Abstract

We report on the experimental investigation into the characterization of two-photon fluorescence microscopy based on the separation distance of a single-mode optical fiber coupler and a gradient-index (GRIN) rod lens. The collected two-photon fluorescence signal exhibits a maximum intensity at a defined separation distance (gap length) where the increasing effective excitation numerical aperture is balanced by the decreasing confocal emission collection. A maximum signal is found at gap lengths of approximately 2, 1.25, and 1.75 mm for GRIN lenses with pitches of 0.23, 0.25, and 0.29 wavelength at 830 nm. The maximum two-photon fluorescence signal collected corresponds to a threefold reduction of axial resolution (38.5 µm at 1.25 mm), compared with the maximum resolution (11.6 µm at 5.5 mm), as shown by the three-dimensional imaging of 10 µm beads. These results demonstrate an intrinsic trade-off between signal collection and axial resolution.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (1)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription