Abstract

The electronic structure of fluorene derivatives N-(7-benzothiazol-2-yl-9,9-bis-decyl-9H-fluoren-2-yl)-acetamide (1); 9,9-didecyl-2,7-bis-(N,N-benzothiazoyl)fluorene (2); 4,4′-{[9,9-bis(ethyl)-9H-fluorene-2,7-diyl]di-2,1-ethenediyl}bis(N,N-diphenyl)benzeneamine (3); and 4,4′,4″{[9,9-bis(ethyl)-9H-fluorene-2,4,7-triyl]tri-2,1-ethenediyl}tris(N,N-diphenyl)benzeneamine (4) were investigated by a steady-state spectral technique, quantum-chemical calculations, and a picosecond pump–probe method. These derivatives are of interest for their relatively high two-photon absorption. The steady-state excitation anisotropy spectra reveal the nature of the ground-state absorption bands. Semiempirical quantum-chemical calculations of the fluorene derivatives (AM1, ZINDO/S) show good agreement with experimental data. The spectral positions and alignment of various electronic transitions of derivatives 1–4 were estimated from their excited-state absorption and anisotropy spectra.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. E. Ehrlich, X. L. Wu, I.-Y. S. Lee, Z.-H. Hu, H. Röckel, S. R. Marder, J. W. Perry, “Two-photon absorption and broadband optical limiting with bis-donor stilbenes,” Opt. Lett. 22, 1843–1845 (1997).
    [CrossRef]
  2. G. S. He, R. Gvishi, P. N. Prasad, B. Reinhardt, “Two-photon absorption based optical limiting and stabilization in organic molecule-doped solid materials,” Opt. Commun. 117, 133–136 (1995).
    [CrossRef]
  3. Y. Morel, A. Irimia, P. Najechalski, Y. Kervella, O. Stephan, P. L. Baldeck, C. Andraud, “Two-photon absorption and optical power limiting of bifluorene molecule,” J. Chem. Phys. 114, 5391–5396 (2001).
    [CrossRef]
  4. D. A. Parthenopoulos, P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 245, 843–845 (1989).
    [CrossRef] [PubMed]
  5. J. H. Strickler, W. W. Webb, “Three-dimensional optical data storage in refractive media by two-photon point excitation,” Opt. Lett. 16, 1780–1782 (1991).
    [CrossRef] [PubMed]
  6. K. D. Belfield, K. J. Schafer, Y. Liu, J. Liu, X. Ren, E. W. Van Stryland, “Multiphoton-absorbing organic materials for microfabrication, emerging optical applications and nondestructive three-dimensional imaging,” J. Phys. Org. Chem. 13, 837–849 (2000).
    [CrossRef]
  7. W. Denk, J. H. Strickler, W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
    [CrossRef] [PubMed]
  8. E. A. Wachter, W. P. Partridge, W. G. Fisher, H. C. Dees, M. G. Petersen, “Simultaneous two-photon excitation of photodynamic therapy agents,” in Commercial Applications of Ultrafast Lasers, M. K. Reed, ed., Proc. SPIE3269, 68–75 (1998).
    [CrossRef]
  9. K. D. Belfield, M. V. Bondar, O. V. Przhonska, K. J. Schafer, W. Mourad, “Spectral properties of several fluorene derivatives with potential as two-photon fluorescent dyes,” J. Lumin. 97, 141–146 (2002).
    [CrossRef]
  10. F. Meyers, S. R. Marder, B. M. Pierce, J. L. Bredas, “Electric field modulated nonlinear optical properties of donor–acceptor polyenes: sum-over-states investigation of the relationship between molecular polarizabilities (α, β, and γ) and bond length alternation,” J. Am. Chem. Soc. 116, 10,703–10,714 (1994).
    [CrossRef]
  11. T. Kogej, D. Beljonne, F. Meyers, J. W. Perry, S. R. Marder, J. L. Bredas, “Mechanisms for enhancement of two-photon absorption in donor–acceptor conjugated chromophores,” Chem. Phys. Lett. 298, 1–6 (1998).
    [CrossRef]
  12. G. S. He, T.-C. Lin, P. N. Prasad, R. Kannan, R. A. Vaia, L.-S. Tan, “Study of two-photon absorption spectral property of novel nonlinear optical chromophore using femtosecond continuum,” J. Phys. Chem. B 106, 11,081–11,084 (2002).
    [CrossRef]
  13. K. Kamada, K. Ohta, Y. Iwase, K. Kondo, “Two-photon absorption properties of symmetric substituted diacetylene: drastic enhancement of the cross section near the one-photon absorption peak,” Chem. Phys. Lett. 372, 386–393 (2003).
    [CrossRef]
  14. P. Cronstrand, Y. Luo, H. Ågren, “Effects of dipole alignment and channel interference on two-photon absorption cross sections of two-dimensional charge-transfer systems,” J. Chem. Phys. 117, 11,102–11,106 (2002).
    [CrossRef]
  15. P. Cronstrand, Y. Luo, H. Ågren, “Generalized few-state models for two-photon absorption of conjugated molecules,” Chem. Phys. Lett. 353, 262–269 (2002).
    [CrossRef]
  16. H. E. Lessing, A. Von Jena, “Orientation of S1 → Sn transition of oxadine dyes from continous picosecond photometry,” Chem. Phys. Lett. 59, 249–254 (1978).
    [CrossRef]
  17. A. Penzkofer, J. Wiedmann, “Orientation of transition dipole moments of Rhodamine 6G determined by excited state absorption,” Opt. Commun. 35, 81–86 (1980).
    [CrossRef]
  18. O. V. Przhonska, D. J. Hagan, E. Novikov, R. Lepkowicz, E. W. Van Stryland, M. V. Bondar, Y. L. Slominsky, A. D. Kachkovski, “Picosecond absorption anisotropy of polymethine and squarylium dyes in liquid and polymeric media,” Chem. Phys. 273, 235–248 (2001).
    [CrossRef]
  19. R. S. Lepkowicz, O. V. Przhonska, J. M. Hales, D. J. Hagan, E. W. Van Stryland, M. V. Bondar, Y. L. Slominsky, A. D. Kachkovski, “Excited-state absorption dynamics in polymethine dyes detected by polarization-resolved pump–probe measurements,” Chem. Phys. 286, 277–291 (2003).
    [CrossRef]
  20. T. W. Hagler, “Nonparallel transition dipole moments and the polarization dependence of electroabsorption in nonoriented conjugated polymer films,” Chem. Phys. Lett. 218, 195–199 (1994).
    [CrossRef]
  21. P. Myslinski, J. A. Koningstein, Y. Shen, “Theory for laser induced dichroism and its effect on absorption, fluorescence, and Raman spectra,” J. Chem. Phys. 96, 8691–8698 (1992).
    [CrossRef]
  22. K. D. Belfield, K. J. Schafer, S. Yao, J. M. Hales, D. J. Hagan, E. W. Van Stryland, “Reactive two-photon fluorescent probes for biological imaging,” in Nonlinear-Optical Transmission and Multiphoton Processes in Organics, A. T. Yates, K. D. Belfield, F. Kajzar, C. M. Lawson, eds., Proc. SPIE5211, 91–95 (2004).
    [CrossRef]
  23. K. D. Belfield, A. R. Morales, B.-S. Kang, J. M. Hales, D. J. Hagan, E. W. Van Stryland, V. M. Chapela, J. Percino, “Synthesis, characterization and optical properties of new two-photon absorbing fluorene derivatives,” Chem. Mater. 16, 4634–4641 (2004).
    [CrossRef]
  24. S. Yao, K. D. Belfield, “Synthesis of two-photon absorbing unsymmetrical branched chromophores through direct tris-(bromomethylation) of fluorene,” J. Org. Chem. (to be published).
  25. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Kluwer Academic/Plenum, New York, 1999).
    [CrossRef]

2004 (1)

K. D. Belfield, A. R. Morales, B.-S. Kang, J. M. Hales, D. J. Hagan, E. W. Van Stryland, V. M. Chapela, J. Percino, “Synthesis, characterization and optical properties of new two-photon absorbing fluorene derivatives,” Chem. Mater. 16, 4634–4641 (2004).
[CrossRef]

2003 (2)

R. S. Lepkowicz, O. V. Przhonska, J. M. Hales, D. J. Hagan, E. W. Van Stryland, M. V. Bondar, Y. L. Slominsky, A. D. Kachkovski, “Excited-state absorption dynamics in polymethine dyes detected by polarization-resolved pump–probe measurements,” Chem. Phys. 286, 277–291 (2003).
[CrossRef]

K. Kamada, K. Ohta, Y. Iwase, K. Kondo, “Two-photon absorption properties of symmetric substituted diacetylene: drastic enhancement of the cross section near the one-photon absorption peak,” Chem. Phys. Lett. 372, 386–393 (2003).
[CrossRef]

2002 (4)

P. Cronstrand, Y. Luo, H. Ågren, “Effects of dipole alignment and channel interference on two-photon absorption cross sections of two-dimensional charge-transfer systems,” J. Chem. Phys. 117, 11,102–11,106 (2002).
[CrossRef]

P. Cronstrand, Y. Luo, H. Ågren, “Generalized few-state models for two-photon absorption of conjugated molecules,” Chem. Phys. Lett. 353, 262–269 (2002).
[CrossRef]

K. D. Belfield, M. V. Bondar, O. V. Przhonska, K. J. Schafer, W. Mourad, “Spectral properties of several fluorene derivatives with potential as two-photon fluorescent dyes,” J. Lumin. 97, 141–146 (2002).
[CrossRef]

G. S. He, T.-C. Lin, P. N. Prasad, R. Kannan, R. A. Vaia, L.-S. Tan, “Study of two-photon absorption spectral property of novel nonlinear optical chromophore using femtosecond continuum,” J. Phys. Chem. B 106, 11,081–11,084 (2002).
[CrossRef]

2001 (2)

O. V. Przhonska, D. J. Hagan, E. Novikov, R. Lepkowicz, E. W. Van Stryland, M. V. Bondar, Y. L. Slominsky, A. D. Kachkovski, “Picosecond absorption anisotropy of polymethine and squarylium dyes in liquid and polymeric media,” Chem. Phys. 273, 235–248 (2001).
[CrossRef]

Y. Morel, A. Irimia, P. Najechalski, Y. Kervella, O. Stephan, P. L. Baldeck, C. Andraud, “Two-photon absorption and optical power limiting of bifluorene molecule,” J. Chem. Phys. 114, 5391–5396 (2001).
[CrossRef]

2000 (1)

K. D. Belfield, K. J. Schafer, Y. Liu, J. Liu, X. Ren, E. W. Van Stryland, “Multiphoton-absorbing organic materials for microfabrication, emerging optical applications and nondestructive three-dimensional imaging,” J. Phys. Org. Chem. 13, 837–849 (2000).
[CrossRef]

1998 (1)

T. Kogej, D. Beljonne, F. Meyers, J. W. Perry, S. R. Marder, J. L. Bredas, “Mechanisms for enhancement of two-photon absorption in donor–acceptor conjugated chromophores,” Chem. Phys. Lett. 298, 1–6 (1998).
[CrossRef]

1997 (1)

1995 (1)

G. S. He, R. Gvishi, P. N. Prasad, B. Reinhardt, “Two-photon absorption based optical limiting and stabilization in organic molecule-doped solid materials,” Opt. Commun. 117, 133–136 (1995).
[CrossRef]

1994 (2)

T. W. Hagler, “Nonparallel transition dipole moments and the polarization dependence of electroabsorption in nonoriented conjugated polymer films,” Chem. Phys. Lett. 218, 195–199 (1994).
[CrossRef]

F. Meyers, S. R. Marder, B. M. Pierce, J. L. Bredas, “Electric field modulated nonlinear optical properties of donor–acceptor polyenes: sum-over-states investigation of the relationship between molecular polarizabilities (α, β, and γ) and bond length alternation,” J. Am. Chem. Soc. 116, 10,703–10,714 (1994).
[CrossRef]

1992 (1)

P. Myslinski, J. A. Koningstein, Y. Shen, “Theory for laser induced dichroism and its effect on absorption, fluorescence, and Raman spectra,” J. Chem. Phys. 96, 8691–8698 (1992).
[CrossRef]

1991 (1)

1990 (1)

W. Denk, J. H. Strickler, W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

1989 (1)

D. A. Parthenopoulos, P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 245, 843–845 (1989).
[CrossRef] [PubMed]

1980 (1)

A. Penzkofer, J. Wiedmann, “Orientation of transition dipole moments of Rhodamine 6G determined by excited state absorption,” Opt. Commun. 35, 81–86 (1980).
[CrossRef]

1978 (1)

H. E. Lessing, A. Von Jena, “Orientation of S1 → Sn transition of oxadine dyes from continous picosecond photometry,” Chem. Phys. Lett. 59, 249–254 (1978).
[CrossRef]

Ågren, H.

P. Cronstrand, Y. Luo, H. Ågren, “Effects of dipole alignment and channel interference on two-photon absorption cross sections of two-dimensional charge-transfer systems,” J. Chem. Phys. 117, 11,102–11,106 (2002).
[CrossRef]

P. Cronstrand, Y. Luo, H. Ågren, “Generalized few-state models for two-photon absorption of conjugated molecules,” Chem. Phys. Lett. 353, 262–269 (2002).
[CrossRef]

Andraud, C.

Y. Morel, A. Irimia, P. Najechalski, Y. Kervella, O. Stephan, P. L. Baldeck, C. Andraud, “Two-photon absorption and optical power limiting of bifluorene molecule,” J. Chem. Phys. 114, 5391–5396 (2001).
[CrossRef]

Baldeck, P. L.

Y. Morel, A. Irimia, P. Najechalski, Y. Kervella, O. Stephan, P. L. Baldeck, C. Andraud, “Two-photon absorption and optical power limiting of bifluorene molecule,” J. Chem. Phys. 114, 5391–5396 (2001).
[CrossRef]

Belfield, K. D.

K. D. Belfield, A. R. Morales, B.-S. Kang, J. M. Hales, D. J. Hagan, E. W. Van Stryland, V. M. Chapela, J. Percino, “Synthesis, characterization and optical properties of new two-photon absorbing fluorene derivatives,” Chem. Mater. 16, 4634–4641 (2004).
[CrossRef]

K. D. Belfield, M. V. Bondar, O. V. Przhonska, K. J. Schafer, W. Mourad, “Spectral properties of several fluorene derivatives with potential as two-photon fluorescent dyes,” J. Lumin. 97, 141–146 (2002).
[CrossRef]

K. D. Belfield, K. J. Schafer, Y. Liu, J. Liu, X. Ren, E. W. Van Stryland, “Multiphoton-absorbing organic materials for microfabrication, emerging optical applications and nondestructive three-dimensional imaging,” J. Phys. Org. Chem. 13, 837–849 (2000).
[CrossRef]

K. D. Belfield, K. J. Schafer, S. Yao, J. M. Hales, D. J. Hagan, E. W. Van Stryland, “Reactive two-photon fluorescent probes for biological imaging,” in Nonlinear-Optical Transmission and Multiphoton Processes in Organics, A. T. Yates, K. D. Belfield, F. Kajzar, C. M. Lawson, eds., Proc. SPIE5211, 91–95 (2004).
[CrossRef]

S. Yao, K. D. Belfield, “Synthesis of two-photon absorbing unsymmetrical branched chromophores through direct tris-(bromomethylation) of fluorene,” J. Org. Chem. (to be published).

Beljonne, D.

T. Kogej, D. Beljonne, F. Meyers, J. W. Perry, S. R. Marder, J. L. Bredas, “Mechanisms for enhancement of two-photon absorption in donor–acceptor conjugated chromophores,” Chem. Phys. Lett. 298, 1–6 (1998).
[CrossRef]

Bondar, M. V.

R. S. Lepkowicz, O. V. Przhonska, J. M. Hales, D. J. Hagan, E. W. Van Stryland, M. V. Bondar, Y. L. Slominsky, A. D. Kachkovski, “Excited-state absorption dynamics in polymethine dyes detected by polarization-resolved pump–probe measurements,” Chem. Phys. 286, 277–291 (2003).
[CrossRef]

K. D. Belfield, M. V. Bondar, O. V. Przhonska, K. J. Schafer, W. Mourad, “Spectral properties of several fluorene derivatives with potential as two-photon fluorescent dyes,” J. Lumin. 97, 141–146 (2002).
[CrossRef]

O. V. Przhonska, D. J. Hagan, E. Novikov, R. Lepkowicz, E. W. Van Stryland, M. V. Bondar, Y. L. Slominsky, A. D. Kachkovski, “Picosecond absorption anisotropy of polymethine and squarylium dyes in liquid and polymeric media,” Chem. Phys. 273, 235–248 (2001).
[CrossRef]

Bredas, J. L.

T. Kogej, D. Beljonne, F. Meyers, J. W. Perry, S. R. Marder, J. L. Bredas, “Mechanisms for enhancement of two-photon absorption in donor–acceptor conjugated chromophores,” Chem. Phys. Lett. 298, 1–6 (1998).
[CrossRef]

F. Meyers, S. R. Marder, B. M. Pierce, J. L. Bredas, “Electric field modulated nonlinear optical properties of donor–acceptor polyenes: sum-over-states investigation of the relationship between molecular polarizabilities (α, β, and γ) and bond length alternation,” J. Am. Chem. Soc. 116, 10,703–10,714 (1994).
[CrossRef]

Chapela, V. M.

K. D. Belfield, A. R. Morales, B.-S. Kang, J. M. Hales, D. J. Hagan, E. W. Van Stryland, V. M. Chapela, J. Percino, “Synthesis, characterization and optical properties of new two-photon absorbing fluorene derivatives,” Chem. Mater. 16, 4634–4641 (2004).
[CrossRef]

Cronstrand, P.

P. Cronstrand, Y. Luo, H. Ågren, “Generalized few-state models for two-photon absorption of conjugated molecules,” Chem. Phys. Lett. 353, 262–269 (2002).
[CrossRef]

P. Cronstrand, Y. Luo, H. Ågren, “Effects of dipole alignment and channel interference on two-photon absorption cross sections of two-dimensional charge-transfer systems,” J. Chem. Phys. 117, 11,102–11,106 (2002).
[CrossRef]

Dees, H. C.

E. A. Wachter, W. P. Partridge, W. G. Fisher, H. C. Dees, M. G. Petersen, “Simultaneous two-photon excitation of photodynamic therapy agents,” in Commercial Applications of Ultrafast Lasers, M. K. Reed, ed., Proc. SPIE3269, 68–75 (1998).
[CrossRef]

Denk, W.

W. Denk, J. H. Strickler, W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

Ehrlich, J. E.

Fisher, W. G.

E. A. Wachter, W. P. Partridge, W. G. Fisher, H. C. Dees, M. G. Petersen, “Simultaneous two-photon excitation of photodynamic therapy agents,” in Commercial Applications of Ultrafast Lasers, M. K. Reed, ed., Proc. SPIE3269, 68–75 (1998).
[CrossRef]

Gvishi, R.

G. S. He, R. Gvishi, P. N. Prasad, B. Reinhardt, “Two-photon absorption based optical limiting and stabilization in organic molecule-doped solid materials,” Opt. Commun. 117, 133–136 (1995).
[CrossRef]

Hagan, D. J.

K. D. Belfield, A. R. Morales, B.-S. Kang, J. M. Hales, D. J. Hagan, E. W. Van Stryland, V. M. Chapela, J. Percino, “Synthesis, characterization and optical properties of new two-photon absorbing fluorene derivatives,” Chem. Mater. 16, 4634–4641 (2004).
[CrossRef]

R. S. Lepkowicz, O. V. Przhonska, J. M. Hales, D. J. Hagan, E. W. Van Stryland, M. V. Bondar, Y. L. Slominsky, A. D. Kachkovski, “Excited-state absorption dynamics in polymethine dyes detected by polarization-resolved pump–probe measurements,” Chem. Phys. 286, 277–291 (2003).
[CrossRef]

O. V. Przhonska, D. J. Hagan, E. Novikov, R. Lepkowicz, E. W. Van Stryland, M. V. Bondar, Y. L. Slominsky, A. D. Kachkovski, “Picosecond absorption anisotropy of polymethine and squarylium dyes in liquid and polymeric media,” Chem. Phys. 273, 235–248 (2001).
[CrossRef]

K. D. Belfield, K. J. Schafer, S. Yao, J. M. Hales, D. J. Hagan, E. W. Van Stryland, “Reactive two-photon fluorescent probes for biological imaging,” in Nonlinear-Optical Transmission and Multiphoton Processes in Organics, A. T. Yates, K. D. Belfield, F. Kajzar, C. M. Lawson, eds., Proc. SPIE5211, 91–95 (2004).
[CrossRef]

Hagler, T. W.

T. W. Hagler, “Nonparallel transition dipole moments and the polarization dependence of electroabsorption in nonoriented conjugated polymer films,” Chem. Phys. Lett. 218, 195–199 (1994).
[CrossRef]

Hales, J. M.

K. D. Belfield, A. R. Morales, B.-S. Kang, J. M. Hales, D. J. Hagan, E. W. Van Stryland, V. M. Chapela, J. Percino, “Synthesis, characterization and optical properties of new two-photon absorbing fluorene derivatives,” Chem. Mater. 16, 4634–4641 (2004).
[CrossRef]

R. S. Lepkowicz, O. V. Przhonska, J. M. Hales, D. J. Hagan, E. W. Van Stryland, M. V. Bondar, Y. L. Slominsky, A. D. Kachkovski, “Excited-state absorption dynamics in polymethine dyes detected by polarization-resolved pump–probe measurements,” Chem. Phys. 286, 277–291 (2003).
[CrossRef]

K. D. Belfield, K. J. Schafer, S. Yao, J. M. Hales, D. J. Hagan, E. W. Van Stryland, “Reactive two-photon fluorescent probes for biological imaging,” in Nonlinear-Optical Transmission and Multiphoton Processes in Organics, A. T. Yates, K. D. Belfield, F. Kajzar, C. M. Lawson, eds., Proc. SPIE5211, 91–95 (2004).
[CrossRef]

He, G. S.

G. S. He, T.-C. Lin, P. N. Prasad, R. Kannan, R. A. Vaia, L.-S. Tan, “Study of two-photon absorption spectral property of novel nonlinear optical chromophore using femtosecond continuum,” J. Phys. Chem. B 106, 11,081–11,084 (2002).
[CrossRef]

G. S. He, R. Gvishi, P. N. Prasad, B. Reinhardt, “Two-photon absorption based optical limiting and stabilization in organic molecule-doped solid materials,” Opt. Commun. 117, 133–136 (1995).
[CrossRef]

Hu, Z.-H.

Irimia, A.

Y. Morel, A. Irimia, P. Najechalski, Y. Kervella, O. Stephan, P. L. Baldeck, C. Andraud, “Two-photon absorption and optical power limiting of bifluorene molecule,” J. Chem. Phys. 114, 5391–5396 (2001).
[CrossRef]

Iwase, Y.

K. Kamada, K. Ohta, Y. Iwase, K. Kondo, “Two-photon absorption properties of symmetric substituted diacetylene: drastic enhancement of the cross section near the one-photon absorption peak,” Chem. Phys. Lett. 372, 386–393 (2003).
[CrossRef]

Kachkovski, A. D.

R. S. Lepkowicz, O. V. Przhonska, J. M. Hales, D. J. Hagan, E. W. Van Stryland, M. V. Bondar, Y. L. Slominsky, A. D. Kachkovski, “Excited-state absorption dynamics in polymethine dyes detected by polarization-resolved pump–probe measurements,” Chem. Phys. 286, 277–291 (2003).
[CrossRef]

O. V. Przhonska, D. J. Hagan, E. Novikov, R. Lepkowicz, E. W. Van Stryland, M. V. Bondar, Y. L. Slominsky, A. D. Kachkovski, “Picosecond absorption anisotropy of polymethine and squarylium dyes in liquid and polymeric media,” Chem. Phys. 273, 235–248 (2001).
[CrossRef]

Kamada, K.

K. Kamada, K. Ohta, Y. Iwase, K. Kondo, “Two-photon absorption properties of symmetric substituted diacetylene: drastic enhancement of the cross section near the one-photon absorption peak,” Chem. Phys. Lett. 372, 386–393 (2003).
[CrossRef]

Kang, B.-S.

K. D. Belfield, A. R. Morales, B.-S. Kang, J. M. Hales, D. J. Hagan, E. W. Van Stryland, V. M. Chapela, J. Percino, “Synthesis, characterization and optical properties of new two-photon absorbing fluorene derivatives,” Chem. Mater. 16, 4634–4641 (2004).
[CrossRef]

Kannan, R.

G. S. He, T.-C. Lin, P. N. Prasad, R. Kannan, R. A. Vaia, L.-S. Tan, “Study of two-photon absorption spectral property of novel nonlinear optical chromophore using femtosecond continuum,” J. Phys. Chem. B 106, 11,081–11,084 (2002).
[CrossRef]

Kervella, Y.

Y. Morel, A. Irimia, P. Najechalski, Y. Kervella, O. Stephan, P. L. Baldeck, C. Andraud, “Two-photon absorption and optical power limiting of bifluorene molecule,” J. Chem. Phys. 114, 5391–5396 (2001).
[CrossRef]

Kogej, T.

T. Kogej, D. Beljonne, F. Meyers, J. W. Perry, S. R. Marder, J. L. Bredas, “Mechanisms for enhancement of two-photon absorption in donor–acceptor conjugated chromophores,” Chem. Phys. Lett. 298, 1–6 (1998).
[CrossRef]

Kondo, K.

K. Kamada, K. Ohta, Y. Iwase, K. Kondo, “Two-photon absorption properties of symmetric substituted diacetylene: drastic enhancement of the cross section near the one-photon absorption peak,” Chem. Phys. Lett. 372, 386–393 (2003).
[CrossRef]

Koningstein, J. A.

P. Myslinski, J. A. Koningstein, Y. Shen, “Theory for laser induced dichroism and its effect on absorption, fluorescence, and Raman spectra,” J. Chem. Phys. 96, 8691–8698 (1992).
[CrossRef]

Lakowicz, J. R.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Kluwer Academic/Plenum, New York, 1999).
[CrossRef]

Lee, I.-Y. S.

Lepkowicz, R.

O. V. Przhonska, D. J. Hagan, E. Novikov, R. Lepkowicz, E. W. Van Stryland, M. V. Bondar, Y. L. Slominsky, A. D. Kachkovski, “Picosecond absorption anisotropy of polymethine and squarylium dyes in liquid and polymeric media,” Chem. Phys. 273, 235–248 (2001).
[CrossRef]

Lepkowicz, R. S.

R. S. Lepkowicz, O. V. Przhonska, J. M. Hales, D. J. Hagan, E. W. Van Stryland, M. V. Bondar, Y. L. Slominsky, A. D. Kachkovski, “Excited-state absorption dynamics in polymethine dyes detected by polarization-resolved pump–probe measurements,” Chem. Phys. 286, 277–291 (2003).
[CrossRef]

Lessing, H. E.

H. E. Lessing, A. Von Jena, “Orientation of S1 → Sn transition of oxadine dyes from continous picosecond photometry,” Chem. Phys. Lett. 59, 249–254 (1978).
[CrossRef]

Lin, T.-C.

G. S. He, T.-C. Lin, P. N. Prasad, R. Kannan, R. A. Vaia, L.-S. Tan, “Study of two-photon absorption spectral property of novel nonlinear optical chromophore using femtosecond continuum,” J. Phys. Chem. B 106, 11,081–11,084 (2002).
[CrossRef]

Liu, J.

K. D. Belfield, K. J. Schafer, Y. Liu, J. Liu, X. Ren, E. W. Van Stryland, “Multiphoton-absorbing organic materials for microfabrication, emerging optical applications and nondestructive three-dimensional imaging,” J. Phys. Org. Chem. 13, 837–849 (2000).
[CrossRef]

Liu, Y.

K. D. Belfield, K. J. Schafer, Y. Liu, J. Liu, X. Ren, E. W. Van Stryland, “Multiphoton-absorbing organic materials for microfabrication, emerging optical applications and nondestructive three-dimensional imaging,” J. Phys. Org. Chem. 13, 837–849 (2000).
[CrossRef]

Luo, Y.

P. Cronstrand, Y. Luo, H. Ågren, “Effects of dipole alignment and channel interference on two-photon absorption cross sections of two-dimensional charge-transfer systems,” J. Chem. Phys. 117, 11,102–11,106 (2002).
[CrossRef]

P. Cronstrand, Y. Luo, H. Ågren, “Generalized few-state models for two-photon absorption of conjugated molecules,” Chem. Phys. Lett. 353, 262–269 (2002).
[CrossRef]

Marder, S. R.

T. Kogej, D. Beljonne, F. Meyers, J. W. Perry, S. R. Marder, J. L. Bredas, “Mechanisms for enhancement of two-photon absorption in donor–acceptor conjugated chromophores,” Chem. Phys. Lett. 298, 1–6 (1998).
[CrossRef]

J. E. Ehrlich, X. L. Wu, I.-Y. S. Lee, Z.-H. Hu, H. Röckel, S. R. Marder, J. W. Perry, “Two-photon absorption and broadband optical limiting with bis-donor stilbenes,” Opt. Lett. 22, 1843–1845 (1997).
[CrossRef]

F. Meyers, S. R. Marder, B. M. Pierce, J. L. Bredas, “Electric field modulated nonlinear optical properties of donor–acceptor polyenes: sum-over-states investigation of the relationship between molecular polarizabilities (α, β, and γ) and bond length alternation,” J. Am. Chem. Soc. 116, 10,703–10,714 (1994).
[CrossRef]

Meyers, F.

T. Kogej, D. Beljonne, F. Meyers, J. W. Perry, S. R. Marder, J. L. Bredas, “Mechanisms for enhancement of two-photon absorption in donor–acceptor conjugated chromophores,” Chem. Phys. Lett. 298, 1–6 (1998).
[CrossRef]

F. Meyers, S. R. Marder, B. M. Pierce, J. L. Bredas, “Electric field modulated nonlinear optical properties of donor–acceptor polyenes: sum-over-states investigation of the relationship between molecular polarizabilities (α, β, and γ) and bond length alternation,” J. Am. Chem. Soc. 116, 10,703–10,714 (1994).
[CrossRef]

Morales, A. R.

K. D. Belfield, A. R. Morales, B.-S. Kang, J. M. Hales, D. J. Hagan, E. W. Van Stryland, V. M. Chapela, J. Percino, “Synthesis, characterization and optical properties of new two-photon absorbing fluorene derivatives,” Chem. Mater. 16, 4634–4641 (2004).
[CrossRef]

Morel, Y.

Y. Morel, A. Irimia, P. Najechalski, Y. Kervella, O. Stephan, P. L. Baldeck, C. Andraud, “Two-photon absorption and optical power limiting of bifluorene molecule,” J. Chem. Phys. 114, 5391–5396 (2001).
[CrossRef]

Mourad, W.

K. D. Belfield, M. V. Bondar, O. V. Przhonska, K. J. Schafer, W. Mourad, “Spectral properties of several fluorene derivatives with potential as two-photon fluorescent dyes,” J. Lumin. 97, 141–146 (2002).
[CrossRef]

Myslinski, P.

P. Myslinski, J. A. Koningstein, Y. Shen, “Theory for laser induced dichroism and its effect on absorption, fluorescence, and Raman spectra,” J. Chem. Phys. 96, 8691–8698 (1992).
[CrossRef]

Najechalski, P.

Y. Morel, A. Irimia, P. Najechalski, Y. Kervella, O. Stephan, P. L. Baldeck, C. Andraud, “Two-photon absorption and optical power limiting of bifluorene molecule,” J. Chem. Phys. 114, 5391–5396 (2001).
[CrossRef]

Novikov, E.

O. V. Przhonska, D. J. Hagan, E. Novikov, R. Lepkowicz, E. W. Van Stryland, M. V. Bondar, Y. L. Slominsky, A. D. Kachkovski, “Picosecond absorption anisotropy of polymethine and squarylium dyes in liquid and polymeric media,” Chem. Phys. 273, 235–248 (2001).
[CrossRef]

Ohta, K.

K. Kamada, K. Ohta, Y. Iwase, K. Kondo, “Two-photon absorption properties of symmetric substituted diacetylene: drastic enhancement of the cross section near the one-photon absorption peak,” Chem. Phys. Lett. 372, 386–393 (2003).
[CrossRef]

Parthenopoulos, D. A.

D. A. Parthenopoulos, P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 245, 843–845 (1989).
[CrossRef] [PubMed]

Partridge, W. P.

E. A. Wachter, W. P. Partridge, W. G. Fisher, H. C. Dees, M. G. Petersen, “Simultaneous two-photon excitation of photodynamic therapy agents,” in Commercial Applications of Ultrafast Lasers, M. K. Reed, ed., Proc. SPIE3269, 68–75 (1998).
[CrossRef]

Penzkofer, A.

A. Penzkofer, J. Wiedmann, “Orientation of transition dipole moments of Rhodamine 6G determined by excited state absorption,” Opt. Commun. 35, 81–86 (1980).
[CrossRef]

Percino, J.

K. D. Belfield, A. R. Morales, B.-S. Kang, J. M. Hales, D. J. Hagan, E. W. Van Stryland, V. M. Chapela, J. Percino, “Synthesis, characterization and optical properties of new two-photon absorbing fluorene derivatives,” Chem. Mater. 16, 4634–4641 (2004).
[CrossRef]

Perry, J. W.

T. Kogej, D. Beljonne, F. Meyers, J. W. Perry, S. R. Marder, J. L. Bredas, “Mechanisms for enhancement of two-photon absorption in donor–acceptor conjugated chromophores,” Chem. Phys. Lett. 298, 1–6 (1998).
[CrossRef]

J. E. Ehrlich, X. L. Wu, I.-Y. S. Lee, Z.-H. Hu, H. Röckel, S. R. Marder, J. W. Perry, “Two-photon absorption and broadband optical limiting with bis-donor stilbenes,” Opt. Lett. 22, 1843–1845 (1997).
[CrossRef]

Petersen, M. G.

E. A. Wachter, W. P. Partridge, W. G. Fisher, H. C. Dees, M. G. Petersen, “Simultaneous two-photon excitation of photodynamic therapy agents,” in Commercial Applications of Ultrafast Lasers, M. K. Reed, ed., Proc. SPIE3269, 68–75 (1998).
[CrossRef]

Pierce, B. M.

F. Meyers, S. R. Marder, B. M. Pierce, J. L. Bredas, “Electric field modulated nonlinear optical properties of donor–acceptor polyenes: sum-over-states investigation of the relationship between molecular polarizabilities (α, β, and γ) and bond length alternation,” J. Am. Chem. Soc. 116, 10,703–10,714 (1994).
[CrossRef]

Prasad, P. N.

G. S. He, T.-C. Lin, P. N. Prasad, R. Kannan, R. A. Vaia, L.-S. Tan, “Study of two-photon absorption spectral property of novel nonlinear optical chromophore using femtosecond continuum,” J. Phys. Chem. B 106, 11,081–11,084 (2002).
[CrossRef]

G. S. He, R. Gvishi, P. N. Prasad, B. Reinhardt, “Two-photon absorption based optical limiting and stabilization in organic molecule-doped solid materials,” Opt. Commun. 117, 133–136 (1995).
[CrossRef]

Przhonska, O. V.

R. S. Lepkowicz, O. V. Przhonska, J. M. Hales, D. J. Hagan, E. W. Van Stryland, M. V. Bondar, Y. L. Slominsky, A. D. Kachkovski, “Excited-state absorption dynamics in polymethine dyes detected by polarization-resolved pump–probe measurements,” Chem. Phys. 286, 277–291 (2003).
[CrossRef]

K. D. Belfield, M. V. Bondar, O. V. Przhonska, K. J. Schafer, W. Mourad, “Spectral properties of several fluorene derivatives with potential as two-photon fluorescent dyes,” J. Lumin. 97, 141–146 (2002).
[CrossRef]

O. V. Przhonska, D. J. Hagan, E. Novikov, R. Lepkowicz, E. W. Van Stryland, M. V. Bondar, Y. L. Slominsky, A. D. Kachkovski, “Picosecond absorption anisotropy of polymethine and squarylium dyes in liquid and polymeric media,” Chem. Phys. 273, 235–248 (2001).
[CrossRef]

Reinhardt, B.

G. S. He, R. Gvishi, P. N. Prasad, B. Reinhardt, “Two-photon absorption based optical limiting and stabilization in organic molecule-doped solid materials,” Opt. Commun. 117, 133–136 (1995).
[CrossRef]

Ren, X.

K. D. Belfield, K. J. Schafer, Y. Liu, J. Liu, X. Ren, E. W. Van Stryland, “Multiphoton-absorbing organic materials for microfabrication, emerging optical applications and nondestructive three-dimensional imaging,” J. Phys. Org. Chem. 13, 837–849 (2000).
[CrossRef]

Rentzepis, P. M.

D. A. Parthenopoulos, P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 245, 843–845 (1989).
[CrossRef] [PubMed]

Röckel, H.

Schafer, K. J.

K. D. Belfield, M. V. Bondar, O. V. Przhonska, K. J. Schafer, W. Mourad, “Spectral properties of several fluorene derivatives with potential as two-photon fluorescent dyes,” J. Lumin. 97, 141–146 (2002).
[CrossRef]

K. D. Belfield, K. J. Schafer, Y. Liu, J. Liu, X. Ren, E. W. Van Stryland, “Multiphoton-absorbing organic materials for microfabrication, emerging optical applications and nondestructive three-dimensional imaging,” J. Phys. Org. Chem. 13, 837–849 (2000).
[CrossRef]

K. D. Belfield, K. J. Schafer, S. Yao, J. M. Hales, D. J. Hagan, E. W. Van Stryland, “Reactive two-photon fluorescent probes for biological imaging,” in Nonlinear-Optical Transmission and Multiphoton Processes in Organics, A. T. Yates, K. D. Belfield, F. Kajzar, C. M. Lawson, eds., Proc. SPIE5211, 91–95 (2004).
[CrossRef]

Shen, Y.

P. Myslinski, J. A. Koningstein, Y. Shen, “Theory for laser induced dichroism and its effect on absorption, fluorescence, and Raman spectra,” J. Chem. Phys. 96, 8691–8698 (1992).
[CrossRef]

Slominsky, Y. L.

R. S. Lepkowicz, O. V. Przhonska, J. M. Hales, D. J. Hagan, E. W. Van Stryland, M. V. Bondar, Y. L. Slominsky, A. D. Kachkovski, “Excited-state absorption dynamics in polymethine dyes detected by polarization-resolved pump–probe measurements,” Chem. Phys. 286, 277–291 (2003).
[CrossRef]

O. V. Przhonska, D. J. Hagan, E. Novikov, R. Lepkowicz, E. W. Van Stryland, M. V. Bondar, Y. L. Slominsky, A. D. Kachkovski, “Picosecond absorption anisotropy of polymethine and squarylium dyes in liquid and polymeric media,” Chem. Phys. 273, 235–248 (2001).
[CrossRef]

Stephan, O.

Y. Morel, A. Irimia, P. Najechalski, Y. Kervella, O. Stephan, P. L. Baldeck, C. Andraud, “Two-photon absorption and optical power limiting of bifluorene molecule,” J. Chem. Phys. 114, 5391–5396 (2001).
[CrossRef]

Strickler, J. H.

Tan, L.-S.

G. S. He, T.-C. Lin, P. N. Prasad, R. Kannan, R. A. Vaia, L.-S. Tan, “Study of two-photon absorption spectral property of novel nonlinear optical chromophore using femtosecond continuum,” J. Phys. Chem. B 106, 11,081–11,084 (2002).
[CrossRef]

Vaia, R. A.

G. S. He, T.-C. Lin, P. N. Prasad, R. Kannan, R. A. Vaia, L.-S. Tan, “Study of two-photon absorption spectral property of novel nonlinear optical chromophore using femtosecond continuum,” J. Phys. Chem. B 106, 11,081–11,084 (2002).
[CrossRef]

Van Stryland, E. W.

K. D. Belfield, A. R. Morales, B.-S. Kang, J. M. Hales, D. J. Hagan, E. W. Van Stryland, V. M. Chapela, J. Percino, “Synthesis, characterization and optical properties of new two-photon absorbing fluorene derivatives,” Chem. Mater. 16, 4634–4641 (2004).
[CrossRef]

R. S. Lepkowicz, O. V. Przhonska, J. M. Hales, D. J. Hagan, E. W. Van Stryland, M. V. Bondar, Y. L. Slominsky, A. D. Kachkovski, “Excited-state absorption dynamics in polymethine dyes detected by polarization-resolved pump–probe measurements,” Chem. Phys. 286, 277–291 (2003).
[CrossRef]

O. V. Przhonska, D. J. Hagan, E. Novikov, R. Lepkowicz, E. W. Van Stryland, M. V. Bondar, Y. L. Slominsky, A. D. Kachkovski, “Picosecond absorption anisotropy of polymethine and squarylium dyes in liquid and polymeric media,” Chem. Phys. 273, 235–248 (2001).
[CrossRef]

K. D. Belfield, K. J. Schafer, Y. Liu, J. Liu, X. Ren, E. W. Van Stryland, “Multiphoton-absorbing organic materials for microfabrication, emerging optical applications and nondestructive three-dimensional imaging,” J. Phys. Org. Chem. 13, 837–849 (2000).
[CrossRef]

K. D. Belfield, K. J. Schafer, S. Yao, J. M. Hales, D. J. Hagan, E. W. Van Stryland, “Reactive two-photon fluorescent probes for biological imaging,” in Nonlinear-Optical Transmission and Multiphoton Processes in Organics, A. T. Yates, K. D. Belfield, F. Kajzar, C. M. Lawson, eds., Proc. SPIE5211, 91–95 (2004).
[CrossRef]

Von Jena, A.

H. E. Lessing, A. Von Jena, “Orientation of S1 → Sn transition of oxadine dyes from continous picosecond photometry,” Chem. Phys. Lett. 59, 249–254 (1978).
[CrossRef]

Wachter, E. A.

E. A. Wachter, W. P. Partridge, W. G. Fisher, H. C. Dees, M. G. Petersen, “Simultaneous two-photon excitation of photodynamic therapy agents,” in Commercial Applications of Ultrafast Lasers, M. K. Reed, ed., Proc. SPIE3269, 68–75 (1998).
[CrossRef]

Webb, W. W.

Wiedmann, J.

A. Penzkofer, J. Wiedmann, “Orientation of transition dipole moments of Rhodamine 6G determined by excited state absorption,” Opt. Commun. 35, 81–86 (1980).
[CrossRef]

Wu, X. L.

Yao, S.

S. Yao, K. D. Belfield, “Synthesis of two-photon absorbing unsymmetrical branched chromophores through direct tris-(bromomethylation) of fluorene,” J. Org. Chem. (to be published).

K. D. Belfield, K. J. Schafer, S. Yao, J. M. Hales, D. J. Hagan, E. W. Van Stryland, “Reactive two-photon fluorescent probes for biological imaging,” in Nonlinear-Optical Transmission and Multiphoton Processes in Organics, A. T. Yates, K. D. Belfield, F. Kajzar, C. M. Lawson, eds., Proc. SPIE5211, 91–95 (2004).
[CrossRef]

Chem. Mater. (1)

K. D. Belfield, A. R. Morales, B.-S. Kang, J. M. Hales, D. J. Hagan, E. W. Van Stryland, V. M. Chapela, J. Percino, “Synthesis, characterization and optical properties of new two-photon absorbing fluorene derivatives,” Chem. Mater. 16, 4634–4641 (2004).
[CrossRef]

Chem. Phys. (2)

O. V. Przhonska, D. J. Hagan, E. Novikov, R. Lepkowicz, E. W. Van Stryland, M. V. Bondar, Y. L. Slominsky, A. D. Kachkovski, “Picosecond absorption anisotropy of polymethine and squarylium dyes in liquid and polymeric media,” Chem. Phys. 273, 235–248 (2001).
[CrossRef]

R. S. Lepkowicz, O. V. Przhonska, J. M. Hales, D. J. Hagan, E. W. Van Stryland, M. V. Bondar, Y. L. Slominsky, A. D. Kachkovski, “Excited-state absorption dynamics in polymethine dyes detected by polarization-resolved pump–probe measurements,” Chem. Phys. 286, 277–291 (2003).
[CrossRef]

Chem. Phys. Lett. (5)

T. W. Hagler, “Nonparallel transition dipole moments and the polarization dependence of electroabsorption in nonoriented conjugated polymer films,” Chem. Phys. Lett. 218, 195–199 (1994).
[CrossRef]

P. Cronstrand, Y. Luo, H. Ågren, “Generalized few-state models for two-photon absorption of conjugated molecules,” Chem. Phys. Lett. 353, 262–269 (2002).
[CrossRef]

H. E. Lessing, A. Von Jena, “Orientation of S1 → Sn transition of oxadine dyes from continous picosecond photometry,” Chem. Phys. Lett. 59, 249–254 (1978).
[CrossRef]

T. Kogej, D. Beljonne, F. Meyers, J. W. Perry, S. R. Marder, J. L. Bredas, “Mechanisms for enhancement of two-photon absorption in donor–acceptor conjugated chromophores,” Chem. Phys. Lett. 298, 1–6 (1998).
[CrossRef]

K. Kamada, K. Ohta, Y. Iwase, K. Kondo, “Two-photon absorption properties of symmetric substituted diacetylene: drastic enhancement of the cross section near the one-photon absorption peak,” Chem. Phys. Lett. 372, 386–393 (2003).
[CrossRef]

J. Am. Chem. Soc. (1)

F. Meyers, S. R. Marder, B. M. Pierce, J. L. Bredas, “Electric field modulated nonlinear optical properties of donor–acceptor polyenes: sum-over-states investigation of the relationship between molecular polarizabilities (α, β, and γ) and bond length alternation,” J. Am. Chem. Soc. 116, 10,703–10,714 (1994).
[CrossRef]

J. Chem. Phys. (3)

P. Cronstrand, Y. Luo, H. Ågren, “Effects of dipole alignment and channel interference on two-photon absorption cross sections of two-dimensional charge-transfer systems,” J. Chem. Phys. 117, 11,102–11,106 (2002).
[CrossRef]

P. Myslinski, J. A. Koningstein, Y. Shen, “Theory for laser induced dichroism and its effect on absorption, fluorescence, and Raman spectra,” J. Chem. Phys. 96, 8691–8698 (1992).
[CrossRef]

Y. Morel, A. Irimia, P. Najechalski, Y. Kervella, O. Stephan, P. L. Baldeck, C. Andraud, “Two-photon absorption and optical power limiting of bifluorene molecule,” J. Chem. Phys. 114, 5391–5396 (2001).
[CrossRef]

J. Lumin. (1)

K. D. Belfield, M. V. Bondar, O. V. Przhonska, K. J. Schafer, W. Mourad, “Spectral properties of several fluorene derivatives with potential as two-photon fluorescent dyes,” J. Lumin. 97, 141–146 (2002).
[CrossRef]

J. Phys. Chem. B (1)

G. S. He, T.-C. Lin, P. N. Prasad, R. Kannan, R. A. Vaia, L.-S. Tan, “Study of two-photon absorption spectral property of novel nonlinear optical chromophore using femtosecond continuum,” J. Phys. Chem. B 106, 11,081–11,084 (2002).
[CrossRef]

J. Phys. Org. Chem. (1)

K. D. Belfield, K. J. Schafer, Y. Liu, J. Liu, X. Ren, E. W. Van Stryland, “Multiphoton-absorbing organic materials for microfabrication, emerging optical applications and nondestructive three-dimensional imaging,” J. Phys. Org. Chem. 13, 837–849 (2000).
[CrossRef]

Opt. Commun. (2)

A. Penzkofer, J. Wiedmann, “Orientation of transition dipole moments of Rhodamine 6G determined by excited state absorption,” Opt. Commun. 35, 81–86 (1980).
[CrossRef]

G. S. He, R. Gvishi, P. N. Prasad, B. Reinhardt, “Two-photon absorption based optical limiting and stabilization in organic molecule-doped solid materials,” Opt. Commun. 117, 133–136 (1995).
[CrossRef]

Opt. Lett. (2)

Science (2)

D. A. Parthenopoulos, P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 245, 843–845 (1989).
[CrossRef] [PubMed]

W. Denk, J. H. Strickler, W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

Other (4)

E. A. Wachter, W. P. Partridge, W. G. Fisher, H. C. Dees, M. G. Petersen, “Simultaneous two-photon excitation of photodynamic therapy agents,” in Commercial Applications of Ultrafast Lasers, M. K. Reed, ed., Proc. SPIE3269, 68–75 (1998).
[CrossRef]

S. Yao, K. D. Belfield, “Synthesis of two-photon absorbing unsymmetrical branched chromophores through direct tris-(bromomethylation) of fluorene,” J. Org. Chem. (to be published).

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Kluwer Academic/Plenum, New York, 1999).
[CrossRef]

K. D. Belfield, K. J. Schafer, S. Yao, J. M. Hales, D. J. Hagan, E. W. Van Stryland, “Reactive two-photon fluorescent probes for biological imaging,” in Nonlinear-Optical Transmission and Multiphoton Processes in Organics, A. T. Yates, K. D. Belfield, F. Kajzar, C. M. Lawson, eds., Proc. SPIE5211, 91–95 (2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Structures of the fluorene derivatives investigated in this paper: N-(7-benzothiazol-2-yl-9,9-bis-decyl-9H-fluoren-2-yl)-acetamide(1); 9,9-didecyl-2,7-bis-(N,N-benzothiazoyl)fluorene(2); 4,4′-{[9,9-bis(ethyl)-9H-fluorene-2,7-diyl]di-2,1-ethenediyl}bis(N,N-diphenyl)benzeneamine (3);and4,4′,4″-{[9,9-bis(ethyl)-9H-fluorene-2,4,7-triyl]tri-2,1-ethenediyl} tris(N,N-diphenyl)benzeneamine (4).

Fig. 2
Fig. 2

Schematic of the experimental setup: 1’s, beam splitters; 2’s, silver mirrors; 3, time delay line; 4’s, lenses; 5’s, filters; D0–D2, photodetectors; P’s, polarizers; λ/2, half-wave plate.

Fig. 3
Fig. 3

1, Absorption; 2, excitation anisotropy; and 3, calculated electronic spectra of compounds (a) 1, (b) 2, (c) 3, and (d) 4 in pTHF. The values of vertical lines 3 correspond to the relative oscillator strengths of electronic transitions.

Fig. 4
Fig. 4

Calculated molecular orbitals of compound 4: (a) 1, HOMO and 2, LUMO; (b) 1, HOMO −1 and 2, LUMO + 1; and compound 3: (c) 1, HOMO − 3 and 2, LUMO + 3.

Fig. 5
Fig. 5

Excited-state absorption (1, ΔD; 2, ΔD) and 3, anisotropy spectra of fluorenes (a) 1, (b) 2, (c) 3, and (d) 4 in pTHF.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

r = ( k k ) / ( k + 2 k ) ,
k ( θ ) = k 0 [ cos 2 θ ( 3 cos 2 β 1 ) cos 2 β + 2 ] ,
r = ( 3 cos 2 β 1 ) / 5 .

Metrics