Abstract

The electronic structure of fluorene derivatives N-(7-benzothiazol-2-yl-9,9-bis-decyl-9H-fluoren-2-yl)-acetamide (1); 9,9-didecyl-2,7-bis-(N,N-benzothiazoyl)fluorene (2); 4,4′-{[9,9-bis(ethyl)-9H-fluorene-2,7-diyl]di-2,1-ethenediyl}bis(N,N-diphenyl)benzeneamine (3); and 4,4′,4″{[9,9-bis(ethyl)-9H-fluorene-2,4,7-triyl]tri-2,1-ethenediyl}tris(N,N-diphenyl)benzeneamine (4) were investigated by a steady-state spectral technique, quantum-chemical calculations, and a picosecond pump–probe method. These derivatives are of interest for their relatively high two-photon absorption. The steady-state excitation anisotropy spectra reveal the nature of the ground-state absorption bands. Semiempirical quantum-chemical calculations of the fluorene derivatives (AM1, ZINDO/S) show good agreement with experimental data. The spectral positions and alignment of various electronic transitions of derivatives 1–4 were estimated from their excited-state absorption and anisotropy spectra.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. E. Ehrlich, X. L. Wu, I.-Y. S. Lee, Z.-H. Hu, H. Röckel, S. R. Marder, J. W. Perry, “Two-photon absorption and broadband optical limiting with bis-donor stilbenes,” Opt. Lett. 22, 1843–1845 (1997).
    [CrossRef]
  2. G. S. He, R. Gvishi, P. N. Prasad, B. Reinhardt, “Two-photon absorption based optical limiting and stabilization in organic molecule-doped solid materials,” Opt. Commun. 117, 133–136 (1995).
    [CrossRef]
  3. Y. Morel, A. Irimia, P. Najechalski, Y. Kervella, O. Stephan, P. L. Baldeck, C. Andraud, “Two-photon absorption and optical power limiting of bifluorene molecule,” J. Chem. Phys. 114, 5391–5396 (2001).
    [CrossRef]
  4. D. A. Parthenopoulos, P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 245, 843–845 (1989).
    [CrossRef] [PubMed]
  5. J. H. Strickler, W. W. Webb, “Three-dimensional optical data storage in refractive media by two-photon point excitation,” Opt. Lett. 16, 1780–1782 (1991).
    [CrossRef] [PubMed]
  6. K. D. Belfield, K. J. Schafer, Y. Liu, J. Liu, X. Ren, E. W. Van Stryland, “Multiphoton-absorbing organic materials for microfabrication, emerging optical applications and nondestructive three-dimensional imaging,” J. Phys. Org. Chem. 13, 837–849 (2000).
    [CrossRef]
  7. W. Denk, J. H. Strickler, W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
    [CrossRef] [PubMed]
  8. E. A. Wachter, W. P. Partridge, W. G. Fisher, H. C. Dees, M. G. Petersen, “Simultaneous two-photon excitation of photodynamic therapy agents,” in Commercial Applications of Ultrafast Lasers, M. K. Reed, ed., Proc. SPIE3269, 68–75 (1998).
    [CrossRef]
  9. K. D. Belfield, M. V. Bondar, O. V. Przhonska, K. J. Schafer, W. Mourad, “Spectral properties of several fluorene derivatives with potential as two-photon fluorescent dyes,” J. Lumin. 97, 141–146 (2002).
    [CrossRef]
  10. F. Meyers, S. R. Marder, B. M. Pierce, J. L. Bredas, “Electric field modulated nonlinear optical properties of donor–acceptor polyenes: sum-over-states investigation of the relationship between molecular polarizabilities (α, β, and γ) and bond length alternation,” J. Am. Chem. Soc. 116, 10,703–10,714 (1994).
    [CrossRef]
  11. T. Kogej, D. Beljonne, F. Meyers, J. W. Perry, S. R. Marder, J. L. Bredas, “Mechanisms for enhancement of two-photon absorption in donor–acceptor conjugated chromophores,” Chem. Phys. Lett. 298, 1–6 (1998).
    [CrossRef]
  12. G. S. He, T.-C. Lin, P. N. Prasad, R. Kannan, R. A. Vaia, L.-S. Tan, “Study of two-photon absorption spectral property of novel nonlinear optical chromophore using femtosecond continuum,” J. Phys. Chem. B 106, 11,081–11,084 (2002).
    [CrossRef]
  13. K. Kamada, K. Ohta, Y. Iwase, K. Kondo, “Two-photon absorption properties of symmetric substituted diacetylene: drastic enhancement of the cross section near the one-photon absorption peak,” Chem. Phys. Lett. 372, 386–393 (2003).
    [CrossRef]
  14. P. Cronstrand, Y. Luo, H. Ågren, “Effects of dipole alignment and channel interference on two-photon absorption cross sections of two-dimensional charge-transfer systems,” J. Chem. Phys. 117, 11,102–11,106 (2002).
    [CrossRef]
  15. P. Cronstrand, Y. Luo, H. Ågren, “Generalized few-state models for two-photon absorption of conjugated molecules,” Chem. Phys. Lett. 353, 262–269 (2002).
    [CrossRef]
  16. H. E. Lessing, A. Von Jena, “Orientation of S1 → Sn transition of oxadine dyes from continous picosecond photometry,” Chem. Phys. Lett. 59, 249–254 (1978).
    [CrossRef]
  17. A. Penzkofer, J. Wiedmann, “Orientation of transition dipole moments of Rhodamine 6G determined by excited state absorption,” Opt. Commun. 35, 81–86 (1980).
    [CrossRef]
  18. O. V. Przhonska, D. J. Hagan, E. Novikov, R. Lepkowicz, E. W. Van Stryland, M. V. Bondar, Y. L. Slominsky, A. D. Kachkovski, “Picosecond absorption anisotropy of polymethine and squarylium dyes in liquid and polymeric media,” Chem. Phys. 273, 235–248 (2001).
    [CrossRef]
  19. R. S. Lepkowicz, O. V. Przhonska, J. M. Hales, D. J. Hagan, E. W. Van Stryland, M. V. Bondar, Y. L. Slominsky, A. D. Kachkovski, “Excited-state absorption dynamics in polymethine dyes detected by polarization-resolved pump–probe measurements,” Chem. Phys. 286, 277–291 (2003).
    [CrossRef]
  20. T. W. Hagler, “Nonparallel transition dipole moments and the polarization dependence of electroabsorption in nonoriented conjugated polymer films,” Chem. Phys. Lett. 218, 195–199 (1994).
    [CrossRef]
  21. P. Myslinski, J. A. Koningstein, Y. Shen, “Theory for laser induced dichroism and its effect on absorption, fluorescence, and Raman spectra,” J. Chem. Phys. 96, 8691–8698 (1992).
    [CrossRef]
  22. K. D. Belfield, K. J. Schafer, S. Yao, J. M. Hales, D. J. Hagan, E. W. Van Stryland, “Reactive two-photon fluorescent probes for biological imaging,” in Nonlinear-Optical Transmission and Multiphoton Processes in Organics, A. T. Yates, K. D. Belfield, F. Kajzar, C. M. Lawson, eds., Proc. SPIE5211, 91–95 (2004).
    [CrossRef]
  23. K. D. Belfield, A. R. Morales, B.-S. Kang, J. M. Hales, D. J. Hagan, E. W. Van Stryland, V. M. Chapela, J. Percino, “Synthesis, characterization and optical properties of new two-photon absorbing fluorene derivatives,” Chem. Mater. 16, 4634–4641 (2004).
    [CrossRef]
  24. S. Yao, K. D. Belfield, “Synthesis of two-photon absorbing unsymmetrical branched chromophores through direct tris-(bromomethylation) of fluorene,” J. Org. Chem. (to be published).
  25. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Kluwer Academic/Plenum, New York, 1999).
    [CrossRef]

2004 (1)

K. D. Belfield, A. R. Morales, B.-S. Kang, J. M. Hales, D. J. Hagan, E. W. Van Stryland, V. M. Chapela, J. Percino, “Synthesis, characterization and optical properties of new two-photon absorbing fluorene derivatives,” Chem. Mater. 16, 4634–4641 (2004).
[CrossRef]

2003 (2)

R. S. Lepkowicz, O. V. Przhonska, J. M. Hales, D. J. Hagan, E. W. Van Stryland, M. V. Bondar, Y. L. Slominsky, A. D. Kachkovski, “Excited-state absorption dynamics in polymethine dyes detected by polarization-resolved pump–probe measurements,” Chem. Phys. 286, 277–291 (2003).
[CrossRef]

K. Kamada, K. Ohta, Y. Iwase, K. Kondo, “Two-photon absorption properties of symmetric substituted diacetylene: drastic enhancement of the cross section near the one-photon absorption peak,” Chem. Phys. Lett. 372, 386–393 (2003).
[CrossRef]

2002 (4)

P. Cronstrand, Y. Luo, H. Ågren, “Effects of dipole alignment and channel interference on two-photon absorption cross sections of two-dimensional charge-transfer systems,” J. Chem. Phys. 117, 11,102–11,106 (2002).
[CrossRef]

P. Cronstrand, Y. Luo, H. Ågren, “Generalized few-state models for two-photon absorption of conjugated molecules,” Chem. Phys. Lett. 353, 262–269 (2002).
[CrossRef]

G. S. He, T.-C. Lin, P. N. Prasad, R. Kannan, R. A. Vaia, L.-S. Tan, “Study of two-photon absorption spectral property of novel nonlinear optical chromophore using femtosecond continuum,” J. Phys. Chem. B 106, 11,081–11,084 (2002).
[CrossRef]

K. D. Belfield, M. V. Bondar, O. V. Przhonska, K. J. Schafer, W. Mourad, “Spectral properties of several fluorene derivatives with potential as two-photon fluorescent dyes,” J. Lumin. 97, 141–146 (2002).
[CrossRef]

2001 (2)

Y. Morel, A. Irimia, P. Najechalski, Y. Kervella, O. Stephan, P. L. Baldeck, C. Andraud, “Two-photon absorption and optical power limiting of bifluorene molecule,” J. Chem. Phys. 114, 5391–5396 (2001).
[CrossRef]

O. V. Przhonska, D. J. Hagan, E. Novikov, R. Lepkowicz, E. W. Van Stryland, M. V. Bondar, Y. L. Slominsky, A. D. Kachkovski, “Picosecond absorption anisotropy of polymethine and squarylium dyes in liquid and polymeric media,” Chem. Phys. 273, 235–248 (2001).
[CrossRef]

2000 (1)

K. D. Belfield, K. J. Schafer, Y. Liu, J. Liu, X. Ren, E. W. Van Stryland, “Multiphoton-absorbing organic materials for microfabrication, emerging optical applications and nondestructive three-dimensional imaging,” J. Phys. Org. Chem. 13, 837–849 (2000).
[CrossRef]

1998 (1)

T. Kogej, D. Beljonne, F. Meyers, J. W. Perry, S. R. Marder, J. L. Bredas, “Mechanisms for enhancement of two-photon absorption in donor–acceptor conjugated chromophores,” Chem. Phys. Lett. 298, 1–6 (1998).
[CrossRef]

1997 (1)

1995 (1)

G. S. He, R. Gvishi, P. N. Prasad, B. Reinhardt, “Two-photon absorption based optical limiting and stabilization in organic molecule-doped solid materials,” Opt. Commun. 117, 133–136 (1995).
[CrossRef]

1994 (2)

F. Meyers, S. R. Marder, B. M. Pierce, J. L. Bredas, “Electric field modulated nonlinear optical properties of donor–acceptor polyenes: sum-over-states investigation of the relationship between molecular polarizabilities (α, β, and γ) and bond length alternation,” J. Am. Chem. Soc. 116, 10,703–10,714 (1994).
[CrossRef]

T. W. Hagler, “Nonparallel transition dipole moments and the polarization dependence of electroabsorption in nonoriented conjugated polymer films,” Chem. Phys. Lett. 218, 195–199 (1994).
[CrossRef]

1992 (1)

P. Myslinski, J. A. Koningstein, Y. Shen, “Theory for laser induced dichroism and its effect on absorption, fluorescence, and Raman spectra,” J. Chem. Phys. 96, 8691–8698 (1992).
[CrossRef]

1991 (1)

1990 (1)

W. Denk, J. H. Strickler, W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

1989 (1)

D. A. Parthenopoulos, P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 245, 843–845 (1989).
[CrossRef] [PubMed]

1980 (1)

A. Penzkofer, J. Wiedmann, “Orientation of transition dipole moments of Rhodamine 6G determined by excited state absorption,” Opt. Commun. 35, 81–86 (1980).
[CrossRef]

1978 (1)

H. E. Lessing, A. Von Jena, “Orientation of S1 → Sn transition of oxadine dyes from continous picosecond photometry,” Chem. Phys. Lett. 59, 249–254 (1978).
[CrossRef]

Ågren, H.

P. Cronstrand, Y. Luo, H. Ågren, “Effects of dipole alignment and channel interference on two-photon absorption cross sections of two-dimensional charge-transfer systems,” J. Chem. Phys. 117, 11,102–11,106 (2002).
[CrossRef]

P. Cronstrand, Y. Luo, H. Ågren, “Generalized few-state models for two-photon absorption of conjugated molecules,” Chem. Phys. Lett. 353, 262–269 (2002).
[CrossRef]

Andraud, C.

Y. Morel, A. Irimia, P. Najechalski, Y. Kervella, O. Stephan, P. L. Baldeck, C. Andraud, “Two-photon absorption and optical power limiting of bifluorene molecule,” J. Chem. Phys. 114, 5391–5396 (2001).
[CrossRef]

Baldeck, P. L.

Y. Morel, A. Irimia, P. Najechalski, Y. Kervella, O. Stephan, P. L. Baldeck, C. Andraud, “Two-photon absorption and optical power limiting of bifluorene molecule,” J. Chem. Phys. 114, 5391–5396 (2001).
[CrossRef]

Belfield, K. D.

K. D. Belfield, A. R. Morales, B.-S. Kang, J. M. Hales, D. J. Hagan, E. W. Van Stryland, V. M. Chapela, J. Percino, “Synthesis, characterization and optical properties of new two-photon absorbing fluorene derivatives,” Chem. Mater. 16, 4634–4641 (2004).
[CrossRef]

K. D. Belfield, M. V. Bondar, O. V. Przhonska, K. J. Schafer, W. Mourad, “Spectral properties of several fluorene derivatives with potential as two-photon fluorescent dyes,” J. Lumin. 97, 141–146 (2002).
[CrossRef]

K. D. Belfield, K. J. Schafer, Y. Liu, J. Liu, X. Ren, E. W. Van Stryland, “Multiphoton-absorbing organic materials for microfabrication, emerging optical applications and nondestructive three-dimensional imaging,” J. Phys. Org. Chem. 13, 837–849 (2000).
[CrossRef]

K. D. Belfield, K. J. Schafer, S. Yao, J. M. Hales, D. J. Hagan, E. W. Van Stryland, “Reactive two-photon fluorescent probes for biological imaging,” in Nonlinear-Optical Transmission and Multiphoton Processes in Organics, A. T. Yates, K. D. Belfield, F. Kajzar, C. M. Lawson, eds., Proc. SPIE5211, 91–95 (2004).
[CrossRef]

S. Yao, K. D. Belfield, “Synthesis of two-photon absorbing unsymmetrical branched chromophores through direct tris-(bromomethylation) of fluorene,” J. Org. Chem. (to be published).

Beljonne, D.

T. Kogej, D. Beljonne, F. Meyers, J. W. Perry, S. R. Marder, J. L. Bredas, “Mechanisms for enhancement of two-photon absorption in donor–acceptor conjugated chromophores,” Chem. Phys. Lett. 298, 1–6 (1998).
[CrossRef]

Bondar, M. V.

R. S. Lepkowicz, O. V. Przhonska, J. M. Hales, D. J. Hagan, E. W. Van Stryland, M. V. Bondar, Y. L. Slominsky, A. D. Kachkovski, “Excited-state absorption dynamics in polymethine dyes detected by polarization-resolved pump–probe measurements,” Chem. Phys. 286, 277–291 (2003).
[CrossRef]

K. D. Belfield, M. V. Bondar, O. V. Przhonska, K. J. Schafer, W. Mourad, “Spectral properties of several fluorene derivatives with potential as two-photon fluorescent dyes,” J. Lumin. 97, 141–146 (2002).
[CrossRef]

O. V. Przhonska, D. J. Hagan, E. Novikov, R. Lepkowicz, E. W. Van Stryland, M. V. Bondar, Y. L. Slominsky, A. D. Kachkovski, “Picosecond absorption anisotropy of polymethine and squarylium dyes in liquid and polymeric media,” Chem. Phys. 273, 235–248 (2001).
[CrossRef]

Bredas, J. L.

T. Kogej, D. Beljonne, F. Meyers, J. W. Perry, S. R. Marder, J. L. Bredas, “Mechanisms for enhancement of two-photon absorption in donor–acceptor conjugated chromophores,” Chem. Phys. Lett. 298, 1–6 (1998).
[CrossRef]

F. Meyers, S. R. Marder, B. M. Pierce, J. L. Bredas, “Electric field modulated nonlinear optical properties of donor–acceptor polyenes: sum-over-states investigation of the relationship between molecular polarizabilities (α, β, and γ) and bond length alternation,” J. Am. Chem. Soc. 116, 10,703–10,714 (1994).
[CrossRef]

Chapela, V. M.

K. D. Belfield, A. R. Morales, B.-S. Kang, J. M. Hales, D. J. Hagan, E. W. Van Stryland, V. M. Chapela, J. Percino, “Synthesis, characterization and optical properties of new two-photon absorbing fluorene derivatives,” Chem. Mater. 16, 4634–4641 (2004).
[CrossRef]

Cronstrand, P.

P. Cronstrand, Y. Luo, H. Ågren, “Generalized few-state models for two-photon absorption of conjugated molecules,” Chem. Phys. Lett. 353, 262–269 (2002).
[CrossRef]

P. Cronstrand, Y. Luo, H. Ågren, “Effects of dipole alignment and channel interference on two-photon absorption cross sections of two-dimensional charge-transfer systems,” J. Chem. Phys. 117, 11,102–11,106 (2002).
[CrossRef]

Dees, H. C.

E. A. Wachter, W. P. Partridge, W. G. Fisher, H. C. Dees, M. G. Petersen, “Simultaneous two-photon excitation of photodynamic therapy agents,” in Commercial Applications of Ultrafast Lasers, M. K. Reed, ed., Proc. SPIE3269, 68–75 (1998).
[CrossRef]

Denk, W.

W. Denk, J. H. Strickler, W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

Ehrlich, J. E.

Fisher, W. G.

E. A. Wachter, W. P. Partridge, W. G. Fisher, H. C. Dees, M. G. Petersen, “Simultaneous two-photon excitation of photodynamic therapy agents,” in Commercial Applications of Ultrafast Lasers, M. K. Reed, ed., Proc. SPIE3269, 68–75 (1998).
[CrossRef]

Gvishi, R.

G. S. He, R. Gvishi, P. N. Prasad, B. Reinhardt, “Two-photon absorption based optical limiting and stabilization in organic molecule-doped solid materials,” Opt. Commun. 117, 133–136 (1995).
[CrossRef]

Hagan, D. J.

K. D. Belfield, A. R. Morales, B.-S. Kang, J. M. Hales, D. J. Hagan, E. W. Van Stryland, V. M. Chapela, J. Percino, “Synthesis, characterization and optical properties of new two-photon absorbing fluorene derivatives,” Chem. Mater. 16, 4634–4641 (2004).
[CrossRef]

R. S. Lepkowicz, O. V. Przhonska, J. M. Hales, D. J. Hagan, E. W. Van Stryland, M. V. Bondar, Y. L. Slominsky, A. D. Kachkovski, “Excited-state absorption dynamics in polymethine dyes detected by polarization-resolved pump–probe measurements,” Chem. Phys. 286, 277–291 (2003).
[CrossRef]

O. V. Przhonska, D. J. Hagan, E. Novikov, R. Lepkowicz, E. W. Van Stryland, M. V. Bondar, Y. L. Slominsky, A. D. Kachkovski, “Picosecond absorption anisotropy of polymethine and squarylium dyes in liquid and polymeric media,” Chem. Phys. 273, 235–248 (2001).
[CrossRef]

K. D. Belfield, K. J. Schafer, S. Yao, J. M. Hales, D. J. Hagan, E. W. Van Stryland, “Reactive two-photon fluorescent probes for biological imaging,” in Nonlinear-Optical Transmission and Multiphoton Processes in Organics, A. T. Yates, K. D. Belfield, F. Kajzar, C. M. Lawson, eds., Proc. SPIE5211, 91–95 (2004).
[CrossRef]

Hagler, T. W.

T. W. Hagler, “Nonparallel transition dipole moments and the polarization dependence of electroabsorption in nonoriented conjugated polymer films,” Chem. Phys. Lett. 218, 195–199 (1994).
[CrossRef]

Hales, J. M.

K. D. Belfield, A. R. Morales, B.-S. Kang, J. M. Hales, D. J. Hagan, E. W. Van Stryland, V. M. Chapela, J. Percino, “Synthesis, characterization and optical properties of new two-photon absorbing fluorene derivatives,” Chem. Mater. 16, 4634–4641 (2004).
[CrossRef]

R. S. Lepkowicz, O. V. Przhonska, J. M. Hales, D. J. Hagan, E. W. Van Stryland, M. V. Bondar, Y. L. Slominsky, A. D. Kachkovski, “Excited-state absorption dynamics in polymethine dyes detected by polarization-resolved pump–probe measurements,” Chem. Phys. 286, 277–291 (2003).
[CrossRef]

K. D. Belfield, K. J. Schafer, S. Yao, J. M. Hales, D. J. Hagan, E. W. Van Stryland, “Reactive two-photon fluorescent probes for biological imaging,” in Nonlinear-Optical Transmission and Multiphoton Processes in Organics, A. T. Yates, K. D. Belfield, F. Kajzar, C. M. Lawson, eds., Proc. SPIE5211, 91–95 (2004).
[CrossRef]

He, G. S.

G. S. He, T.-C. Lin, P. N. Prasad, R. Kannan, R. A. Vaia, L.-S. Tan, “Study of two-photon absorption spectral property of novel nonlinear optical chromophore using femtosecond continuum,” J. Phys. Chem. B 106, 11,081–11,084 (2002).
[CrossRef]

G. S. He, R. Gvishi, P. N. Prasad, B. Reinhardt, “Two-photon absorption based optical limiting and stabilization in organic molecule-doped solid materials,” Opt. Commun. 117, 133–136 (1995).
[CrossRef]

Hu, Z.-H.

Irimia, A.

Y. Morel, A. Irimia, P. Najechalski, Y. Kervella, O. Stephan, P. L. Baldeck, C. Andraud, “Two-photon absorption and optical power limiting of bifluorene molecule,” J. Chem. Phys. 114, 5391–5396 (2001).
[CrossRef]

Iwase, Y.

K. Kamada, K. Ohta, Y. Iwase, K. Kondo, “Two-photon absorption properties of symmetric substituted diacetylene: drastic enhancement of the cross section near the one-photon absorption peak,” Chem. Phys. Lett. 372, 386–393 (2003).
[CrossRef]

Kachkovski, A. D.

R. S. Lepkowicz, O. V. Przhonska, J. M. Hales, D. J. Hagan, E. W. Van Stryland, M. V. Bondar, Y. L. Slominsky, A. D. Kachkovski, “Excited-state absorption dynamics in polymethine dyes detected by polarization-resolved pump–probe measurements,” Chem. Phys. 286, 277–291 (2003).
[CrossRef]

O. V. Przhonska, D. J. Hagan, E. Novikov, R. Lepkowicz, E. W. Van Stryland, M. V. Bondar, Y. L. Slominsky, A. D. Kachkovski, “Picosecond absorption anisotropy of polymethine and squarylium dyes in liquid and polymeric media,” Chem. Phys. 273, 235–248 (2001).
[CrossRef]

Kamada, K.

K. Kamada, K. Ohta, Y. Iwase, K. Kondo, “Two-photon absorption properties of symmetric substituted diacetylene: drastic enhancement of the cross section near the one-photon absorption peak,” Chem. Phys. Lett. 372, 386–393 (2003).
[CrossRef]

Kang, B.-S.

K. D. Belfield, A. R. Morales, B.-S. Kang, J. M. Hales, D. J. Hagan, E. W. Van Stryland, V. M. Chapela, J. Percino, “Synthesis, characterization and optical properties of new two-photon absorbing fluorene derivatives,” Chem. Mater. 16, 4634–4641 (2004).
[CrossRef]

Kannan, R.

G. S. He, T.-C. Lin, P. N. Prasad, R. Kannan, R. A. Vaia, L.-S. Tan, “Study of two-photon absorption spectral property of novel nonlinear optical chromophore using femtosecond continuum,” J. Phys. Chem. B 106, 11,081–11,084 (2002).
[CrossRef]

Kervella, Y.

Y. Morel, A. Irimia, P. Najechalski, Y. Kervella, O. Stephan, P. L. Baldeck, C. Andraud, “Two-photon absorption and optical power limiting of bifluorene molecule,” J. Chem. Phys. 114, 5391–5396 (2001).
[CrossRef]

Kogej, T.

T. Kogej, D. Beljonne, F. Meyers, J. W. Perry, S. R. Marder, J. L. Bredas, “Mechanisms for enhancement of two-photon absorption in donor–acceptor conjugated chromophores,” Chem. Phys. Lett. 298, 1–6 (1998).
[CrossRef]

Kondo, K.

K. Kamada, K. Ohta, Y. Iwase, K. Kondo, “Two-photon absorption properties of symmetric substituted diacetylene: drastic enhancement of the cross section near the one-photon absorption peak,” Chem. Phys. Lett. 372, 386–393 (2003).
[CrossRef]

Koningstein, J. A.

P. Myslinski, J. A. Koningstein, Y. Shen, “Theory for laser induced dichroism and its effect on absorption, fluorescence, and Raman spectra,” J. Chem. Phys. 96, 8691–8698 (1992).
[CrossRef]

Lakowicz, J. R.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Kluwer Academic/Plenum, New York, 1999).
[CrossRef]

Lee, I.-Y. S.

Lepkowicz, R.

O. V. Przhonska, D. J. Hagan, E. Novikov, R. Lepkowicz, E. W. Van Stryland, M. V. Bondar, Y. L. Slominsky, A. D. Kachkovski, “Picosecond absorption anisotropy of polymethine and squarylium dyes in liquid and polymeric media,” Chem. Phys. 273, 235–248 (2001).
[CrossRef]

Lepkowicz, R. S.

R. S. Lepkowicz, O. V. Przhonska, J. M. Hales, D. J. Hagan, E. W. Van Stryland, M. V. Bondar, Y. L. Slominsky, A. D. Kachkovski, “Excited-state absorption dynamics in polymethine dyes detected by polarization-resolved pump–probe measurements,” Chem. Phys. 286, 277–291 (2003).
[CrossRef]

Lessing, H. E.

H. E. Lessing, A. Von Jena, “Orientation of S1 → Sn transition of oxadine dyes from continous picosecond photometry,” Chem. Phys. Lett. 59, 249–254 (1978).
[CrossRef]

Lin, T.-C.

G. S. He, T.-C. Lin, P. N. Prasad, R. Kannan, R. A. Vaia, L.-S. Tan, “Study of two-photon absorption spectral property of novel nonlinear optical chromophore using femtosecond continuum,” J. Phys. Chem. B 106, 11,081–11,084 (2002).
[CrossRef]

Liu, J.

K. D. Belfield, K. J. Schafer, Y. Liu, J. Liu, X. Ren, E. W. Van Stryland, “Multiphoton-absorbing organic materials for microfabrication, emerging optical applications and nondestructive three-dimensional imaging,” J. Phys. Org. Chem. 13, 837–849 (2000).
[CrossRef]

Liu, Y.

K. D. Belfield, K. J. Schafer, Y. Liu, J. Liu, X. Ren, E. W. Van Stryland, “Multiphoton-absorbing organic materials for microfabrication, emerging optical applications and nondestructive three-dimensional imaging,” J. Phys. Org. Chem. 13, 837–849 (2000).
[CrossRef]

Luo, Y.

P. Cronstrand, Y. Luo, H. Ågren, “Effects of dipole alignment and channel interference on two-photon absorption cross sections of two-dimensional charge-transfer systems,” J. Chem. Phys. 117, 11,102–11,106 (2002).
[CrossRef]

P. Cronstrand, Y. Luo, H. Ågren, “Generalized few-state models for two-photon absorption of conjugated molecules,” Chem. Phys. Lett. 353, 262–269 (2002).
[CrossRef]

Marder, S. R.

T. Kogej, D. Beljonne, F. Meyers, J. W. Perry, S. R. Marder, J. L. Bredas, “Mechanisms for enhancement of two-photon absorption in donor–acceptor conjugated chromophores,” Chem. Phys. Lett. 298, 1–6 (1998).
[CrossRef]

J. E. Ehrlich, X. L. Wu, I.-Y. S. Lee, Z.-H. Hu, H. Röckel, S. R. Marder, J. W. Perry, “Two-photon absorption and broadband optical limiting with bis-donor stilbenes,” Opt. Lett. 22, 1843–1845 (1997).
[CrossRef]

F. Meyers, S. R. Marder, B. M. Pierce, J. L. Bredas, “Electric field modulated nonlinear optical properties of donor–acceptor polyenes: sum-over-states investigation of the relationship between molecular polarizabilities (α, β, and γ) and bond length alternation,” J. Am. Chem. Soc. 116, 10,703–10,714 (1994).
[CrossRef]

Meyers, F.

T. Kogej, D. Beljonne, F. Meyers, J. W. Perry, S. R. Marder, J. L. Bredas, “Mechanisms for enhancement of two-photon absorption in donor–acceptor conjugated chromophores,” Chem. Phys. Lett. 298, 1–6 (1998).
[CrossRef]

F. Meyers, S. R. Marder, B. M. Pierce, J. L. Bredas, “Electric field modulated nonlinear optical properties of donor–acceptor polyenes: sum-over-states investigation of the relationship between molecular polarizabilities (α, β, and γ) and bond length alternation,” J. Am. Chem. Soc. 116, 10,703–10,714 (1994).
[CrossRef]

Morales, A. R.

K. D. Belfield, A. R. Morales, B.-S. Kang, J. M. Hales, D. J. Hagan, E. W. Van Stryland, V. M. Chapela, J. Percino, “Synthesis, characterization and optical properties of new two-photon absorbing fluorene derivatives,” Chem. Mater. 16, 4634–4641 (2004).
[CrossRef]

Morel, Y.

Y. Morel, A. Irimia, P. Najechalski, Y. Kervella, O. Stephan, P. L. Baldeck, C. Andraud, “Two-photon absorption and optical power limiting of bifluorene molecule,” J. Chem. Phys. 114, 5391–5396 (2001).
[CrossRef]

Mourad, W.

K. D. Belfield, M. V. Bondar, O. V. Przhonska, K. J. Schafer, W. Mourad, “Spectral properties of several fluorene derivatives with potential as two-photon fluorescent dyes,” J. Lumin. 97, 141–146 (2002).
[CrossRef]

Myslinski, P.

P. Myslinski, J. A. Koningstein, Y. Shen, “Theory for laser induced dichroism and its effect on absorption, fluorescence, and Raman spectra,” J. Chem. Phys. 96, 8691–8698 (1992).
[CrossRef]

Najechalski, P.

Y. Morel, A. Irimia, P. Najechalski, Y. Kervella, O. Stephan, P. L. Baldeck, C. Andraud, “Two-photon absorption and optical power limiting of bifluorene molecule,” J. Chem. Phys. 114, 5391–5396 (2001).
[CrossRef]

Novikov, E.

O. V. Przhonska, D. J. Hagan, E. Novikov, R. Lepkowicz, E. W. Van Stryland, M. V. Bondar, Y. L. Slominsky, A. D. Kachkovski, “Picosecond absorption anisotropy of polymethine and squarylium dyes in liquid and polymeric media,” Chem. Phys. 273, 235–248 (2001).
[CrossRef]

Ohta, K.

K. Kamada, K. Ohta, Y. Iwase, K. Kondo, “Two-photon absorption properties of symmetric substituted diacetylene: drastic enhancement of the cross section near the one-photon absorption peak,” Chem. Phys. Lett. 372, 386–393 (2003).
[CrossRef]

Parthenopoulos, D. A.

D. A. Parthenopoulos, P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 245, 843–845 (1989).
[CrossRef] [PubMed]

Partridge, W. P.

E. A. Wachter, W. P. Partridge, W. G. Fisher, H. C. Dees, M. G. Petersen, “Simultaneous two-photon excitation of photodynamic therapy agents,” in Commercial Applications of Ultrafast Lasers, M. K. Reed, ed., Proc. SPIE3269, 68–75 (1998).
[CrossRef]

Penzkofer, A.

A. Penzkofer, J. Wiedmann, “Orientation of transition dipole moments of Rhodamine 6G determined by excited state absorption,” Opt. Commun. 35, 81–86 (1980).
[CrossRef]

Percino, J.

K. D. Belfield, A. R. Morales, B.-S. Kang, J. M. Hales, D. J. Hagan, E. W. Van Stryland, V. M. Chapela, J. Percino, “Synthesis, characterization and optical properties of new two-photon absorbing fluorene derivatives,” Chem. Mater. 16, 4634–4641 (2004).
[CrossRef]

Perry, J. W.

T. Kogej, D. Beljonne, F. Meyers, J. W. Perry, S. R. Marder, J. L. Bredas, “Mechanisms for enhancement of two-photon absorption in donor–acceptor conjugated chromophores,” Chem. Phys. Lett. 298, 1–6 (1998).
[CrossRef]

J. E. Ehrlich, X. L. Wu, I.-Y. S. Lee, Z.-H. Hu, H. Röckel, S. R. Marder, J. W. Perry, “Two-photon absorption and broadband optical limiting with bis-donor stilbenes,” Opt. Lett. 22, 1843–1845 (1997).
[CrossRef]

Petersen, M. G.

E. A. Wachter, W. P. Partridge, W. G. Fisher, H. C. Dees, M. G. Petersen, “Simultaneous two-photon excitation of photodynamic therapy agents,” in Commercial Applications of Ultrafast Lasers, M. K. Reed, ed., Proc. SPIE3269, 68–75 (1998).
[CrossRef]

Pierce, B. M.

F. Meyers, S. R. Marder, B. M. Pierce, J. L. Bredas, “Electric field modulated nonlinear optical properties of donor–acceptor polyenes: sum-over-states investigation of the relationship between molecular polarizabilities (α, β, and γ) and bond length alternation,” J. Am. Chem. Soc. 116, 10,703–10,714 (1994).
[CrossRef]

Prasad, P. N.

G. S. He, T.-C. Lin, P. N. Prasad, R. Kannan, R. A. Vaia, L.-S. Tan, “Study of two-photon absorption spectral property of novel nonlinear optical chromophore using femtosecond continuum,” J. Phys. Chem. B 106, 11,081–11,084 (2002).
[CrossRef]

G. S. He, R. Gvishi, P. N. Prasad, B. Reinhardt, “Two-photon absorption based optical limiting and stabilization in organic molecule-doped solid materials,” Opt. Commun. 117, 133–136 (1995).
[CrossRef]

Przhonska, O. V.

R. S. Lepkowicz, O. V. Przhonska, J. M. Hales, D. J. Hagan, E. W. Van Stryland, M. V. Bondar, Y. L. Slominsky, A. D. Kachkovski, “Excited-state absorption dynamics in polymethine dyes detected by polarization-resolved pump–probe measurements,” Chem. Phys. 286, 277–291 (2003).
[CrossRef]

K. D. Belfield, M. V. Bondar, O. V. Przhonska, K. J. Schafer, W. Mourad, “Spectral properties of several fluorene derivatives with potential as two-photon fluorescent dyes,” J. Lumin. 97, 141–146 (2002).
[CrossRef]

O. V. Przhonska, D. J. Hagan, E. Novikov, R. Lepkowicz, E. W. Van Stryland, M. V. Bondar, Y. L. Slominsky, A. D. Kachkovski, “Picosecond absorption anisotropy of polymethine and squarylium dyes in liquid and polymeric media,” Chem. Phys. 273, 235–248 (2001).
[CrossRef]

Reinhardt, B.

G. S. He, R. Gvishi, P. N. Prasad, B. Reinhardt, “Two-photon absorption based optical limiting and stabilization in organic molecule-doped solid materials,” Opt. Commun. 117, 133–136 (1995).
[CrossRef]

Ren, X.

K. D. Belfield, K. J. Schafer, Y. Liu, J. Liu, X. Ren, E. W. Van Stryland, “Multiphoton-absorbing organic materials for microfabrication, emerging optical applications and nondestructive three-dimensional imaging,” J. Phys. Org. Chem. 13, 837–849 (2000).
[CrossRef]

Rentzepis, P. M.

D. A. Parthenopoulos, P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 245, 843–845 (1989).
[CrossRef] [PubMed]

Röckel, H.

Schafer, K. J.

K. D. Belfield, M. V. Bondar, O. V. Przhonska, K. J. Schafer, W. Mourad, “Spectral properties of several fluorene derivatives with potential as two-photon fluorescent dyes,” J. Lumin. 97, 141–146 (2002).
[CrossRef]

K. D. Belfield, K. J. Schafer, Y. Liu, J. Liu, X. Ren, E. W. Van Stryland, “Multiphoton-absorbing organic materials for microfabrication, emerging optical applications and nondestructive three-dimensional imaging,” J. Phys. Org. Chem. 13, 837–849 (2000).
[CrossRef]

K. D. Belfield, K. J. Schafer, S. Yao, J. M. Hales, D. J. Hagan, E. W. Van Stryland, “Reactive two-photon fluorescent probes for biological imaging,” in Nonlinear-Optical Transmission and Multiphoton Processes in Organics, A. T. Yates, K. D. Belfield, F. Kajzar, C. M. Lawson, eds., Proc. SPIE5211, 91–95 (2004).
[CrossRef]

Shen, Y.

P. Myslinski, J. A. Koningstein, Y. Shen, “Theory for laser induced dichroism and its effect on absorption, fluorescence, and Raman spectra,” J. Chem. Phys. 96, 8691–8698 (1992).
[CrossRef]

Slominsky, Y. L.

R. S. Lepkowicz, O. V. Przhonska, J. M. Hales, D. J. Hagan, E. W. Van Stryland, M. V. Bondar, Y. L. Slominsky, A. D. Kachkovski, “Excited-state absorption dynamics in polymethine dyes detected by polarization-resolved pump–probe measurements,” Chem. Phys. 286, 277–291 (2003).
[CrossRef]

O. V. Przhonska, D. J. Hagan, E. Novikov, R. Lepkowicz, E. W. Van Stryland, M. V. Bondar, Y. L. Slominsky, A. D. Kachkovski, “Picosecond absorption anisotropy of polymethine and squarylium dyes in liquid and polymeric media,” Chem. Phys. 273, 235–248 (2001).
[CrossRef]

Stephan, O.

Y. Morel, A. Irimia, P. Najechalski, Y. Kervella, O. Stephan, P. L. Baldeck, C. Andraud, “Two-photon absorption and optical power limiting of bifluorene molecule,” J. Chem. Phys. 114, 5391–5396 (2001).
[CrossRef]

Strickler, J. H.

Tan, L.-S.

G. S. He, T.-C. Lin, P. N. Prasad, R. Kannan, R. A. Vaia, L.-S. Tan, “Study of two-photon absorption spectral property of novel nonlinear optical chromophore using femtosecond continuum,” J. Phys. Chem. B 106, 11,081–11,084 (2002).
[CrossRef]

Vaia, R. A.

G. S. He, T.-C. Lin, P. N. Prasad, R. Kannan, R. A. Vaia, L.-S. Tan, “Study of two-photon absorption spectral property of novel nonlinear optical chromophore using femtosecond continuum,” J. Phys. Chem. B 106, 11,081–11,084 (2002).
[CrossRef]

Van Stryland, E. W.

K. D. Belfield, A. R. Morales, B.-S. Kang, J. M. Hales, D. J. Hagan, E. W. Van Stryland, V. M. Chapela, J. Percino, “Synthesis, characterization and optical properties of new two-photon absorbing fluorene derivatives,” Chem. Mater. 16, 4634–4641 (2004).
[CrossRef]

R. S. Lepkowicz, O. V. Przhonska, J. M. Hales, D. J. Hagan, E. W. Van Stryland, M. V. Bondar, Y. L. Slominsky, A. D. Kachkovski, “Excited-state absorption dynamics in polymethine dyes detected by polarization-resolved pump–probe measurements,” Chem. Phys. 286, 277–291 (2003).
[CrossRef]

O. V. Przhonska, D. J. Hagan, E. Novikov, R. Lepkowicz, E. W. Van Stryland, M. V. Bondar, Y. L. Slominsky, A. D. Kachkovski, “Picosecond absorption anisotropy of polymethine and squarylium dyes in liquid and polymeric media,” Chem. Phys. 273, 235–248 (2001).
[CrossRef]

K. D. Belfield, K. J. Schafer, Y. Liu, J. Liu, X. Ren, E. W. Van Stryland, “Multiphoton-absorbing organic materials for microfabrication, emerging optical applications and nondestructive three-dimensional imaging,” J. Phys. Org. Chem. 13, 837–849 (2000).
[CrossRef]

K. D. Belfield, K. J. Schafer, S. Yao, J. M. Hales, D. J. Hagan, E. W. Van Stryland, “Reactive two-photon fluorescent probes for biological imaging,” in Nonlinear-Optical Transmission and Multiphoton Processes in Organics, A. T. Yates, K. D. Belfield, F. Kajzar, C. M. Lawson, eds., Proc. SPIE5211, 91–95 (2004).
[CrossRef]

Von Jena, A.

H. E. Lessing, A. Von Jena, “Orientation of S1 → Sn transition of oxadine dyes from continous picosecond photometry,” Chem. Phys. Lett. 59, 249–254 (1978).
[CrossRef]

Wachter, E. A.

E. A. Wachter, W. P. Partridge, W. G. Fisher, H. C. Dees, M. G. Petersen, “Simultaneous two-photon excitation of photodynamic therapy agents,” in Commercial Applications of Ultrafast Lasers, M. K. Reed, ed., Proc. SPIE3269, 68–75 (1998).
[CrossRef]

Webb, W. W.

Wiedmann, J.

A. Penzkofer, J. Wiedmann, “Orientation of transition dipole moments of Rhodamine 6G determined by excited state absorption,” Opt. Commun. 35, 81–86 (1980).
[CrossRef]

Wu, X. L.

Yao, S.

K. D. Belfield, K. J. Schafer, S. Yao, J. M. Hales, D. J. Hagan, E. W. Van Stryland, “Reactive two-photon fluorescent probes for biological imaging,” in Nonlinear-Optical Transmission and Multiphoton Processes in Organics, A. T. Yates, K. D. Belfield, F. Kajzar, C. M. Lawson, eds., Proc. SPIE5211, 91–95 (2004).
[CrossRef]

S. Yao, K. D. Belfield, “Synthesis of two-photon absorbing unsymmetrical branched chromophores through direct tris-(bromomethylation) of fluorene,” J. Org. Chem. (to be published).

Chem. Mater. (1)

K. D. Belfield, A. R. Morales, B.-S. Kang, J. M. Hales, D. J. Hagan, E. W. Van Stryland, V. M. Chapela, J. Percino, “Synthesis, characterization and optical properties of new two-photon absorbing fluorene derivatives,” Chem. Mater. 16, 4634–4641 (2004).
[CrossRef]

Chem. Phys. (2)

O. V. Przhonska, D. J. Hagan, E. Novikov, R. Lepkowicz, E. W. Van Stryland, M. V. Bondar, Y. L. Slominsky, A. D. Kachkovski, “Picosecond absorption anisotropy of polymethine and squarylium dyes in liquid and polymeric media,” Chem. Phys. 273, 235–248 (2001).
[CrossRef]

R. S. Lepkowicz, O. V. Przhonska, J. M. Hales, D. J. Hagan, E. W. Van Stryland, M. V. Bondar, Y. L. Slominsky, A. D. Kachkovski, “Excited-state absorption dynamics in polymethine dyes detected by polarization-resolved pump–probe measurements,” Chem. Phys. 286, 277–291 (2003).
[CrossRef]

Chem. Phys. Lett. (5)

T. W. Hagler, “Nonparallel transition dipole moments and the polarization dependence of electroabsorption in nonoriented conjugated polymer films,” Chem. Phys. Lett. 218, 195–199 (1994).
[CrossRef]

T. Kogej, D. Beljonne, F. Meyers, J. W. Perry, S. R. Marder, J. L. Bredas, “Mechanisms for enhancement of two-photon absorption in donor–acceptor conjugated chromophores,” Chem. Phys. Lett. 298, 1–6 (1998).
[CrossRef]

K. Kamada, K. Ohta, Y. Iwase, K. Kondo, “Two-photon absorption properties of symmetric substituted diacetylene: drastic enhancement of the cross section near the one-photon absorption peak,” Chem. Phys. Lett. 372, 386–393 (2003).
[CrossRef]

P. Cronstrand, Y. Luo, H. Ågren, “Generalized few-state models for two-photon absorption of conjugated molecules,” Chem. Phys. Lett. 353, 262–269 (2002).
[CrossRef]

H. E. Lessing, A. Von Jena, “Orientation of S1 → Sn transition of oxadine dyes from continous picosecond photometry,” Chem. Phys. Lett. 59, 249–254 (1978).
[CrossRef]

J. Am. Chem. Soc. (1)

F. Meyers, S. R. Marder, B. M. Pierce, J. L. Bredas, “Electric field modulated nonlinear optical properties of donor–acceptor polyenes: sum-over-states investigation of the relationship between molecular polarizabilities (α, β, and γ) and bond length alternation,” J. Am. Chem. Soc. 116, 10,703–10,714 (1994).
[CrossRef]

J. Chem. Phys. (3)

P. Cronstrand, Y. Luo, H. Ågren, “Effects of dipole alignment and channel interference on two-photon absorption cross sections of two-dimensional charge-transfer systems,” J. Chem. Phys. 117, 11,102–11,106 (2002).
[CrossRef]

P. Myslinski, J. A. Koningstein, Y. Shen, “Theory for laser induced dichroism and its effect on absorption, fluorescence, and Raman spectra,” J. Chem. Phys. 96, 8691–8698 (1992).
[CrossRef]

Y. Morel, A. Irimia, P. Najechalski, Y. Kervella, O. Stephan, P. L. Baldeck, C. Andraud, “Two-photon absorption and optical power limiting of bifluorene molecule,” J. Chem. Phys. 114, 5391–5396 (2001).
[CrossRef]

J. Lumin. (1)

K. D. Belfield, M. V. Bondar, O. V. Przhonska, K. J. Schafer, W. Mourad, “Spectral properties of several fluorene derivatives with potential as two-photon fluorescent dyes,” J. Lumin. 97, 141–146 (2002).
[CrossRef]

J. Phys. Chem. B (1)

G. S. He, T.-C. Lin, P. N. Prasad, R. Kannan, R. A. Vaia, L.-S. Tan, “Study of two-photon absorption spectral property of novel nonlinear optical chromophore using femtosecond continuum,” J. Phys. Chem. B 106, 11,081–11,084 (2002).
[CrossRef]

J. Phys. Org. Chem. (1)

K. D. Belfield, K. J. Schafer, Y. Liu, J. Liu, X. Ren, E. W. Van Stryland, “Multiphoton-absorbing organic materials for microfabrication, emerging optical applications and nondestructive three-dimensional imaging,” J. Phys. Org. Chem. 13, 837–849 (2000).
[CrossRef]

Opt. Commun. (2)

G. S. He, R. Gvishi, P. N. Prasad, B. Reinhardt, “Two-photon absorption based optical limiting and stabilization in organic molecule-doped solid materials,” Opt. Commun. 117, 133–136 (1995).
[CrossRef]

A. Penzkofer, J. Wiedmann, “Orientation of transition dipole moments of Rhodamine 6G determined by excited state absorption,” Opt. Commun. 35, 81–86 (1980).
[CrossRef]

Opt. Lett. (2)

Science (2)

W. Denk, J. H. Strickler, W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248, 73–76 (1990).
[CrossRef] [PubMed]

D. A. Parthenopoulos, P. M. Rentzepis, “Three-dimensional optical storage memory,” Science 245, 843–845 (1989).
[CrossRef] [PubMed]

Other (4)

E. A. Wachter, W. P. Partridge, W. G. Fisher, H. C. Dees, M. G. Petersen, “Simultaneous two-photon excitation of photodynamic therapy agents,” in Commercial Applications of Ultrafast Lasers, M. K. Reed, ed., Proc. SPIE3269, 68–75 (1998).
[CrossRef]

K. D. Belfield, K. J. Schafer, S. Yao, J. M. Hales, D. J. Hagan, E. W. Van Stryland, “Reactive two-photon fluorescent probes for biological imaging,” in Nonlinear-Optical Transmission and Multiphoton Processes in Organics, A. T. Yates, K. D. Belfield, F. Kajzar, C. M. Lawson, eds., Proc. SPIE5211, 91–95 (2004).
[CrossRef]

S. Yao, K. D. Belfield, “Synthesis of two-photon absorbing unsymmetrical branched chromophores through direct tris-(bromomethylation) of fluorene,” J. Org. Chem. (to be published).

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Kluwer Academic/Plenum, New York, 1999).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Structures of the fluorene derivatives investigated in this paper: N-(7-benzothiazol-2-yl-9,9-bis-decyl-9H-fluoren-2-yl)-acetamide(1); 9,9-didecyl-2,7-bis-(N,N-benzothiazoyl)fluorene(2); 4,4′-{[9,9-bis(ethyl)-9H-fluorene-2,7-diyl]di-2,1-ethenediyl}bis(N,N-diphenyl)benzeneamine (3);and4,4′,4″-{[9,9-bis(ethyl)-9H-fluorene-2,4,7-triyl]tri-2,1-ethenediyl} tris(N,N-diphenyl)benzeneamine (4).

Fig. 2
Fig. 2

Schematic of the experimental setup: 1’s, beam splitters; 2’s, silver mirrors; 3, time delay line; 4’s, lenses; 5’s, filters; D0–D2, photodetectors; P’s, polarizers; λ/2, half-wave plate.

Fig. 3
Fig. 3

1, Absorption; 2, excitation anisotropy; and 3, calculated electronic spectra of compounds (a) 1, (b) 2, (c) 3, and (d) 4 in pTHF. The values of vertical lines 3 correspond to the relative oscillator strengths of electronic transitions.

Fig. 4
Fig. 4

Calculated molecular orbitals of compound 4: (a) 1, HOMO and 2, LUMO; (b) 1, HOMO −1 and 2, LUMO + 1; and compound 3: (c) 1, HOMO − 3 and 2, LUMO + 3.

Fig. 5
Fig. 5

Excited-state absorption (1, ΔD; 2, ΔD) and 3, anisotropy spectra of fluorenes (a) 1, (b) 2, (c) 3, and (d) 4 in pTHF.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

r = ( k k ) / ( k + 2 k ) ,
k ( θ ) = k 0 [ cos 2 θ ( 3 cos 2 β 1 ) cos 2 β + 2 ] ,
r = ( 3 cos 2 β 1 ) / 5 .

Metrics