver halide recording materials for polarization holography,” Tech. Phys. 39, 780–782 (1994).

Lottici, P. P.

Marino, I.

May, M.

J. M. C. Jonathan, M. May, “Anisotropy induced in a silver–silver chloride emulsion by two coherent and perpendicular light vibrations,” Opt. Commun. 29, 7–12 (1979).
[Crossref]

Nikolova, L.

L. Nikolova, T. Todorov, P. Stefanova, “Polarization sensibility of the photodichroic holographic recording,” Opt. Commun. 24, 44–46 (1978).
[Crossref]

Oesterhelt, D.

Okada-Shudo, Y.

Y. Okada-Shudo, “Polarization holography with bacteriorhodopsin,” in Linear and Nonlinear Optics of Organic Materials, M. Eich, M. G. Kuzyk, eds., Proc. SPIE4461, 138–145 (2001).
[Crossref]

Ramanujam, P. S.

C. Sánchez, R. Alcalá, S. Hvilsted, P. S. Ramanujam, “High diffraction efficiency polarization gratings recorded by biphotonic holography in an azobenzene liquid crystalline polyester,” Appl. Phys. Lett. 78, 3944–3946 (2001).
[Crossref]

Raschellà, R.

Sánchez, C.

C. Sánchez, R. Alcalá, S. Hvilsted, P. S. Ramanujam, “High diffraction efficiency polarization gratings recorded by biphotonic holography in an azobenzene liquid crystalline polyester,” Appl. Phys. Lett. 78, 3944–3946 (2001).
[Crossref]

Shaverdova, V. G.

É. S. Gomelauri, G. A. Kakauridze, D. V. Loladze, V. G. Shaverdova, “Silver halide recording materials for polarization holography,” Tech. Phys. 39, 780–782 (1994).

Solano, C.

Stefanova, P.

L. Nikolova, T. Todorov, P. Stefanova, “Polarization sensibility of the photodichroic holographic recording,” Opt. Commun. 24, 44–46 (1978).
[Crossref]

Thoma, R.

Todorov, T.

L. Nikolova, T. Todorov, P. Stefanova, “Polarization sensibility of the photodichroic holographic recording,” Opt. Commun. 24, 44–46 (1978).
[Crossref]

Wang, Y.

B. Yao, Y. Zheng, Y. Wang, M. Lei, G. Chen, N. Hampp, “Kinetic spectra of light-adaptation dark-adaptation and M-intermediate of BR-D96N,” Opt. Commun. 218, 125–130 (2003).
[Crossref]

Yao, B.

B. Yao, Y. Zheng, Y. Wang, M. Lei, G. Chen, N. Hampp, “Kinetic spectra of light-adaptation dark-adaptation and M-intermediate of BR-D96N,” Opt. Commun. 218, 125–130 (2003).
[Crossref]

Zheng, Y.

B. Yao, Y. Zheng, Y. Wang, M. Lei, G. Chen, N. Hampp, “Kinetic spectra of light-adaptation dark-adaptation and M-intermediate of BR-D96N,” Opt. Commun. 218, 125–130 (2003).
[Crossref]

Appl. Opt. (3)

Appl. Phys. Lett. (1)

C. Sánchez, R. Alcalá, S. Hvilsted, P. S. Ramanujam, “High diffraction efficiency polarization gratings recorded by biphotonic holography in an azobenzene liquid crystalline polyester,” Appl. Phys. Lett. 78, 3944–3946 (2001).
[Crossref]

Opt. Commun. (3)

B. Yao, Y. Zheng, Y. Wang, M. Lei, G. Chen, N. Hampp, “Kinetic spectra of light-adaptation dark-adaptation and M-intermediate of BR-D96N,” Opt. Commun. 218, 125–130 (2003).
[Crossref]

L. Nikolova, T. Todorov, P. Stefanova, “Polarization sensibility of the photodichroic holographic recording,” Opt. Commun. 24, 44–46 (1978).
[Crossref]

J. M. C. Jonathan, M. May, “Anisotropy induced in a silver–silver chloride emulsion by two coherent and perpendicular light vibrations,” Opt. Commun. 29, 7–12 (1979).
[Crossref]

Opt. Lett. (2)

Tech. Phys. (1)

É. S. Gomelauri, G. A. Kakauridze, D. V. Loladze, V. G. Shaverdova, “Silver halide recording materials for polarization holography,” Tech. Phys. 39, 780–782 (1994).

Other (1)

Y. Okada-Shudo, “Polarization holography with bacteriorhodopsin,” in Linear and Nonlinear Optics of Organic Materials, M. Eich, M. G. Kuzyk, eds., Proc. SPIE4461, 138–145 (2001).
[Crossref]

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup for polarization holographic data storage. S1,S2, shutters; A1,A2, continuously adjustable attenuators; PBS, polarizing beam splitter; L1–L8, lenses; P, linear polarizers; D1, D2, diaphragms; Q1–Q3, quarter-wave plates; M1–M3, silver mirrors; O-Beam, object beam; R-Beam, reference beam; E-Beam, erasure beam; LD, laser diode 405 nm; He–Ne, laser 633 nm (nonpolarized); SLM, spatial light modulator; CCD, 2D CCD sensor with resolution 752 × 582; PC1, PC2, personal computers.

Fig. 2
Fig. 2

Comparison of retrieved diffracted images with different types of polarization recording in the BR-D96N film. (a) Parallel linear polarization recording, (b) parallel circular polarization recording, (c) orthogonal linear polarization recording, (d) orthogonal circular polarization recording.

Fig. 3
Fig. 3

Diffraction efficiencies obtained in dependence on the energy exposure of the BR-D96N film for the different polarization recording schemes.

Fig. 4
Fig. 4

Complete series of images regarding a storage and retrieval cycle in the BR-D96N film employing Fourier transform holographic recording with orthogonal circular polarization of the recording beams. (a) Original file, (b) encoded binary data, (c) retrieved diffracted image, (d) decoded data, (e) deciphered information, (f) size measurement of the hologram (the scale is 10 µm/div).

Tables (1)

Tables Icon

Table 1 Experimental Conditions for Different Types of Polarization Holography

Metrics