Abstract

We demonstrate the rapid and nondestructive detection of subsurface nanometer-size defects in 90 nm technology live microprocessors with a new technique called functional infrared emission spectral microscopy. Broken, leaky, and good transistors with similar photoemission images are identified from each other by their different emission spectra that are calculated as linear combinations of weighted basis spectra. The basis spectra are derived from a spectral library by principal component analysis. Leaky transistors do not exhibit apparent morphological damage and are undetectable by optical or scanning probe microscopy alone. The emission signals from two or more transistors combined incoherently, and defect detection is primarily limited by the signal-to-noise ratio of the detected spectrum and not by the separation distance of neighboring transistors.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Ieon, B. Doris, J. Kedzierski, K. Rim, M. Yang, “Silicon device scaling to the sub- 10-nm regime,” Science 306, 2057–2060 (2004).
    [CrossRef]
  2. M. Lundstrom, “Moore’s law forever?,” Science 299, 210–211 (2003).
    [CrossRef] [PubMed]
  3. Y. Hong, L. Leong, W. Choong, L. Hou, M. Adnan, “An overview of advanced failure analysis techniques for Pentium and Pentium Pro microprocessors,” Intel Tech. J. Q2, 11–22 (1998).
  4. L. Wagner, “Trends in failure analysis,” Microelectron. Reliab. 43, 1369–1375 (2003).
    [CrossRef]
  5. J. J. Miranda, C. Saloma, “Four-dimensional microscopy of defects in integrated circuits,” Appl. Opt. 42, 6520–6524 (2003).
    [CrossRef] [PubMed]
  6. V. J. Cemine, B. Buenaobra, C. Blanca, C. Saloma, “High-contrast microscopy of semiconductor and metal sites in integrated circuits by detection of optical feedback,” Opt. Lett. 29, 2479–2481 (2004).
    [CrossRef] [PubMed]
  7. C. Xu, W. Denk, “Comparison of one- and two-photon optical beam-induced current imaging,” J. Appl. Phys. 86, 2226–2231 (1999).
    [CrossRef]
  8. E. Ramsay, D. Reid, K. Wilsher, “Three-dimensional imaging of a silicon flip chip using the two-photon optical-beam induced current effect,” Appl. Phys. Lett. 81, 7–9 (2002).
    [CrossRef]
  9. S. Ippolito, B. Goldberg, M. Unlu, “High spatial resolution subsurface microscopy,” Appl. Phys. Lett. 78, 4071–4073 (2001).
    [CrossRef]
  10. F. Giessibl, “Advances in atomic force microscopy,” Rev. Mod. Phys. 75, 949–983 (2003).
    [CrossRef]
  11. W. Hofer, A. Foster, A. Shluger, “Advances in atomic force microscopy,” Rev. Mod. Phys. 75, 1288–1331 (2003).
  12. M. Soriano, W. Oblefias, C. Saloma, “Fluorescence spectrum estimation using multiple color images and minimum negativity constraint,” Opt. Express 10, 1458–1464 (2002).
    [CrossRef] [PubMed]
  13. C. Saloma, W. Oblefias, M. Soriano, in Nanophotonics: Integrating Photochemistry, Optics and Nano/Bio Materials Studies, H. Masuhara, S. Kawata, eds. (Elsevier, Amsterdam, 2004), Vol. 1, Chap. 23, p. 377.
  14. A. Tarun, J. Laniog, J. Tan, P. Cana “Junction leakage analysis using scanning capacitance microscopy,” IEEE Trans. Device Mater. Reliab. 4, 46–49 (2004).
    [CrossRef]

2004 (3)

M. Ieon, B. Doris, J. Kedzierski, K. Rim, M. Yang, “Silicon device scaling to the sub- 10-nm regime,” Science 306, 2057–2060 (2004).
[CrossRef]

V. J. Cemine, B. Buenaobra, C. Blanca, C. Saloma, “High-contrast microscopy of semiconductor and metal sites in integrated circuits by detection of optical feedback,” Opt. Lett. 29, 2479–2481 (2004).
[CrossRef] [PubMed]

A. Tarun, J. Laniog, J. Tan, P. Cana “Junction leakage analysis using scanning capacitance microscopy,” IEEE Trans. Device Mater. Reliab. 4, 46–49 (2004).
[CrossRef]

2003 (5)

F. Giessibl, “Advances in atomic force microscopy,” Rev. Mod. Phys. 75, 949–983 (2003).
[CrossRef]

W. Hofer, A. Foster, A. Shluger, “Advances in atomic force microscopy,” Rev. Mod. Phys. 75, 1288–1331 (2003).

M. Lundstrom, “Moore’s law forever?,” Science 299, 210–211 (2003).
[CrossRef] [PubMed]

L. Wagner, “Trends in failure analysis,” Microelectron. Reliab. 43, 1369–1375 (2003).
[CrossRef]

J. J. Miranda, C. Saloma, “Four-dimensional microscopy of defects in integrated circuits,” Appl. Opt. 42, 6520–6524 (2003).
[CrossRef] [PubMed]

2002 (2)

E. Ramsay, D. Reid, K. Wilsher, “Three-dimensional imaging of a silicon flip chip using the two-photon optical-beam induced current effect,” Appl. Phys. Lett. 81, 7–9 (2002).
[CrossRef]

M. Soriano, W. Oblefias, C. Saloma, “Fluorescence spectrum estimation using multiple color images and minimum negativity constraint,” Opt. Express 10, 1458–1464 (2002).
[CrossRef] [PubMed]

2001 (1)

S. Ippolito, B. Goldberg, M. Unlu, “High spatial resolution subsurface microscopy,” Appl. Phys. Lett. 78, 4071–4073 (2001).
[CrossRef]

1999 (1)

C. Xu, W. Denk, “Comparison of one- and two-photon optical beam-induced current imaging,” J. Appl. Phys. 86, 2226–2231 (1999).
[CrossRef]

1998 (1)

Y. Hong, L. Leong, W. Choong, L. Hou, M. Adnan, “An overview of advanced failure analysis techniques for Pentium and Pentium Pro microprocessors,” Intel Tech. J. Q2, 11–22 (1998).

Adnan, M.

Y. Hong, L. Leong, W. Choong, L. Hou, M. Adnan, “An overview of advanced failure analysis techniques for Pentium and Pentium Pro microprocessors,” Intel Tech. J. Q2, 11–22 (1998).

Blanca, C.

Buenaobra, B.

Cana, P.

A. Tarun, J. Laniog, J. Tan, P. Cana “Junction leakage analysis using scanning capacitance microscopy,” IEEE Trans. Device Mater. Reliab. 4, 46–49 (2004).
[CrossRef]

Cemine, V. J.

Choong, W.

Y. Hong, L. Leong, W. Choong, L. Hou, M. Adnan, “An overview of advanced failure analysis techniques for Pentium and Pentium Pro microprocessors,” Intel Tech. J. Q2, 11–22 (1998).

Denk, W.

C. Xu, W. Denk, “Comparison of one- and two-photon optical beam-induced current imaging,” J. Appl. Phys. 86, 2226–2231 (1999).
[CrossRef]

Doris, B.

M. Ieon, B. Doris, J. Kedzierski, K. Rim, M. Yang, “Silicon device scaling to the sub- 10-nm regime,” Science 306, 2057–2060 (2004).
[CrossRef]

Foster, A.

W. Hofer, A. Foster, A. Shluger, “Advances in atomic force microscopy,” Rev. Mod. Phys. 75, 1288–1331 (2003).

Giessibl, F.

F. Giessibl, “Advances in atomic force microscopy,” Rev. Mod. Phys. 75, 949–983 (2003).
[CrossRef]

Goldberg, B.

S. Ippolito, B. Goldberg, M. Unlu, “High spatial resolution subsurface microscopy,” Appl. Phys. Lett. 78, 4071–4073 (2001).
[CrossRef]

Hofer, W.

W. Hofer, A. Foster, A. Shluger, “Advances in atomic force microscopy,” Rev. Mod. Phys. 75, 1288–1331 (2003).

Hong, Y.

Y. Hong, L. Leong, W. Choong, L. Hou, M. Adnan, “An overview of advanced failure analysis techniques for Pentium and Pentium Pro microprocessors,” Intel Tech. J. Q2, 11–22 (1998).

Hou, L.

Y. Hong, L. Leong, W. Choong, L. Hou, M. Adnan, “An overview of advanced failure analysis techniques for Pentium and Pentium Pro microprocessors,” Intel Tech. J. Q2, 11–22 (1998).

Ieon, M.

M. Ieon, B. Doris, J. Kedzierski, K. Rim, M. Yang, “Silicon device scaling to the sub- 10-nm regime,” Science 306, 2057–2060 (2004).
[CrossRef]

Ippolito, S.

S. Ippolito, B. Goldberg, M. Unlu, “High spatial resolution subsurface microscopy,” Appl. Phys. Lett. 78, 4071–4073 (2001).
[CrossRef]

Kedzierski, J.

M. Ieon, B. Doris, J. Kedzierski, K. Rim, M. Yang, “Silicon device scaling to the sub- 10-nm regime,” Science 306, 2057–2060 (2004).
[CrossRef]

Laniog, J.

A. Tarun, J. Laniog, J. Tan, P. Cana “Junction leakage analysis using scanning capacitance microscopy,” IEEE Trans. Device Mater. Reliab. 4, 46–49 (2004).
[CrossRef]

Leong, L.

Y. Hong, L. Leong, W. Choong, L. Hou, M. Adnan, “An overview of advanced failure analysis techniques for Pentium and Pentium Pro microprocessors,” Intel Tech. J. Q2, 11–22 (1998).

Lundstrom, M.

M. Lundstrom, “Moore’s law forever?,” Science 299, 210–211 (2003).
[CrossRef] [PubMed]

Miranda, J. J.

Oblefias, W.

M. Soriano, W. Oblefias, C. Saloma, “Fluorescence spectrum estimation using multiple color images and minimum negativity constraint,” Opt. Express 10, 1458–1464 (2002).
[CrossRef] [PubMed]

C. Saloma, W. Oblefias, M. Soriano, in Nanophotonics: Integrating Photochemistry, Optics and Nano/Bio Materials Studies, H. Masuhara, S. Kawata, eds. (Elsevier, Amsterdam, 2004), Vol. 1, Chap. 23, p. 377.

Ramsay, E.

E. Ramsay, D. Reid, K. Wilsher, “Three-dimensional imaging of a silicon flip chip using the two-photon optical-beam induced current effect,” Appl. Phys. Lett. 81, 7–9 (2002).
[CrossRef]

Reid, D.

E. Ramsay, D. Reid, K. Wilsher, “Three-dimensional imaging of a silicon flip chip using the two-photon optical-beam induced current effect,” Appl. Phys. Lett. 81, 7–9 (2002).
[CrossRef]

Rim, K.

M. Ieon, B. Doris, J. Kedzierski, K. Rim, M. Yang, “Silicon device scaling to the sub- 10-nm regime,” Science 306, 2057–2060 (2004).
[CrossRef]

Saloma, C.

Shluger, A.

W. Hofer, A. Foster, A. Shluger, “Advances in atomic force microscopy,” Rev. Mod. Phys. 75, 1288–1331 (2003).

Soriano, M.

M. Soriano, W. Oblefias, C. Saloma, “Fluorescence spectrum estimation using multiple color images and minimum negativity constraint,” Opt. Express 10, 1458–1464 (2002).
[CrossRef] [PubMed]

C. Saloma, W. Oblefias, M. Soriano, in Nanophotonics: Integrating Photochemistry, Optics and Nano/Bio Materials Studies, H. Masuhara, S. Kawata, eds. (Elsevier, Amsterdam, 2004), Vol. 1, Chap. 23, p. 377.

Tan, J.

A. Tarun, J. Laniog, J. Tan, P. Cana “Junction leakage analysis using scanning capacitance microscopy,” IEEE Trans. Device Mater. Reliab. 4, 46–49 (2004).
[CrossRef]

Tarun, A.

A. Tarun, J. Laniog, J. Tan, P. Cana “Junction leakage analysis using scanning capacitance microscopy,” IEEE Trans. Device Mater. Reliab. 4, 46–49 (2004).
[CrossRef]

Unlu, M.

S. Ippolito, B. Goldberg, M. Unlu, “High spatial resolution subsurface microscopy,” Appl. Phys. Lett. 78, 4071–4073 (2001).
[CrossRef]

Wagner, L.

L. Wagner, “Trends in failure analysis,” Microelectron. Reliab. 43, 1369–1375 (2003).
[CrossRef]

Wilsher, K.

E. Ramsay, D. Reid, K. Wilsher, “Three-dimensional imaging of a silicon flip chip using the two-photon optical-beam induced current effect,” Appl. Phys. Lett. 81, 7–9 (2002).
[CrossRef]

Xu, C.

C. Xu, W. Denk, “Comparison of one- and two-photon optical beam-induced current imaging,” J. Appl. Phys. 86, 2226–2231 (1999).
[CrossRef]

Yang, M.

M. Ieon, B. Doris, J. Kedzierski, K. Rim, M. Yang, “Silicon device scaling to the sub- 10-nm regime,” Science 306, 2057–2060 (2004).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (2)

E. Ramsay, D. Reid, K. Wilsher, “Three-dimensional imaging of a silicon flip chip using the two-photon optical-beam induced current effect,” Appl. Phys. Lett. 81, 7–9 (2002).
[CrossRef]

S. Ippolito, B. Goldberg, M. Unlu, “High spatial resolution subsurface microscopy,” Appl. Phys. Lett. 78, 4071–4073 (2001).
[CrossRef]

IEEE Trans. Device Mater. Reliab. (1)

A. Tarun, J. Laniog, J. Tan, P. Cana “Junction leakage analysis using scanning capacitance microscopy,” IEEE Trans. Device Mater. Reliab. 4, 46–49 (2004).
[CrossRef]

Intel Tech. J. (1)

Y. Hong, L. Leong, W. Choong, L. Hou, M. Adnan, “An overview of advanced failure analysis techniques for Pentium and Pentium Pro microprocessors,” Intel Tech. J. Q2, 11–22 (1998).

J. Appl. Phys. (1)

C. Xu, W. Denk, “Comparison of one- and two-photon optical beam-induced current imaging,” J. Appl. Phys. 86, 2226–2231 (1999).
[CrossRef]

Microelectron. Reliab. (1)

L. Wagner, “Trends in failure analysis,” Microelectron. Reliab. 43, 1369–1375 (2003).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Rev. Mod. Phys. (2)

F. Giessibl, “Advances in atomic force microscopy,” Rev. Mod. Phys. 75, 949–983 (2003).
[CrossRef]

W. Hofer, A. Foster, A. Shluger, “Advances in atomic force microscopy,” Rev. Mod. Phys. 75, 1288–1331 (2003).

Science (2)

M. Ieon, B. Doris, J. Kedzierski, K. Rim, M. Yang, “Silicon device scaling to the sub- 10-nm regime,” Science 306, 2057–2060 (2004).
[CrossRef]

M. Lundstrom, “Moore’s law forever?,” Science 299, 210–211 (2003).
[CrossRef] [PubMed]

Other (1)

C. Saloma, W. Oblefias, M. Soriano, in Nanophotonics: Integrating Photochemistry, Optics and Nano/Bio Materials Studies, H. Masuhara, S. Kawata, eds. (Elsevier, Amsterdam, 2004), Vol. 1, Chap. 23, p. 377.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Percentage contributions of eigenvalues of the first 50 basis spectra. Solid curve: the contribution (%) = 57.24 n−2.6, where n is a basis spectrum number.

Fig. 2
Fig. 2

f IRESM setup. Photoemission image of the subsurface active layer in a live microprocessor sample is taken by a nitrogen-cooled CCD camera with a high-pass filter (HPF) placed in the Fourier plane of L1. The CCD camera, low-pass filter (LPF), and lens L2 are maintained at 77 K. Intensity distribution at the CCD detector plane is sampled with a 16-bit AD converter.

Fig. 3
Fig. 3

(a) IREM image [size: 200 × 200 µm2; numerical aperture of L1 = 0.42 (50×); working distance = 17 mm] of photoemissions from the broken transistor (arrow 1) and the working transistor (arrow 2) and (b) corresponding SEM image (scale bar = 3 µm) of the broken transistor (arrow 1).

Fig. 4
Fig. 4

(a) f SIREM spectrum of the broken transistor (plot 1) and the working (plot 2) transistor in Fig. 3 and (b) a typical spectrum of the individual broken transistor (plot 1), the leaky transistor (plot 2), and the good transistor (plot 3).

Fig. 5
Fig. 5

(a) Spectrum of the leaky transistor (gate = 1.6 V, source = drain = 0) with gate leakage of (in mA) 1.53 (filled circles), 1.14 (dotted curve), 6.83 (circles), and 2.73 (solid curve) and (b) peak intensity versus number q of good transistor emitters. Solid curve: Counts = 304.5q + 334.071.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

C ( λ ; x , y ) = n = 1 N a n ( x , y ) e n ( λ ) + C ( λ ) ,
Q m ( x , y ) = n = 1 N a n ( x , y ) e n ( λ ) S m ( λ ) d λ + C ( λ ) S m ( λ ) d λ ,

Metrics