Abstract

Aluminum fluoride (AlF3) was deposited by a resistive heating boat. To obtain a low optical loss and high laser-induced damage threshold (LIDT) at 193 nm, the films were investigated under different substrate temperatures, deposition rates, and annealing after coating. The optical property (the transmittance, refractive index, extinction coefficient, and optical loss) at 193 nm, microstructure (the cross-sectional morphology, surface roughness, and crystalline structure), mechanical property (stress), and LIDT of AlF3 thin films have been studied. AlF3 thin films deposited at a high substrate temperature and low deposition rate showed a lower optical loss. The highest LIDT occurred at the substrate temperature of 150 °C. The LIDT of the films prepared at a deposition rate of 2 Å/s was higher than that at other deposition rates. The annealing process did not influence the optical properties too much, but it did increase the LIDT and stress.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Güster, D. Ristau, S. Bosch, “Spectrophotometric determination of absorption in the DUV/VUV spectral range for MgF2 and LaF3 thin films,” in Optical Metrology Roadmap for the Semiconductor, Optical, and Data Storage Industries, G. A. Al-Jumaily, A. Duparre, B. Singh, eds., Proc. SPIE4099, 299–310 (2001).
  2. M. Zukic, D. G. Torr, J. F. Spann, M. R. Torr, “Vacuum ultraviolet thin films. 1: Optical constants of BaF2, CaF2, LaF3, MgF2, Al2O3, HfO2 and SiO2 thin films,” Appl. Opt. 29, 4284–4292 (1990).
    [CrossRef] [PubMed]
  3. F. Rainer, W. H. Lowdermilk, D. Milam, C. K. Camiglia, T. T. Hart, T. L. Lichtenstein, “Materials for optical coatings in the ultraviolet,” Appl. Opt. 24, 496–500 (1985).
    [CrossRef] [PubMed]
  4. S. Niisaka, T. Saito, J. Saito, A. Tanaka, A. Matsumoto, M. Otani, R. Biro, C. Ouchi, M. Hasegawa, Y. Suzuki, K. Sone, “Development of optical coatings for 157-nm lithography. I. coating materials,” Appl. Opt. 41, 3242–3247 (2002).
    [CrossRef] [PubMed]
  5. Y. Taki, “Film structures and optical constants of magnetron-sputtered fluoride films for deep ultraviolet lithography,” Vacuum 74, 431–435 (2004).
    [CrossRef]
  6. D. Ristau, S. Günster, S. Bosch, A. Duparré, E. Masetti, J. Ferré-Borrull, G. Kiriakidis, F. Peirò, E. Quesnel, A. Tikhonravov, “Ultraviolet optical and microstructural properties of MgF2 and LaF3 coatings deposited by ion-beam sputtering and boat and electron-beam evaporation,” Appl. Opt. 41, 3196–3204 (2002).
    [CrossRef] [PubMed]
  7. E. Quesnel, L. Dumas, D. Jacob, F. Peiro, “Optical and microstructural properties of MgF2UV coatings grown by ion beam sputtering process,” J. Vac. Sci. Technol. A 18, 2869–2876 (2000).
    [CrossRef]
  8. J. Y. Robic, V. Muffato, P. Chaton, M. Ida, M. Berger, “Optical and structural properties of YF3 thin films prepared by ion-assisted deposition or ion beam sputtering techniques,” in Optical Inteference Coatings, L. Abeles, ed., Proc. SPIE2253, 195–203 (1994).
    [CrossRef]
  9. A. S. Barriére, A. Lachter, “Optical transitions in disordered thin films of the ionic compounds MgF2 and AlF3 as a function of their conditions of preparation,” Appl. Opt. 16, 2865–2871 (1977).
    [CrossRef]
  10. W. J. Tropf, “Temperature-dependent refractive index models for BaF2, CaF2, MgF2, SrF2, LiF, NaF, KCl, ZnS, and ZnSe,” Opt. Eng. 34, 1369–1373 (1995).
    [CrossRef]
  11. W. Heitmann, “Vacuum evaporated films of aluminum fluoride,” Thin Solid Films 5, 61–67 (1970).
    [CrossRef]
  12. G. Atanassov, J. Turlo, J. K. Fu, Y. S. Dai, “Mechanical, optical, and structural properties of TiO2 and MgF2 thin films deposited by plasma ion assisted deposition,” Thin Solid Films 342, 83–92 (1999).
    [CrossRef]
  13. D. G. McCulloch, A. R. Merchant, “The effect of annealing on the structure of cathodic arc deposited amorphous carbon nitride films,” Thin Solid Films 290–291, 99–102 (1996).
    [CrossRef]
  14. O. Paredes, C. Córdoba, J. Benavides, “Optical constants determination in thin films lead-free vitreous coatings,” 1999 Sociedad Mexicana de Ciencias de Superficie y de Vacio, Superficies y Vaco 9, 89–91 (1999).
  15. B. A. Movchan, A. V. Demchichin, “Study of the structure and properties of thick vacuum condensates of nickel, titanium, tungsten, aluminium oxide and zirconium dioxide,” Fiz. Met. Metalloved. 28, 653–660 (1969).
  16. U. Kaiser, M. Adamik, G. Safran, P. B. Barna, S. Laux, W. Richter, “Growth structure investigation of MgF2 and NdF3 films grown by molecular beam deposition on CaF2 (111) substrates,” Thin Solid Films 280, 5–15 (1996).
    [CrossRef]

2004 (1)

Y. Taki, “Film structures and optical constants of magnetron-sputtered fluoride films for deep ultraviolet lithography,” Vacuum 74, 431–435 (2004).
[CrossRef]

2002 (2)

2000 (1)

E. Quesnel, L. Dumas, D. Jacob, F. Peiro, “Optical and microstructural properties of MgF2UV coatings grown by ion beam sputtering process,” J. Vac. Sci. Technol. A 18, 2869–2876 (2000).
[CrossRef]

1999 (2)

O. Paredes, C. Córdoba, J. Benavides, “Optical constants determination in thin films lead-free vitreous coatings,” 1999 Sociedad Mexicana de Ciencias de Superficie y de Vacio, Superficies y Vaco 9, 89–91 (1999).

G. Atanassov, J. Turlo, J. K. Fu, Y. S. Dai, “Mechanical, optical, and structural properties of TiO2 and MgF2 thin films deposited by plasma ion assisted deposition,” Thin Solid Films 342, 83–92 (1999).
[CrossRef]

1996 (2)

D. G. McCulloch, A. R. Merchant, “The effect of annealing on the structure of cathodic arc deposited amorphous carbon nitride films,” Thin Solid Films 290–291, 99–102 (1996).
[CrossRef]

U. Kaiser, M. Adamik, G. Safran, P. B. Barna, S. Laux, W. Richter, “Growth structure investigation of MgF2 and NdF3 films grown by molecular beam deposition on CaF2 (111) substrates,” Thin Solid Films 280, 5–15 (1996).
[CrossRef]

1995 (1)

W. J. Tropf, “Temperature-dependent refractive index models for BaF2, CaF2, MgF2, SrF2, LiF, NaF, KCl, ZnS, and ZnSe,” Opt. Eng. 34, 1369–1373 (1995).
[CrossRef]

1990 (1)

1985 (1)

1977 (1)

1970 (1)

W. Heitmann, “Vacuum evaporated films of aluminum fluoride,” Thin Solid Films 5, 61–67 (1970).
[CrossRef]

1969 (1)

B. A. Movchan, A. V. Demchichin, “Study of the structure and properties of thick vacuum condensates of nickel, titanium, tungsten, aluminium oxide and zirconium dioxide,” Fiz. Met. Metalloved. 28, 653–660 (1969).

Adamik, M.

U. Kaiser, M. Adamik, G. Safran, P. B. Barna, S. Laux, W. Richter, “Growth structure investigation of MgF2 and NdF3 films grown by molecular beam deposition on CaF2 (111) substrates,” Thin Solid Films 280, 5–15 (1996).
[CrossRef]

Atanassov, G.

G. Atanassov, J. Turlo, J. K. Fu, Y. S. Dai, “Mechanical, optical, and structural properties of TiO2 and MgF2 thin films deposited by plasma ion assisted deposition,” Thin Solid Films 342, 83–92 (1999).
[CrossRef]

Barna, P. B.

U. Kaiser, M. Adamik, G. Safran, P. B. Barna, S. Laux, W. Richter, “Growth structure investigation of MgF2 and NdF3 films grown by molecular beam deposition on CaF2 (111) substrates,” Thin Solid Films 280, 5–15 (1996).
[CrossRef]

Barriére, A. S.

Benavides, J.

O. Paredes, C. Córdoba, J. Benavides, “Optical constants determination in thin films lead-free vitreous coatings,” 1999 Sociedad Mexicana de Ciencias de Superficie y de Vacio, Superficies y Vaco 9, 89–91 (1999).

Berger, M.

J. Y. Robic, V. Muffato, P. Chaton, M. Ida, M. Berger, “Optical and structural properties of YF3 thin films prepared by ion-assisted deposition or ion beam sputtering techniques,” in Optical Inteference Coatings, L. Abeles, ed., Proc. SPIE2253, 195–203 (1994).
[CrossRef]

Biro, R.

Bosch, S.

D. Ristau, S. Günster, S. Bosch, A. Duparré, E. Masetti, J. Ferré-Borrull, G. Kiriakidis, F. Peirò, E. Quesnel, A. Tikhonravov, “Ultraviolet optical and microstructural properties of MgF2 and LaF3 coatings deposited by ion-beam sputtering and boat and electron-beam evaporation,” Appl. Opt. 41, 3196–3204 (2002).
[CrossRef] [PubMed]

S. Güster, D. Ristau, S. Bosch, “Spectrophotometric determination of absorption in the DUV/VUV spectral range for MgF2 and LaF3 thin films,” in Optical Metrology Roadmap for the Semiconductor, Optical, and Data Storage Industries, G. A. Al-Jumaily, A. Duparre, B. Singh, eds., Proc. SPIE4099, 299–310 (2001).

Camiglia, C. K.

Chaton, P.

J. Y. Robic, V. Muffato, P. Chaton, M. Ida, M. Berger, “Optical and structural properties of YF3 thin films prepared by ion-assisted deposition or ion beam sputtering techniques,” in Optical Inteference Coatings, L. Abeles, ed., Proc. SPIE2253, 195–203 (1994).
[CrossRef]

Córdoba, C.

O. Paredes, C. Córdoba, J. Benavides, “Optical constants determination in thin films lead-free vitreous coatings,” 1999 Sociedad Mexicana de Ciencias de Superficie y de Vacio, Superficies y Vaco 9, 89–91 (1999).

Dai, Y. S.

G. Atanassov, J. Turlo, J. K. Fu, Y. S. Dai, “Mechanical, optical, and structural properties of TiO2 and MgF2 thin films deposited by plasma ion assisted deposition,” Thin Solid Films 342, 83–92 (1999).
[CrossRef]

Demchichin, A. V.

B. A. Movchan, A. V. Demchichin, “Study of the structure and properties of thick vacuum condensates of nickel, titanium, tungsten, aluminium oxide and zirconium dioxide,” Fiz. Met. Metalloved. 28, 653–660 (1969).

Dumas, L.

E. Quesnel, L. Dumas, D. Jacob, F. Peiro, “Optical and microstructural properties of MgF2UV coatings grown by ion beam sputtering process,” J. Vac. Sci. Technol. A 18, 2869–2876 (2000).
[CrossRef]

Duparré, A.

Ferré-Borrull, J.

Fu, J. K.

G. Atanassov, J. Turlo, J. K. Fu, Y. S. Dai, “Mechanical, optical, and structural properties of TiO2 and MgF2 thin films deposited by plasma ion assisted deposition,” Thin Solid Films 342, 83–92 (1999).
[CrossRef]

Günster, S.

Güster, S.

S. Güster, D. Ristau, S. Bosch, “Spectrophotometric determination of absorption in the DUV/VUV spectral range for MgF2 and LaF3 thin films,” in Optical Metrology Roadmap for the Semiconductor, Optical, and Data Storage Industries, G. A. Al-Jumaily, A. Duparre, B. Singh, eds., Proc. SPIE4099, 299–310 (2001).

Hart, T. T.

Hasegawa, M.

Heitmann, W.

W. Heitmann, “Vacuum evaporated films of aluminum fluoride,” Thin Solid Films 5, 61–67 (1970).
[CrossRef]

Ida, M.

J. Y. Robic, V. Muffato, P. Chaton, M. Ida, M. Berger, “Optical and structural properties of YF3 thin films prepared by ion-assisted deposition or ion beam sputtering techniques,” in Optical Inteference Coatings, L. Abeles, ed., Proc. SPIE2253, 195–203 (1994).
[CrossRef]

Jacob, D.

E. Quesnel, L. Dumas, D. Jacob, F. Peiro, “Optical and microstructural properties of MgF2UV coatings grown by ion beam sputtering process,” J. Vac. Sci. Technol. A 18, 2869–2876 (2000).
[CrossRef]

Kaiser, U.

U. Kaiser, M. Adamik, G. Safran, P. B. Barna, S. Laux, W. Richter, “Growth structure investigation of MgF2 and NdF3 films grown by molecular beam deposition on CaF2 (111) substrates,” Thin Solid Films 280, 5–15 (1996).
[CrossRef]

Kiriakidis, G.

Lachter, A.

Laux, S.

U. Kaiser, M. Adamik, G. Safran, P. B. Barna, S. Laux, W. Richter, “Growth structure investigation of MgF2 and NdF3 films grown by molecular beam deposition on CaF2 (111) substrates,” Thin Solid Films 280, 5–15 (1996).
[CrossRef]

Lichtenstein, T. L.

Lowdermilk, W. H.

Masetti, E.

Matsumoto, A.

McCulloch, D. G.

D. G. McCulloch, A. R. Merchant, “The effect of annealing on the structure of cathodic arc deposited amorphous carbon nitride films,” Thin Solid Films 290–291, 99–102 (1996).
[CrossRef]

Merchant, A. R.

D. G. McCulloch, A. R. Merchant, “The effect of annealing on the structure of cathodic arc deposited amorphous carbon nitride films,” Thin Solid Films 290–291, 99–102 (1996).
[CrossRef]

Milam, D.

Movchan, B. A.

B. A. Movchan, A. V. Demchichin, “Study of the structure and properties of thick vacuum condensates of nickel, titanium, tungsten, aluminium oxide and zirconium dioxide,” Fiz. Met. Metalloved. 28, 653–660 (1969).

Muffato, V.

J. Y. Robic, V. Muffato, P. Chaton, M. Ida, M. Berger, “Optical and structural properties of YF3 thin films prepared by ion-assisted deposition or ion beam sputtering techniques,” in Optical Inteference Coatings, L. Abeles, ed., Proc. SPIE2253, 195–203 (1994).
[CrossRef]

Niisaka, S.

Otani, M.

Ouchi, C.

Paredes, O.

O. Paredes, C. Córdoba, J. Benavides, “Optical constants determination in thin films lead-free vitreous coatings,” 1999 Sociedad Mexicana de Ciencias de Superficie y de Vacio, Superficies y Vaco 9, 89–91 (1999).

Peiro, F.

E. Quesnel, L. Dumas, D. Jacob, F. Peiro, “Optical and microstructural properties of MgF2UV coatings grown by ion beam sputtering process,” J. Vac. Sci. Technol. A 18, 2869–2876 (2000).
[CrossRef]

Peirò, F.

Quesnel, E.

Rainer, F.

Richter, W.

U. Kaiser, M. Adamik, G. Safran, P. B. Barna, S. Laux, W. Richter, “Growth structure investigation of MgF2 and NdF3 films grown by molecular beam deposition on CaF2 (111) substrates,” Thin Solid Films 280, 5–15 (1996).
[CrossRef]

Ristau, D.

D. Ristau, S. Günster, S. Bosch, A. Duparré, E. Masetti, J. Ferré-Borrull, G. Kiriakidis, F. Peirò, E. Quesnel, A. Tikhonravov, “Ultraviolet optical and microstructural properties of MgF2 and LaF3 coatings deposited by ion-beam sputtering and boat and electron-beam evaporation,” Appl. Opt. 41, 3196–3204 (2002).
[CrossRef] [PubMed]

S. Güster, D. Ristau, S. Bosch, “Spectrophotometric determination of absorption in the DUV/VUV spectral range for MgF2 and LaF3 thin films,” in Optical Metrology Roadmap for the Semiconductor, Optical, and Data Storage Industries, G. A. Al-Jumaily, A. Duparre, B. Singh, eds., Proc. SPIE4099, 299–310 (2001).

Robic, J. Y.

J. Y. Robic, V. Muffato, P. Chaton, M. Ida, M. Berger, “Optical and structural properties of YF3 thin films prepared by ion-assisted deposition or ion beam sputtering techniques,” in Optical Inteference Coatings, L. Abeles, ed., Proc. SPIE2253, 195–203 (1994).
[CrossRef]

Safran, G.

U. Kaiser, M. Adamik, G. Safran, P. B. Barna, S. Laux, W. Richter, “Growth structure investigation of MgF2 and NdF3 films grown by molecular beam deposition on CaF2 (111) substrates,” Thin Solid Films 280, 5–15 (1996).
[CrossRef]

Saito, J.

Saito, T.

Sone, K.

Spann, J. F.

Suzuki, Y.

Taki, Y.

Y. Taki, “Film structures and optical constants of magnetron-sputtered fluoride films for deep ultraviolet lithography,” Vacuum 74, 431–435 (2004).
[CrossRef]

Tanaka, A.

Tikhonravov, A.

Torr, D. G.

Torr, M. R.

Tropf, W. J.

W. J. Tropf, “Temperature-dependent refractive index models for BaF2, CaF2, MgF2, SrF2, LiF, NaF, KCl, ZnS, and ZnSe,” Opt. Eng. 34, 1369–1373 (1995).
[CrossRef]

Turlo, J.

G. Atanassov, J. Turlo, J. K. Fu, Y. S. Dai, “Mechanical, optical, and structural properties of TiO2 and MgF2 thin films deposited by plasma ion assisted deposition,” Thin Solid Films 342, 83–92 (1999).
[CrossRef]

Zukic, M.

1999 Sociedad Mexicana de Ciencias de Superficie y de Vacio, Superficies y Vaco (1)

O. Paredes, C. Córdoba, J. Benavides, “Optical constants determination in thin films lead-free vitreous coatings,” 1999 Sociedad Mexicana de Ciencias de Superficie y de Vacio, Superficies y Vaco 9, 89–91 (1999).

Appl. Opt. (5)

Fiz. Met. Metalloved. (1)

B. A. Movchan, A. V. Demchichin, “Study of the structure and properties of thick vacuum condensates of nickel, titanium, tungsten, aluminium oxide and zirconium dioxide,” Fiz. Met. Metalloved. 28, 653–660 (1969).

J. Vac. Sci. Technol. A (1)

E. Quesnel, L. Dumas, D. Jacob, F. Peiro, “Optical and microstructural properties of MgF2UV coatings grown by ion beam sputtering process,” J. Vac. Sci. Technol. A 18, 2869–2876 (2000).
[CrossRef]

Opt. Eng. (1)

W. J. Tropf, “Temperature-dependent refractive index models for BaF2, CaF2, MgF2, SrF2, LiF, NaF, KCl, ZnS, and ZnSe,” Opt. Eng. 34, 1369–1373 (1995).
[CrossRef]

Thin Solid Films (4)

W. Heitmann, “Vacuum evaporated films of aluminum fluoride,” Thin Solid Films 5, 61–67 (1970).
[CrossRef]

G. Atanassov, J. Turlo, J. K. Fu, Y. S. Dai, “Mechanical, optical, and structural properties of TiO2 and MgF2 thin films deposited by plasma ion assisted deposition,” Thin Solid Films 342, 83–92 (1999).
[CrossRef]

D. G. McCulloch, A. R. Merchant, “The effect of annealing on the structure of cathodic arc deposited amorphous carbon nitride films,” Thin Solid Films 290–291, 99–102 (1996).
[CrossRef]

U. Kaiser, M. Adamik, G. Safran, P. B. Barna, S. Laux, W. Richter, “Growth structure investigation of MgF2 and NdF3 films grown by molecular beam deposition on CaF2 (111) substrates,” Thin Solid Films 280, 5–15 (1996).
[CrossRef]

Vacuum (1)

Y. Taki, “Film structures and optical constants of magnetron-sputtered fluoride films for deep ultraviolet lithography,” Vacuum 74, 431–435 (2004).
[CrossRef]

Other (2)

S. Güster, D. Ristau, S. Bosch, “Spectrophotometric determination of absorption in the DUV/VUV spectral range for MgF2 and LaF3 thin films,” in Optical Metrology Roadmap for the Semiconductor, Optical, and Data Storage Industries, G. A. Al-Jumaily, A. Duparre, B. Singh, eds., Proc. SPIE4099, 299–310 (2001).

J. Y. Robic, V. Muffato, P. Chaton, M. Ida, M. Berger, “Optical and structural properties of YF3 thin films prepared by ion-assisted deposition or ion beam sputtering techniques,” in Optical Inteference Coatings, L. Abeles, ed., Proc. SPIE2253, 195–203 (1994).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Transmittance spectra of the substrate and of AlF3 thin films prepared at (a) different substrate temperatures and (b) room substrate temperatures and at 250 °C.

Fig. 2
Fig. 2

Aging effect of AlF3 thin films prepared at different substrate temperatures. The dark curves represent the variation as deposited and the light curves represent the variation after 1 day. At 250 °C and 300 °C, the dark and light curves overlap.

Fig. 3
Fig. 3

Transmittance spectra of the substrate and of AlF3 thin films prepared at different deposition rates.

Fig. 4
Fig. 4

SEM cross-sectional morphology of AlF3 thin film deposited at a 250 °C substrate temperature.

Fig. 5
Fig. 5

XRD spectra of AlF3 thin films: A, Ts = room temperature, rate 0.6 Å/s; B, Ts = 250 °C, rate 0.6 Å/s; C, Ts = 300 °C, rate 0.6 Å/s; D, Ts = 250 °C, rate 6.0 Å/s; E, Ts = 250 °C, rate 0.6 Å/s, annealing 350 °C.

Fig. 6
Fig. 6

Refractive index, optical loss, and stress of AlF3 thin films (a) prepared at different substrate temperatures at a deposition rate of 0.6 Å/s and (b) prepared with different deposition rates at a substrate temperature of 250 °C.

Tables (3)

Tables Icon

Table 1 Refractive Index and Extinction Coefficient of AlF3 Thin Films

Tables Icon

Table 2 Surface Roughness of AlF3 Thin Films with Different Deposition Parameters

Tables Icon

Table 3 Characteristics of AlF3 Thin Films with Different Annealing Parameters

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

L ( % ) = 1 T ( % ) ( R ) ( % ) ,
σ = E h 2 ( 1 ν ) 6 t ( 1 R d 1 R 0 ) .

Metrics