Abstract

Multilayer mirrors capable of >99.9% reflectivity in the far infrared (70–200 µm wavelengths) were constructed using thin silicon etalons separated by empty gaps. Calculations indicate that only three periods are required to produce 99.9% reflectivity because of the large difference between the index of refraction of silicon (3.384) and the vacuum (1). The mirror was assembled from high-purity silicon wafers, with resistivity over 4000 Ω cm to reduce free-carrier absorption. Wafers were double-side polished with faces parallel within 10 arc sec. The multilayer mirror was demonstrated as a cavity mirror for the far-infrared p-Ge laser. Dependence of reflectivity on design accuracy was considered.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. W. Du Bosq, E. W. Nelson, A. V. Muravjov, D. A. Walters, G. Subramanian, K. B. Sundaram, R. E. Peale, N. Tache, D. B. Tanner, C. J. Fredricksen, “Etalon, lamellar, and Bragg intracavity wavelength selecting mirrors for the far-infrared p-Ge laser,” presented at Optics in the Southeast 2003, Orlando, Florida, 12–13 November 2003.
  2. T. W. Du Bosq, A. V. Muravjov, R. E. Peale, “High reflectivity intracavity Bragg mirrors for the far-infrared p-Ge laser,” in Terahertz for Military and Security Applications II, M. Novak, ed., Proc. SPIE5411, 167–173 (2004).
    [CrossRef]
  3. E. W. Nelson, S. H. Withers, A. V. Muravjov, R. C. Strijbos, R. E. Peale, S. G. Pavlov, V. N. Shastin, C. J. Fredricksen, “High resolution study of composite cavity effects for p-Ge lasers,” IEEE J. Quantum Electron. 37, 1525–1530 (2001).
    [CrossRef]
  4. E. Bründermann, “Widely tunable far-infrared hot-hole semiconductor lasers,” in Long-Wavelength Infrared Semiconductor Lasers, H. K. Choi, ed. (Wiley, 2004), pp. 279–350.
  5. P. Brüesch, Phonons: Theory and Experiments II (Springer-Verlag, 1986).
  6. R. Schiwon, G. Schwaab, E. Bründermann, M. Havenith, “Far-infrared multilayer mirrors,” Appl. Phys. Lett. 83, 4119–4121 (2003).
    [CrossRef]
  7. J. A. Dobrowolski, “Optical properties of films and coatings,” in Handbook of Optics Fundamentals, Techniques, & Design, M. Bass, ed. (McGraw-Hill, 1995), Vol. 1, pp. 42.10–42.11.
  8. E. W. Loewenstein, D. R. Smith, R. L. Morgan, “Optical constants of far infrared materials. 2: Crystalline solids,” Appl. Opt. 12, 398–406 (1973).
    [CrossRef] [PubMed]
  9. T. W. Du Bosq, R. E. Peale, A. V. Muravjov, C. J. Fredricksen, “Fixed wavelength selection for the far-infrared p-Ge laser using thin silicon intracavity etalon,” in Solid State Lasers XII, R. Scheps, ed., Proc. SPIE4968, 119–125 (2003).
  10. T. W. Du Bosq, R. E. Peale, E. W. Nelson, A. V. Muravjov, C. J. Fredricksen, N. Tache, D. B. Tanner, “Dielectric selective mirror for intracavity wavelength selection in far-infrared p-Ge lasers,” J. Appl. Phys. 94, 5474–5478 (2003).
    [CrossRef]
  11. T. W. Du Bosq, R. E. Peale, E. W. Nelson, A. V. Muravjov, D. A. Walters, G. Subramanian, K. B. Sundaram, C. J. Fredricksen, “Wavelength selection for the far-infrared p-Ge laser using etched silicon lamellar gratings,” Opt. Laser Technol. 37, 87–91 (2004).
    [CrossRef]

2004 (1)

T. W. Du Bosq, R. E. Peale, E. W. Nelson, A. V. Muravjov, D. A. Walters, G. Subramanian, K. B. Sundaram, C. J. Fredricksen, “Wavelength selection for the far-infrared p-Ge laser using etched silicon lamellar gratings,” Opt. Laser Technol. 37, 87–91 (2004).
[CrossRef]

2003 (2)

R. Schiwon, G. Schwaab, E. Bründermann, M. Havenith, “Far-infrared multilayer mirrors,” Appl. Phys. Lett. 83, 4119–4121 (2003).
[CrossRef]

T. W. Du Bosq, R. E. Peale, E. W. Nelson, A. V. Muravjov, C. J. Fredricksen, N. Tache, D. B. Tanner, “Dielectric selective mirror for intracavity wavelength selection in far-infrared p-Ge lasers,” J. Appl. Phys. 94, 5474–5478 (2003).
[CrossRef]

2001 (1)

E. W. Nelson, S. H. Withers, A. V. Muravjov, R. C. Strijbos, R. E. Peale, S. G. Pavlov, V. N. Shastin, C. J. Fredricksen, “High resolution study of composite cavity effects for p-Ge lasers,” IEEE J. Quantum Electron. 37, 1525–1530 (2001).
[CrossRef]

1973 (1)

Brüesch, P.

P. Brüesch, Phonons: Theory and Experiments II (Springer-Verlag, 1986).

Bründermann, E.

R. Schiwon, G. Schwaab, E. Bründermann, M. Havenith, “Far-infrared multilayer mirrors,” Appl. Phys. Lett. 83, 4119–4121 (2003).
[CrossRef]

E. Bründermann, “Widely tunable far-infrared hot-hole semiconductor lasers,” in Long-Wavelength Infrared Semiconductor Lasers, H. K. Choi, ed. (Wiley, 2004), pp. 279–350.

Dobrowolski, J. A.

J. A. Dobrowolski, “Optical properties of films and coatings,” in Handbook of Optics Fundamentals, Techniques, & Design, M. Bass, ed. (McGraw-Hill, 1995), Vol. 1, pp. 42.10–42.11.

Du Bosq, T. W.

T. W. Du Bosq, R. E. Peale, E. W. Nelson, A. V. Muravjov, D. A. Walters, G. Subramanian, K. B. Sundaram, C. J. Fredricksen, “Wavelength selection for the far-infrared p-Ge laser using etched silicon lamellar gratings,” Opt. Laser Technol. 37, 87–91 (2004).
[CrossRef]

T. W. Du Bosq, R. E. Peale, E. W. Nelson, A. V. Muravjov, C. J. Fredricksen, N. Tache, D. B. Tanner, “Dielectric selective mirror for intracavity wavelength selection in far-infrared p-Ge lasers,” J. Appl. Phys. 94, 5474–5478 (2003).
[CrossRef]

T. W. Du Bosq, R. E. Peale, A. V. Muravjov, C. J. Fredricksen, “Fixed wavelength selection for the far-infrared p-Ge laser using thin silicon intracavity etalon,” in Solid State Lasers XII, R. Scheps, ed., Proc. SPIE4968, 119–125 (2003).

T. W. Du Bosq, E. W. Nelson, A. V. Muravjov, D. A. Walters, G. Subramanian, K. B. Sundaram, R. E. Peale, N. Tache, D. B. Tanner, C. J. Fredricksen, “Etalon, lamellar, and Bragg intracavity wavelength selecting mirrors for the far-infrared p-Ge laser,” presented at Optics in the Southeast 2003, Orlando, Florida, 12–13 November 2003.

T. W. Du Bosq, A. V. Muravjov, R. E. Peale, “High reflectivity intracavity Bragg mirrors for the far-infrared p-Ge laser,” in Terahertz for Military and Security Applications II, M. Novak, ed., Proc. SPIE5411, 167–173 (2004).
[CrossRef]

Fredricksen, C. J.

T. W. Du Bosq, R. E. Peale, E. W. Nelson, A. V. Muravjov, D. A. Walters, G. Subramanian, K. B. Sundaram, C. J. Fredricksen, “Wavelength selection for the far-infrared p-Ge laser using etched silicon lamellar gratings,” Opt. Laser Technol. 37, 87–91 (2004).
[CrossRef]

T. W. Du Bosq, R. E. Peale, E. W. Nelson, A. V. Muravjov, C. J. Fredricksen, N. Tache, D. B. Tanner, “Dielectric selective mirror for intracavity wavelength selection in far-infrared p-Ge lasers,” J. Appl. Phys. 94, 5474–5478 (2003).
[CrossRef]

E. W. Nelson, S. H. Withers, A. V. Muravjov, R. C. Strijbos, R. E. Peale, S. G. Pavlov, V. N. Shastin, C. J. Fredricksen, “High resolution study of composite cavity effects for p-Ge lasers,” IEEE J. Quantum Electron. 37, 1525–1530 (2001).
[CrossRef]

T. W. Du Bosq, R. E. Peale, A. V. Muravjov, C. J. Fredricksen, “Fixed wavelength selection for the far-infrared p-Ge laser using thin silicon intracavity etalon,” in Solid State Lasers XII, R. Scheps, ed., Proc. SPIE4968, 119–125 (2003).

T. W. Du Bosq, E. W. Nelson, A. V. Muravjov, D. A. Walters, G. Subramanian, K. B. Sundaram, R. E. Peale, N. Tache, D. B. Tanner, C. J. Fredricksen, “Etalon, lamellar, and Bragg intracavity wavelength selecting mirrors for the far-infrared p-Ge laser,” presented at Optics in the Southeast 2003, Orlando, Florida, 12–13 November 2003.

Havenith, M.

R. Schiwon, G. Schwaab, E. Bründermann, M. Havenith, “Far-infrared multilayer mirrors,” Appl. Phys. Lett. 83, 4119–4121 (2003).
[CrossRef]

Loewenstein, E. W.

Morgan, R. L.

Muravjov, A. V.

T. W. Du Bosq, R. E. Peale, E. W. Nelson, A. V. Muravjov, D. A. Walters, G. Subramanian, K. B. Sundaram, C. J. Fredricksen, “Wavelength selection for the far-infrared p-Ge laser using etched silicon lamellar gratings,” Opt. Laser Technol. 37, 87–91 (2004).
[CrossRef]

T. W. Du Bosq, R. E. Peale, E. W. Nelson, A. V. Muravjov, C. J. Fredricksen, N. Tache, D. B. Tanner, “Dielectric selective mirror for intracavity wavelength selection in far-infrared p-Ge lasers,” J. Appl. Phys. 94, 5474–5478 (2003).
[CrossRef]

E. W. Nelson, S. H. Withers, A. V. Muravjov, R. C. Strijbos, R. E. Peale, S. G. Pavlov, V. N. Shastin, C. J. Fredricksen, “High resolution study of composite cavity effects for p-Ge lasers,” IEEE J. Quantum Electron. 37, 1525–1530 (2001).
[CrossRef]

T. W. Du Bosq, A. V. Muravjov, R. E. Peale, “High reflectivity intracavity Bragg mirrors for the far-infrared p-Ge laser,” in Terahertz for Military and Security Applications II, M. Novak, ed., Proc. SPIE5411, 167–173 (2004).
[CrossRef]

T. W. Du Bosq, E. W. Nelson, A. V. Muravjov, D. A. Walters, G. Subramanian, K. B. Sundaram, R. E. Peale, N. Tache, D. B. Tanner, C. J. Fredricksen, “Etalon, lamellar, and Bragg intracavity wavelength selecting mirrors for the far-infrared p-Ge laser,” presented at Optics in the Southeast 2003, Orlando, Florida, 12–13 November 2003.

T. W. Du Bosq, R. E. Peale, A. V. Muravjov, C. J. Fredricksen, “Fixed wavelength selection for the far-infrared p-Ge laser using thin silicon intracavity etalon,” in Solid State Lasers XII, R. Scheps, ed., Proc. SPIE4968, 119–125 (2003).

Nelson, E. W.

T. W. Du Bosq, R. E. Peale, E. W. Nelson, A. V. Muravjov, D. A. Walters, G. Subramanian, K. B. Sundaram, C. J. Fredricksen, “Wavelength selection for the far-infrared p-Ge laser using etched silicon lamellar gratings,” Opt. Laser Technol. 37, 87–91 (2004).
[CrossRef]

T. W. Du Bosq, R. E. Peale, E. W. Nelson, A. V. Muravjov, C. J. Fredricksen, N. Tache, D. B. Tanner, “Dielectric selective mirror for intracavity wavelength selection in far-infrared p-Ge lasers,” J. Appl. Phys. 94, 5474–5478 (2003).
[CrossRef]

E. W. Nelson, S. H. Withers, A. V. Muravjov, R. C. Strijbos, R. E. Peale, S. G. Pavlov, V. N. Shastin, C. J. Fredricksen, “High resolution study of composite cavity effects for p-Ge lasers,” IEEE J. Quantum Electron. 37, 1525–1530 (2001).
[CrossRef]

T. W. Du Bosq, E. W. Nelson, A. V. Muravjov, D. A. Walters, G. Subramanian, K. B. Sundaram, R. E. Peale, N. Tache, D. B. Tanner, C. J. Fredricksen, “Etalon, lamellar, and Bragg intracavity wavelength selecting mirrors for the far-infrared p-Ge laser,” presented at Optics in the Southeast 2003, Orlando, Florida, 12–13 November 2003.

Pavlov, S. G.

E. W. Nelson, S. H. Withers, A. V. Muravjov, R. C. Strijbos, R. E. Peale, S. G. Pavlov, V. N. Shastin, C. J. Fredricksen, “High resolution study of composite cavity effects for p-Ge lasers,” IEEE J. Quantum Electron. 37, 1525–1530 (2001).
[CrossRef]

Peale, R. E.

T. W. Du Bosq, R. E. Peale, E. W. Nelson, A. V. Muravjov, D. A. Walters, G. Subramanian, K. B. Sundaram, C. J. Fredricksen, “Wavelength selection for the far-infrared p-Ge laser using etched silicon lamellar gratings,” Opt. Laser Technol. 37, 87–91 (2004).
[CrossRef]

T. W. Du Bosq, R. E. Peale, E. W. Nelson, A. V. Muravjov, C. J. Fredricksen, N. Tache, D. B. Tanner, “Dielectric selective mirror for intracavity wavelength selection in far-infrared p-Ge lasers,” J. Appl. Phys. 94, 5474–5478 (2003).
[CrossRef]

E. W. Nelson, S. H. Withers, A. V. Muravjov, R. C. Strijbos, R. E. Peale, S. G. Pavlov, V. N. Shastin, C. J. Fredricksen, “High resolution study of composite cavity effects for p-Ge lasers,” IEEE J. Quantum Electron. 37, 1525–1530 (2001).
[CrossRef]

T. W. Du Bosq, A. V. Muravjov, R. E. Peale, “High reflectivity intracavity Bragg mirrors for the far-infrared p-Ge laser,” in Terahertz for Military and Security Applications II, M. Novak, ed., Proc. SPIE5411, 167–173 (2004).
[CrossRef]

T. W. Du Bosq, E. W. Nelson, A. V. Muravjov, D. A. Walters, G. Subramanian, K. B. Sundaram, R. E. Peale, N. Tache, D. B. Tanner, C. J. Fredricksen, “Etalon, lamellar, and Bragg intracavity wavelength selecting mirrors for the far-infrared p-Ge laser,” presented at Optics in the Southeast 2003, Orlando, Florida, 12–13 November 2003.

T. W. Du Bosq, R. E. Peale, A. V. Muravjov, C. J. Fredricksen, “Fixed wavelength selection for the far-infrared p-Ge laser using thin silicon intracavity etalon,” in Solid State Lasers XII, R. Scheps, ed., Proc. SPIE4968, 119–125 (2003).

Schiwon, R.

R. Schiwon, G. Schwaab, E. Bründermann, M. Havenith, “Far-infrared multilayer mirrors,” Appl. Phys. Lett. 83, 4119–4121 (2003).
[CrossRef]

Schwaab, G.

R. Schiwon, G. Schwaab, E. Bründermann, M. Havenith, “Far-infrared multilayer mirrors,” Appl. Phys. Lett. 83, 4119–4121 (2003).
[CrossRef]

Shastin, V. N.

E. W. Nelson, S. H. Withers, A. V. Muravjov, R. C. Strijbos, R. E. Peale, S. G. Pavlov, V. N. Shastin, C. J. Fredricksen, “High resolution study of composite cavity effects for p-Ge lasers,” IEEE J. Quantum Electron. 37, 1525–1530 (2001).
[CrossRef]

Smith, D. R.

Strijbos, R. C.

E. W. Nelson, S. H. Withers, A. V. Muravjov, R. C. Strijbos, R. E. Peale, S. G. Pavlov, V. N. Shastin, C. J. Fredricksen, “High resolution study of composite cavity effects for p-Ge lasers,” IEEE J. Quantum Electron. 37, 1525–1530 (2001).
[CrossRef]

Subramanian, G.

T. W. Du Bosq, R. E. Peale, E. W. Nelson, A. V. Muravjov, D. A. Walters, G. Subramanian, K. B. Sundaram, C. J. Fredricksen, “Wavelength selection for the far-infrared p-Ge laser using etched silicon lamellar gratings,” Opt. Laser Technol. 37, 87–91 (2004).
[CrossRef]

T. W. Du Bosq, E. W. Nelson, A. V. Muravjov, D. A. Walters, G. Subramanian, K. B. Sundaram, R. E. Peale, N. Tache, D. B. Tanner, C. J. Fredricksen, “Etalon, lamellar, and Bragg intracavity wavelength selecting mirrors for the far-infrared p-Ge laser,” presented at Optics in the Southeast 2003, Orlando, Florida, 12–13 November 2003.

Sundaram, K. B.

T. W. Du Bosq, R. E. Peale, E. W. Nelson, A. V. Muravjov, D. A. Walters, G. Subramanian, K. B. Sundaram, C. J. Fredricksen, “Wavelength selection for the far-infrared p-Ge laser using etched silicon lamellar gratings,” Opt. Laser Technol. 37, 87–91 (2004).
[CrossRef]

T. W. Du Bosq, E. W. Nelson, A. V. Muravjov, D. A. Walters, G. Subramanian, K. B. Sundaram, R. E. Peale, N. Tache, D. B. Tanner, C. J. Fredricksen, “Etalon, lamellar, and Bragg intracavity wavelength selecting mirrors for the far-infrared p-Ge laser,” presented at Optics in the Southeast 2003, Orlando, Florida, 12–13 November 2003.

Tache, N.

T. W. Du Bosq, R. E. Peale, E. W. Nelson, A. V. Muravjov, C. J. Fredricksen, N. Tache, D. B. Tanner, “Dielectric selective mirror for intracavity wavelength selection in far-infrared p-Ge lasers,” J. Appl. Phys. 94, 5474–5478 (2003).
[CrossRef]

T. W. Du Bosq, E. W. Nelson, A. V. Muravjov, D. A. Walters, G. Subramanian, K. B. Sundaram, R. E. Peale, N. Tache, D. B. Tanner, C. J. Fredricksen, “Etalon, lamellar, and Bragg intracavity wavelength selecting mirrors for the far-infrared p-Ge laser,” presented at Optics in the Southeast 2003, Orlando, Florida, 12–13 November 2003.

Tanner, D. B.

T. W. Du Bosq, R. E. Peale, E. W. Nelson, A. V. Muravjov, C. J. Fredricksen, N. Tache, D. B. Tanner, “Dielectric selective mirror for intracavity wavelength selection in far-infrared p-Ge lasers,” J. Appl. Phys. 94, 5474–5478 (2003).
[CrossRef]

T. W. Du Bosq, E. W. Nelson, A. V. Muravjov, D. A. Walters, G. Subramanian, K. B. Sundaram, R. E. Peale, N. Tache, D. B. Tanner, C. J. Fredricksen, “Etalon, lamellar, and Bragg intracavity wavelength selecting mirrors for the far-infrared p-Ge laser,” presented at Optics in the Southeast 2003, Orlando, Florida, 12–13 November 2003.

Walters, D. A.

T. W. Du Bosq, R. E. Peale, E. W. Nelson, A. V. Muravjov, D. A. Walters, G. Subramanian, K. B. Sundaram, C. J. Fredricksen, “Wavelength selection for the far-infrared p-Ge laser using etched silicon lamellar gratings,” Opt. Laser Technol. 37, 87–91 (2004).
[CrossRef]

T. W. Du Bosq, E. W. Nelson, A. V. Muravjov, D. A. Walters, G. Subramanian, K. B. Sundaram, R. E. Peale, N. Tache, D. B. Tanner, C. J. Fredricksen, “Etalon, lamellar, and Bragg intracavity wavelength selecting mirrors for the far-infrared p-Ge laser,” presented at Optics in the Southeast 2003, Orlando, Florida, 12–13 November 2003.

Withers, S. H.

E. W. Nelson, S. H. Withers, A. V. Muravjov, R. C. Strijbos, R. E. Peale, S. G. Pavlov, V. N. Shastin, C. J. Fredricksen, “High resolution study of composite cavity effects for p-Ge lasers,” IEEE J. Quantum Electron. 37, 1525–1530 (2001).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

R. Schiwon, G. Schwaab, E. Bründermann, M. Havenith, “Far-infrared multilayer mirrors,” Appl. Phys. Lett. 83, 4119–4121 (2003).
[CrossRef]

IEEE J. Quantum Electron. (1)

E. W. Nelson, S. H. Withers, A. V. Muravjov, R. C. Strijbos, R. E. Peale, S. G. Pavlov, V. N. Shastin, C. J. Fredricksen, “High resolution study of composite cavity effects for p-Ge lasers,” IEEE J. Quantum Electron. 37, 1525–1530 (2001).
[CrossRef]

J. Appl. Phys. (1)

T. W. Du Bosq, R. E. Peale, E. W. Nelson, A. V. Muravjov, C. J. Fredricksen, N. Tache, D. B. Tanner, “Dielectric selective mirror for intracavity wavelength selection in far-infrared p-Ge lasers,” J. Appl. Phys. 94, 5474–5478 (2003).
[CrossRef]

Opt. Laser Technol. (1)

T. W. Du Bosq, R. E. Peale, E. W. Nelson, A. V. Muravjov, D. A. Walters, G. Subramanian, K. B. Sundaram, C. J. Fredricksen, “Wavelength selection for the far-infrared p-Ge laser using etched silicon lamellar gratings,” Opt. Laser Technol. 37, 87–91 (2004).
[CrossRef]

Other (6)

E. Bründermann, “Widely tunable far-infrared hot-hole semiconductor lasers,” in Long-Wavelength Infrared Semiconductor Lasers, H. K. Choi, ed. (Wiley, 2004), pp. 279–350.

P. Brüesch, Phonons: Theory and Experiments II (Springer-Verlag, 1986).

T. W. Du Bosq, E. W. Nelson, A. V. Muravjov, D. A. Walters, G. Subramanian, K. B. Sundaram, R. E. Peale, N. Tache, D. B. Tanner, C. J. Fredricksen, “Etalon, lamellar, and Bragg intracavity wavelength selecting mirrors for the far-infrared p-Ge laser,” presented at Optics in the Southeast 2003, Orlando, Florida, 12–13 November 2003.

T. W. Du Bosq, A. V. Muravjov, R. E. Peale, “High reflectivity intracavity Bragg mirrors for the far-infrared p-Ge laser,” in Terahertz for Military and Security Applications II, M. Novak, ed., Proc. SPIE5411, 167–173 (2004).
[CrossRef]

J. A. Dobrowolski, “Optical properties of films and coatings,” in Handbook of Optics Fundamentals, Techniques, & Design, M. Bass, ed. (McGraw-Hill, 1995), Vol. 1, pp. 42.10–42.11.

T. W. Du Bosq, R. E. Peale, A. V. Muravjov, C. J. Fredricksen, “Fixed wavelength selection for the far-infrared p-Ge laser using thin silicon intracavity etalon,” in Solid State Lasers XII, R. Scheps, ed., Proc. SPIE4968, 119–125 (2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Reflectivity (solid curve) of a three-period Bragg mirror in the emission wavelength range of the p-Ge laser with a Si layer thickness of 24.5 µm and a gap layer thickness of 27.6 µm. A maximum reflectivity of 99.93% is achieved. (Inset) Schematic drawing of the three-period Bragg mirror based on silicon and vacuum layers attached to the endface of an active p-Ge laser crystal.

Fig. 2
Fig. 2

Central high-reflectivity band for a three-period Bragg mirror in the emission wavelength range of the p-Ge laser. The (gap, Si) thicknesses in micrometers are as follows: 1, (24.6, 21.5); 2, (27.6, 21.5); 3, (30.6, 21.5); 4, (24.6, 24.5); 5, (27.6, 24.5); 6, (30.6, 24.5); 7, (24.6, 27.5); 8, (27.6, 27.5); 9, (30.6, 27.5).

Fig. 3
Fig. 3

Top: center wavelengths of bands with peak reflectivity above 95% for a fixed 25 µm gap and variable Si thickness in a three-layer Bragg mirror. Solid symbols indicate the band with highest reflectivity. Bottom: solid curve, maximum value of reflectivity; dashed curve, full width at half-maximum of the band with highest reflectivity.

Fig. 4
Fig. 4

Top, center wavelength of bands with peak reflectivity above 95% for fixed Si layer thickness and variable gap thickness. Solid symbols indicate the band with highest reflectivity. Bottom: solid curve, maximum value of reflectivity; dashed curve, full width at half-maximum of the band with highest reflectivity.

Fig. 5
Fig. 5

Top, center wavelength of bands with reflectivity above 95% versus Si and gap thickness, which are the same. Solid symbols denote the band with the highest reflectivity. Bottom: solid curve, maximum value of reflectivity; dashed curve, full width at half-maximum for the band with highest reflectivity. The vertical line indicates the parameters for Bragg mirror B.

Fig. 6
Fig. 6

Comparison of the laser generation zones for the p-Ge laser by use of two different Bragg mirrors or SrTiO3 mirror. Bragg mirror A is constructed with a 29 µm gap layer thickness and 25 µm Si layer thickness. Bragg mirror B is constructed with a 105 µm Si and gap layer thickness.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

R exp ( 2 α L Ge ) ,

Metrics