Abstract

The effects of CO2 laser heating of pure fused silica are investigated. Studies show that the laser heating process causes a small volume of glass to be left in an altered microstructural state. To measure the refractive index of this altered region, a process was developed to create a thin film of altered glass. Samples were measured with a prism coupler, and a theoretical model was developed to predict the intensity values collected during the measurement. A least-squares routine was used to determine the refractive index that results in the best fit between the experimental and predicted intensity data. The refractive index in the altered glass was found to increase by approximately 0.07%.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. P. Pham, “Planar lightguide circuits: an emerging market for refractive index profile analysis,” Exfo Corporation application note, http://www.exfo.com .
  2. K. Okamoto, “Recent progress of integrated optics planar lightwave circuits,” Opt. Quantum Electron. 31, 107–129 (1999).
    [CrossRef]
  3. R. E. Schenker, W. G. Oldham, “Ultraviolet-induced densification in fused silica,” J. Appl. Phys. 82, 1065–1071 (1997).
    [CrossRef]
  4. T. Dennis, E. M. Gill, S. L. Gilbert, “Interferometric measurement of refractive-index change in photosensitive glass,” Appl. Opt. 40, 1663–1667 (2001).
    [CrossRef]
  5. J. Koo, R. B. Williams, C. B. E. Gawith, S. P. Watts, G. D. Emmerson, V. Albanis, P. G. R. Smith, M. C. Grossel, “UV written waveguide devices using crosslinkable PMMA-based copolymers,” Electron. Lett 39, 394–395 (2003).
    [CrossRef]
  6. T. Kada, A. Obara, T. Watanabe, S. Miyata, C. X. Liang, H. Machida, K. Kiso, “Fabrication of refractive index distributions in polymer using a photochemical reaction,” J. Appl. Phys. 87, 638–642 (2000).
    [CrossRef]
  7. P. J. Scully, R. Bartlett, S. Caulder, P. Eldridge, R. Chandy, J. McTavish, V. Alexiou, I. P. Clarke, M. Towrie, A. W. Parker, “UV laser photo-induced refractive index changes in poly methyl methacrylate and plastic optical fibres for application as sensors and devices,” presented at the 14th International Conference on Optical Fibre Sensors, Venice, Italy, 11–13 October 2000.
  8. H. M. Presby, W. L. Brown, “Refractive index variations in proton-bombarded fused silica,” Appl. Phys. Lett. 24, 511–513 (1974).
    [CrossRef]
  9. A. Roberts, M. L. von Bibra, “Fabrication of buried channel waveguides in fused silica using focused MeV proton beam irradiation,” J. Lightwave Technol. 14, 2554–2557 (1996).
    [CrossRef]
  10. M. L. von Bibra, A. Roberts, S. D. Dods, “Ion beam energy attenuation for fabrication of buried, variable-depth, optical waveguides,” Nucl. Instrum. Methods Phys. Res. B 168, 47–52 (2000).
    [CrossRef]
  11. W. Hong, H. Woo, H. Choi, Y. Kim, G. Kim, “Optical property modification of PMMA by ion-beam implantation,” Appl. Surf. Sci. 169–170, 428–432 (2001).
    [CrossRef]
  12. T. D. Bennett, D. J. Krajnovich, L. Li, D. Wan, “Mechanism of topography formation during CO2laser texturing of silicate glasses,” J. Appl. Phys. 84, 2897–2905 (1998).
    [CrossRef]
  13. T. D. Bennett, D. J. Krajnovich, L. Li, “Thermophysical modeling of bump formation during CO2 laser texturing of silicate glasses,” J. Appl. Phys. 85, 153–159 (1999).
    [CrossRef]
  14. T. D. Bennett, L. Li, “Modeling laser texturing of silicate glass,” J. Appl. Phys. 89, 942–950 (2001).
    [CrossRef]
  15. A. Q. Tool, “Relation between inelastic deformability and thermal expansion of glass in its annealing range,” J. Am. Ceram. Soc. 29, 240–253 (1946).
    [CrossRef]
  16. T. D. Bennett, M. B. Farrelly, I. Pasta, D. Poulikakos, “Rapid thermal bonding of optical fiber interconnect,” J. Appl. Phys. 97, 34903 (2005).
    [CrossRef]
  17. J. Zhao, J. Sullivan, T. D. Bennett, “Wet etching study of silica glass after cw CO2 laser treatment,” Appl. Surf. Sci. 225, 250–255 (2004).
    [CrossRef]
  18. B. Varughese, Y. Lee, M. Tomozawa, “Effect of fictive temperature on mechanical strength of soda-lime glasses,” J. Non-Cryst. Solids 241, 134–139 (1998).
    [CrossRef]
  19. I. Matthew, M. Tomozawa, “Effect of fictive temperature on the polishing rate of thermally grown silica dioxide,” J. Electrochem. Soc. 148, F98–F101 (2001).
    [CrossRef]
  20. A. Agarwal, M. Tomozawa, “Correlation of silica glass properties with the infrared spectra,” J. Non-Cryst. Solids 209, 166–174 (1997).
    [CrossRef]
  21. U. Haken, O. Humbach, S. Ortner, H. Fabian, “Refractive index of silica glass: influence of fictive temperature,” J. Non-Cryst. Solids 265, 9–18 (2000).
    [CrossRef]
  22. K. Saito, H. Kakiuchida, A. J. Ikushima, “Light-scattering study of the glass transition in silica, with practical implications,” J. Appl. Phys. 84, 3107–3112 (1998).
    [CrossRef]
  23. J. Sullivan, Department of Mechanical and Environmental Engineering, University of California, Santa Barbara, Santa Barbara, Calif. 93106, is preparing a master of science thesis to be called “Thermally induced refractive index change in fused silica due to CO2 laser processing.”
  24. R. C. Faust, “Refractive index determinations by the central illumination (Becke line) method,” Proc. Phys. Soc. B. 68, 1081–1094 (1955).
    [CrossRef]
  25. J. J. Lunazzi, M. Garavaglia, “Fabry–Perot laser interferometry to measure refractive index or thickness of transparent materials,” J. Phys. E. 6, 237–240 (1973).
    [CrossRef]
  26. R. Ulrich, R. Torge, “Measurement of thin film parameters with a prism coupler,” Appl. Opt. 12, 2901–2908 (1973).
    [CrossRef] [PubMed]
  27. P. Chindaudom, K. Vedam, “Characterization of inhomogeneous transparent films,” in Physics of Thin Films, ed. (Academic, 1994), Vol. 19, pp. 191–247.
    [CrossRef]
  28. M. Young, “Optical fiber index profiles by the refracted-ray method (refracted near-field scanning),” Appl. Opt. 20, 3415–3422 (1981).
    [CrossRef] [PubMed]
  29. P. Oberson, B. Gisin, B. Huttner, N. Gisin, “Refracted near-field measurements of refractive index and geometry of silica-on-silicon integrated optical waveguides,” Appl. Opt. 37, 7268–7272 (1998).
    [CrossRef]
  30. M. Q. Brewster, Thermal Radiative Transfer and Properties (Wiley, New York, 1992).
  31. S. Zhu, A. W. Yu, D. Hawley, R. Roy, “Frustrated total internal reflection: a demonstration and review,” Am. J. Phys. 54, 601–606 (1986).
    [CrossRef]
  32. J.-J. Greffet, “Theoretical model of the shift of the Brewster angle on a rough surface,” Opt. Lett. 17, 238–240 (1992).
    [CrossRef] [PubMed]
  33. M. Saillard, D. Maystre, “Scattering from metallic and dielectric rough surfaces,” J. Opt. Soc. Am. A 7, 982–990 (1990).
    [CrossRef]
  34. M. von Bibra, A. Roberts, “Refractive index reconstruction of graded-index buried channel waveguides from their mode intensities,” J. Lightwave Technol. 15, 1695–1699 (1997).
    [CrossRef]
  35. R. Göring, M. Rothhardt, “Application of the refracted near-field technique to multimode planar and channel waveguides in glass,” J. Opt. Commun. 7, 82–85 (1986).
    [CrossRef]

2005 (1)

T. D. Bennett, M. B. Farrelly, I. Pasta, D. Poulikakos, “Rapid thermal bonding of optical fiber interconnect,” J. Appl. Phys. 97, 34903 (2005).
[CrossRef]

2004 (1)

J. Zhao, J. Sullivan, T. D. Bennett, “Wet etching study of silica glass after cw CO2 laser treatment,” Appl. Surf. Sci. 225, 250–255 (2004).
[CrossRef]

2003 (1)

J. Koo, R. B. Williams, C. B. E. Gawith, S. P. Watts, G. D. Emmerson, V. Albanis, P. G. R. Smith, M. C. Grossel, “UV written waveguide devices using crosslinkable PMMA-based copolymers,” Electron. Lett 39, 394–395 (2003).
[CrossRef]

2001 (4)

W. Hong, H. Woo, H. Choi, Y. Kim, G. Kim, “Optical property modification of PMMA by ion-beam implantation,” Appl. Surf. Sci. 169–170, 428–432 (2001).
[CrossRef]

T. D. Bennett, L. Li, “Modeling laser texturing of silicate glass,” J. Appl. Phys. 89, 942–950 (2001).
[CrossRef]

I. Matthew, M. Tomozawa, “Effect of fictive temperature on the polishing rate of thermally grown silica dioxide,” J. Electrochem. Soc. 148, F98–F101 (2001).
[CrossRef]

T. Dennis, E. M. Gill, S. L. Gilbert, “Interferometric measurement of refractive-index change in photosensitive glass,” Appl. Opt. 40, 1663–1667 (2001).
[CrossRef]

2000 (3)

U. Haken, O. Humbach, S. Ortner, H. Fabian, “Refractive index of silica glass: influence of fictive temperature,” J. Non-Cryst. Solids 265, 9–18 (2000).
[CrossRef]

T. Kada, A. Obara, T. Watanabe, S. Miyata, C. X. Liang, H. Machida, K. Kiso, “Fabrication of refractive index distributions in polymer using a photochemical reaction,” J. Appl. Phys. 87, 638–642 (2000).
[CrossRef]

M. L. von Bibra, A. Roberts, S. D. Dods, “Ion beam energy attenuation for fabrication of buried, variable-depth, optical waveguides,” Nucl. Instrum. Methods Phys. Res. B 168, 47–52 (2000).
[CrossRef]

1999 (2)

T. D. Bennett, D. J. Krajnovich, L. Li, “Thermophysical modeling of bump formation during CO2 laser texturing of silicate glasses,” J. Appl. Phys. 85, 153–159 (1999).
[CrossRef]

K. Okamoto, “Recent progress of integrated optics planar lightwave circuits,” Opt. Quantum Electron. 31, 107–129 (1999).
[CrossRef]

1998 (4)

P. Oberson, B. Gisin, B. Huttner, N. Gisin, “Refracted near-field measurements of refractive index and geometry of silica-on-silicon integrated optical waveguides,” Appl. Opt. 37, 7268–7272 (1998).
[CrossRef]

K. Saito, H. Kakiuchida, A. J. Ikushima, “Light-scattering study of the glass transition in silica, with practical implications,” J. Appl. Phys. 84, 3107–3112 (1998).
[CrossRef]

B. Varughese, Y. Lee, M. Tomozawa, “Effect of fictive temperature on mechanical strength of soda-lime glasses,” J. Non-Cryst. Solids 241, 134–139 (1998).
[CrossRef]

T. D. Bennett, D. J. Krajnovich, L. Li, D. Wan, “Mechanism of topography formation during CO2laser texturing of silicate glasses,” J. Appl. Phys. 84, 2897–2905 (1998).
[CrossRef]

1997 (3)

A. Agarwal, M. Tomozawa, “Correlation of silica glass properties with the infrared spectra,” J. Non-Cryst. Solids 209, 166–174 (1997).
[CrossRef]

R. E. Schenker, W. G. Oldham, “Ultraviolet-induced densification in fused silica,” J. Appl. Phys. 82, 1065–1071 (1997).
[CrossRef]

M. von Bibra, A. Roberts, “Refractive index reconstruction of graded-index buried channel waveguides from their mode intensities,” J. Lightwave Technol. 15, 1695–1699 (1997).
[CrossRef]

1996 (1)

A. Roberts, M. L. von Bibra, “Fabrication of buried channel waveguides in fused silica using focused MeV proton beam irradiation,” J. Lightwave Technol. 14, 2554–2557 (1996).
[CrossRef]

1992 (1)

1990 (1)

1986 (2)

R. Göring, M. Rothhardt, “Application of the refracted near-field technique to multimode planar and channel waveguides in glass,” J. Opt. Commun. 7, 82–85 (1986).
[CrossRef]

S. Zhu, A. W. Yu, D. Hawley, R. Roy, “Frustrated total internal reflection: a demonstration and review,” Am. J. Phys. 54, 601–606 (1986).
[CrossRef]

1981 (1)

1974 (1)

H. M. Presby, W. L. Brown, “Refractive index variations in proton-bombarded fused silica,” Appl. Phys. Lett. 24, 511–513 (1974).
[CrossRef]

1973 (2)

J. J. Lunazzi, M. Garavaglia, “Fabry–Perot laser interferometry to measure refractive index or thickness of transparent materials,” J. Phys. E. 6, 237–240 (1973).
[CrossRef]

R. Ulrich, R. Torge, “Measurement of thin film parameters with a prism coupler,” Appl. Opt. 12, 2901–2908 (1973).
[CrossRef] [PubMed]

1955 (1)

R. C. Faust, “Refractive index determinations by the central illumination (Becke line) method,” Proc. Phys. Soc. B. 68, 1081–1094 (1955).
[CrossRef]

1946 (1)

A. Q. Tool, “Relation between inelastic deformability and thermal expansion of glass in its annealing range,” J. Am. Ceram. Soc. 29, 240–253 (1946).
[CrossRef]

Agarwal, A.

A. Agarwal, M. Tomozawa, “Correlation of silica glass properties with the infrared spectra,” J. Non-Cryst. Solids 209, 166–174 (1997).
[CrossRef]

Albanis, V.

J. Koo, R. B. Williams, C. B. E. Gawith, S. P. Watts, G. D. Emmerson, V. Albanis, P. G. R. Smith, M. C. Grossel, “UV written waveguide devices using crosslinkable PMMA-based copolymers,” Electron. Lett 39, 394–395 (2003).
[CrossRef]

Alexiou, V.

P. J. Scully, R. Bartlett, S. Caulder, P. Eldridge, R. Chandy, J. McTavish, V. Alexiou, I. P. Clarke, M. Towrie, A. W. Parker, “UV laser photo-induced refractive index changes in poly methyl methacrylate and plastic optical fibres for application as sensors and devices,” presented at the 14th International Conference on Optical Fibre Sensors, Venice, Italy, 11–13 October 2000.

Bartlett, R.

P. J. Scully, R. Bartlett, S. Caulder, P. Eldridge, R. Chandy, J. McTavish, V. Alexiou, I. P. Clarke, M. Towrie, A. W. Parker, “UV laser photo-induced refractive index changes in poly methyl methacrylate and plastic optical fibres for application as sensors and devices,” presented at the 14th International Conference on Optical Fibre Sensors, Venice, Italy, 11–13 October 2000.

Bennett, T. D.

T. D. Bennett, M. B. Farrelly, I. Pasta, D. Poulikakos, “Rapid thermal bonding of optical fiber interconnect,” J. Appl. Phys. 97, 34903 (2005).
[CrossRef]

J. Zhao, J. Sullivan, T. D. Bennett, “Wet etching study of silica glass after cw CO2 laser treatment,” Appl. Surf. Sci. 225, 250–255 (2004).
[CrossRef]

T. D. Bennett, L. Li, “Modeling laser texturing of silicate glass,” J. Appl. Phys. 89, 942–950 (2001).
[CrossRef]

T. D. Bennett, D. J. Krajnovich, L. Li, “Thermophysical modeling of bump formation during CO2 laser texturing of silicate glasses,” J. Appl. Phys. 85, 153–159 (1999).
[CrossRef]

T. D. Bennett, D. J. Krajnovich, L. Li, D. Wan, “Mechanism of topography formation during CO2laser texturing of silicate glasses,” J. Appl. Phys. 84, 2897–2905 (1998).
[CrossRef]

Brewster, M. Q.

M. Q. Brewster, Thermal Radiative Transfer and Properties (Wiley, New York, 1992).

Brown, W. L.

H. M. Presby, W. L. Brown, “Refractive index variations in proton-bombarded fused silica,” Appl. Phys. Lett. 24, 511–513 (1974).
[CrossRef]

Caulder, S.

P. J. Scully, R. Bartlett, S. Caulder, P. Eldridge, R. Chandy, J. McTavish, V. Alexiou, I. P. Clarke, M. Towrie, A. W. Parker, “UV laser photo-induced refractive index changes in poly methyl methacrylate and plastic optical fibres for application as sensors and devices,” presented at the 14th International Conference on Optical Fibre Sensors, Venice, Italy, 11–13 October 2000.

Chandy, R.

P. J. Scully, R. Bartlett, S. Caulder, P. Eldridge, R. Chandy, J. McTavish, V. Alexiou, I. P. Clarke, M. Towrie, A. W. Parker, “UV laser photo-induced refractive index changes in poly methyl methacrylate and plastic optical fibres for application as sensors and devices,” presented at the 14th International Conference on Optical Fibre Sensors, Venice, Italy, 11–13 October 2000.

Chindaudom, P.

P. Chindaudom, K. Vedam, “Characterization of inhomogeneous transparent films,” in Physics of Thin Films, ed. (Academic, 1994), Vol. 19, pp. 191–247.
[CrossRef]

Choi, H.

W. Hong, H. Woo, H. Choi, Y. Kim, G. Kim, “Optical property modification of PMMA by ion-beam implantation,” Appl. Surf. Sci. 169–170, 428–432 (2001).
[CrossRef]

Clarke, I. P.

P. J. Scully, R. Bartlett, S. Caulder, P. Eldridge, R. Chandy, J. McTavish, V. Alexiou, I. P. Clarke, M. Towrie, A. W. Parker, “UV laser photo-induced refractive index changes in poly methyl methacrylate and plastic optical fibres for application as sensors and devices,” presented at the 14th International Conference on Optical Fibre Sensors, Venice, Italy, 11–13 October 2000.

Dennis, T.

Dods, S. D.

M. L. von Bibra, A. Roberts, S. D. Dods, “Ion beam energy attenuation for fabrication of buried, variable-depth, optical waveguides,” Nucl. Instrum. Methods Phys. Res. B 168, 47–52 (2000).
[CrossRef]

Eldridge, P.

P. J. Scully, R. Bartlett, S. Caulder, P. Eldridge, R. Chandy, J. McTavish, V. Alexiou, I. P. Clarke, M. Towrie, A. W. Parker, “UV laser photo-induced refractive index changes in poly methyl methacrylate and plastic optical fibres for application as sensors and devices,” presented at the 14th International Conference on Optical Fibre Sensors, Venice, Italy, 11–13 October 2000.

Emmerson, G. D.

J. Koo, R. B. Williams, C. B. E. Gawith, S. P. Watts, G. D. Emmerson, V. Albanis, P. G. R. Smith, M. C. Grossel, “UV written waveguide devices using crosslinkable PMMA-based copolymers,” Electron. Lett 39, 394–395 (2003).
[CrossRef]

Fabian, H.

U. Haken, O. Humbach, S. Ortner, H. Fabian, “Refractive index of silica glass: influence of fictive temperature,” J. Non-Cryst. Solids 265, 9–18 (2000).
[CrossRef]

Farrelly, M. B.

T. D. Bennett, M. B. Farrelly, I. Pasta, D. Poulikakos, “Rapid thermal bonding of optical fiber interconnect,” J. Appl. Phys. 97, 34903 (2005).
[CrossRef]

Faust, R. C.

R. C. Faust, “Refractive index determinations by the central illumination (Becke line) method,” Proc. Phys. Soc. B. 68, 1081–1094 (1955).
[CrossRef]

Garavaglia, M.

J. J. Lunazzi, M. Garavaglia, “Fabry–Perot laser interferometry to measure refractive index or thickness of transparent materials,” J. Phys. E. 6, 237–240 (1973).
[CrossRef]

Gawith, C. B. E.

J. Koo, R. B. Williams, C. B. E. Gawith, S. P. Watts, G. D. Emmerson, V. Albanis, P. G. R. Smith, M. C. Grossel, “UV written waveguide devices using crosslinkable PMMA-based copolymers,” Electron. Lett 39, 394–395 (2003).
[CrossRef]

Gilbert, S. L.

Gill, E. M.

Gisin, B.

Gisin, N.

Göring, R.

R. Göring, M. Rothhardt, “Application of the refracted near-field technique to multimode planar and channel waveguides in glass,” J. Opt. Commun. 7, 82–85 (1986).
[CrossRef]

Greffet, J.-J.

Grossel, M. C.

J. Koo, R. B. Williams, C. B. E. Gawith, S. P. Watts, G. D. Emmerson, V. Albanis, P. G. R. Smith, M. C. Grossel, “UV written waveguide devices using crosslinkable PMMA-based copolymers,” Electron. Lett 39, 394–395 (2003).
[CrossRef]

Haken, U.

U. Haken, O. Humbach, S. Ortner, H. Fabian, “Refractive index of silica glass: influence of fictive temperature,” J. Non-Cryst. Solids 265, 9–18 (2000).
[CrossRef]

Hawley, D.

S. Zhu, A. W. Yu, D. Hawley, R. Roy, “Frustrated total internal reflection: a demonstration and review,” Am. J. Phys. 54, 601–606 (1986).
[CrossRef]

Hong, W.

W. Hong, H. Woo, H. Choi, Y. Kim, G. Kim, “Optical property modification of PMMA by ion-beam implantation,” Appl. Surf. Sci. 169–170, 428–432 (2001).
[CrossRef]

Humbach, O.

U. Haken, O. Humbach, S. Ortner, H. Fabian, “Refractive index of silica glass: influence of fictive temperature,” J. Non-Cryst. Solids 265, 9–18 (2000).
[CrossRef]

Huttner, B.

Ikushima, A. J.

K. Saito, H. Kakiuchida, A. J. Ikushima, “Light-scattering study of the glass transition in silica, with practical implications,” J. Appl. Phys. 84, 3107–3112 (1998).
[CrossRef]

Kada, T.

T. Kada, A. Obara, T. Watanabe, S. Miyata, C. X. Liang, H. Machida, K. Kiso, “Fabrication of refractive index distributions in polymer using a photochemical reaction,” J. Appl. Phys. 87, 638–642 (2000).
[CrossRef]

Kakiuchida, H.

K. Saito, H. Kakiuchida, A. J. Ikushima, “Light-scattering study of the glass transition in silica, with practical implications,” J. Appl. Phys. 84, 3107–3112 (1998).
[CrossRef]

Kim, G.

W. Hong, H. Woo, H. Choi, Y. Kim, G. Kim, “Optical property modification of PMMA by ion-beam implantation,” Appl. Surf. Sci. 169–170, 428–432 (2001).
[CrossRef]

Kim, Y.

W. Hong, H. Woo, H. Choi, Y. Kim, G. Kim, “Optical property modification of PMMA by ion-beam implantation,” Appl. Surf. Sci. 169–170, 428–432 (2001).
[CrossRef]

Kiso, K.

T. Kada, A. Obara, T. Watanabe, S. Miyata, C. X. Liang, H. Machida, K. Kiso, “Fabrication of refractive index distributions in polymer using a photochemical reaction,” J. Appl. Phys. 87, 638–642 (2000).
[CrossRef]

Koo, J.

J. Koo, R. B. Williams, C. B. E. Gawith, S. P. Watts, G. D. Emmerson, V. Albanis, P. G. R. Smith, M. C. Grossel, “UV written waveguide devices using crosslinkable PMMA-based copolymers,” Electron. Lett 39, 394–395 (2003).
[CrossRef]

Krajnovich, D. J.

T. D. Bennett, D. J. Krajnovich, L. Li, “Thermophysical modeling of bump formation during CO2 laser texturing of silicate glasses,” J. Appl. Phys. 85, 153–159 (1999).
[CrossRef]

T. D. Bennett, D. J. Krajnovich, L. Li, D. Wan, “Mechanism of topography formation during CO2laser texturing of silicate glasses,” J. Appl. Phys. 84, 2897–2905 (1998).
[CrossRef]

Lee, Y.

B. Varughese, Y. Lee, M. Tomozawa, “Effect of fictive temperature on mechanical strength of soda-lime glasses,” J. Non-Cryst. Solids 241, 134–139 (1998).
[CrossRef]

Li, L.

T. D. Bennett, L. Li, “Modeling laser texturing of silicate glass,” J. Appl. Phys. 89, 942–950 (2001).
[CrossRef]

T. D. Bennett, D. J. Krajnovich, L. Li, “Thermophysical modeling of bump formation during CO2 laser texturing of silicate glasses,” J. Appl. Phys. 85, 153–159 (1999).
[CrossRef]

T. D. Bennett, D. J. Krajnovich, L. Li, D. Wan, “Mechanism of topography formation during CO2laser texturing of silicate glasses,” J. Appl. Phys. 84, 2897–2905 (1998).
[CrossRef]

Liang, C. X.

T. Kada, A. Obara, T. Watanabe, S. Miyata, C. X. Liang, H. Machida, K. Kiso, “Fabrication of refractive index distributions in polymer using a photochemical reaction,” J. Appl. Phys. 87, 638–642 (2000).
[CrossRef]

Lunazzi, J. J.

J. J. Lunazzi, M. Garavaglia, “Fabry–Perot laser interferometry to measure refractive index or thickness of transparent materials,” J. Phys. E. 6, 237–240 (1973).
[CrossRef]

Machida, H.

T. Kada, A. Obara, T. Watanabe, S. Miyata, C. X. Liang, H. Machida, K. Kiso, “Fabrication of refractive index distributions in polymer using a photochemical reaction,” J. Appl. Phys. 87, 638–642 (2000).
[CrossRef]

Matthew, I.

I. Matthew, M. Tomozawa, “Effect of fictive temperature on the polishing rate of thermally grown silica dioxide,” J. Electrochem. Soc. 148, F98–F101 (2001).
[CrossRef]

Maystre, D.

McTavish, J.

P. J. Scully, R. Bartlett, S. Caulder, P. Eldridge, R. Chandy, J. McTavish, V. Alexiou, I. P. Clarke, M. Towrie, A. W. Parker, “UV laser photo-induced refractive index changes in poly methyl methacrylate and plastic optical fibres for application as sensors and devices,” presented at the 14th International Conference on Optical Fibre Sensors, Venice, Italy, 11–13 October 2000.

Miyata, S.

T. Kada, A. Obara, T. Watanabe, S. Miyata, C. X. Liang, H. Machida, K. Kiso, “Fabrication of refractive index distributions in polymer using a photochemical reaction,” J. Appl. Phys. 87, 638–642 (2000).
[CrossRef]

Obara, A.

T. Kada, A. Obara, T. Watanabe, S. Miyata, C. X. Liang, H. Machida, K. Kiso, “Fabrication of refractive index distributions in polymer using a photochemical reaction,” J. Appl. Phys. 87, 638–642 (2000).
[CrossRef]

Oberson, P.

Okamoto, K.

K. Okamoto, “Recent progress of integrated optics planar lightwave circuits,” Opt. Quantum Electron. 31, 107–129 (1999).
[CrossRef]

Oldham, W. G.

R. E. Schenker, W. G. Oldham, “Ultraviolet-induced densification in fused silica,” J. Appl. Phys. 82, 1065–1071 (1997).
[CrossRef]

Ortner, S.

U. Haken, O. Humbach, S. Ortner, H. Fabian, “Refractive index of silica glass: influence of fictive temperature,” J. Non-Cryst. Solids 265, 9–18 (2000).
[CrossRef]

Parker, A. W.

P. J. Scully, R. Bartlett, S. Caulder, P. Eldridge, R. Chandy, J. McTavish, V. Alexiou, I. P. Clarke, M. Towrie, A. W. Parker, “UV laser photo-induced refractive index changes in poly methyl methacrylate and plastic optical fibres for application as sensors and devices,” presented at the 14th International Conference on Optical Fibre Sensors, Venice, Italy, 11–13 October 2000.

Pasta, I.

T. D. Bennett, M. B. Farrelly, I. Pasta, D. Poulikakos, “Rapid thermal bonding of optical fiber interconnect,” J. Appl. Phys. 97, 34903 (2005).
[CrossRef]

Poulikakos, D.

T. D. Bennett, M. B. Farrelly, I. Pasta, D. Poulikakos, “Rapid thermal bonding of optical fiber interconnect,” J. Appl. Phys. 97, 34903 (2005).
[CrossRef]

Presby, H. M.

H. M. Presby, W. L. Brown, “Refractive index variations in proton-bombarded fused silica,” Appl. Phys. Lett. 24, 511–513 (1974).
[CrossRef]

Roberts, A.

M. L. von Bibra, A. Roberts, S. D. Dods, “Ion beam energy attenuation for fabrication of buried, variable-depth, optical waveguides,” Nucl. Instrum. Methods Phys. Res. B 168, 47–52 (2000).
[CrossRef]

M. von Bibra, A. Roberts, “Refractive index reconstruction of graded-index buried channel waveguides from their mode intensities,” J. Lightwave Technol. 15, 1695–1699 (1997).
[CrossRef]

A. Roberts, M. L. von Bibra, “Fabrication of buried channel waveguides in fused silica using focused MeV proton beam irradiation,” J. Lightwave Technol. 14, 2554–2557 (1996).
[CrossRef]

Rothhardt, M.

R. Göring, M. Rothhardt, “Application of the refracted near-field technique to multimode planar and channel waveguides in glass,” J. Opt. Commun. 7, 82–85 (1986).
[CrossRef]

Roy, R.

S. Zhu, A. W. Yu, D. Hawley, R. Roy, “Frustrated total internal reflection: a demonstration and review,” Am. J. Phys. 54, 601–606 (1986).
[CrossRef]

Saillard, M.

Saito, K.

K. Saito, H. Kakiuchida, A. J. Ikushima, “Light-scattering study of the glass transition in silica, with practical implications,” J. Appl. Phys. 84, 3107–3112 (1998).
[CrossRef]

Schenker, R. E.

R. E. Schenker, W. G. Oldham, “Ultraviolet-induced densification in fused silica,” J. Appl. Phys. 82, 1065–1071 (1997).
[CrossRef]

Scully, P. J.

P. J. Scully, R. Bartlett, S. Caulder, P. Eldridge, R. Chandy, J. McTavish, V. Alexiou, I. P. Clarke, M. Towrie, A. W. Parker, “UV laser photo-induced refractive index changes in poly methyl methacrylate and plastic optical fibres for application as sensors and devices,” presented at the 14th International Conference on Optical Fibre Sensors, Venice, Italy, 11–13 October 2000.

Smith, P. G. R.

J. Koo, R. B. Williams, C. B. E. Gawith, S. P. Watts, G. D. Emmerson, V. Albanis, P. G. R. Smith, M. C. Grossel, “UV written waveguide devices using crosslinkable PMMA-based copolymers,” Electron. Lett 39, 394–395 (2003).
[CrossRef]

Sullivan, J.

J. Zhao, J. Sullivan, T. D. Bennett, “Wet etching study of silica glass after cw CO2 laser treatment,” Appl. Surf. Sci. 225, 250–255 (2004).
[CrossRef]

J. Sullivan, Department of Mechanical and Environmental Engineering, University of California, Santa Barbara, Santa Barbara, Calif. 93106, is preparing a master of science thesis to be called “Thermally induced refractive index change in fused silica due to CO2 laser processing.”

Tomozawa, M.

I. Matthew, M. Tomozawa, “Effect of fictive temperature on the polishing rate of thermally grown silica dioxide,” J. Electrochem. Soc. 148, F98–F101 (2001).
[CrossRef]

B. Varughese, Y. Lee, M. Tomozawa, “Effect of fictive temperature on mechanical strength of soda-lime glasses,” J. Non-Cryst. Solids 241, 134–139 (1998).
[CrossRef]

A. Agarwal, M. Tomozawa, “Correlation of silica glass properties with the infrared spectra,” J. Non-Cryst. Solids 209, 166–174 (1997).
[CrossRef]

Tool, A. Q.

A. Q. Tool, “Relation between inelastic deformability and thermal expansion of glass in its annealing range,” J. Am. Ceram. Soc. 29, 240–253 (1946).
[CrossRef]

Torge, R.

Towrie, M.

P. J. Scully, R. Bartlett, S. Caulder, P. Eldridge, R. Chandy, J. McTavish, V. Alexiou, I. P. Clarke, M. Towrie, A. W. Parker, “UV laser photo-induced refractive index changes in poly methyl methacrylate and plastic optical fibres for application as sensors and devices,” presented at the 14th International Conference on Optical Fibre Sensors, Venice, Italy, 11–13 October 2000.

Ulrich, R.

Varughese, B.

B. Varughese, Y. Lee, M. Tomozawa, “Effect of fictive temperature on mechanical strength of soda-lime glasses,” J. Non-Cryst. Solids 241, 134–139 (1998).
[CrossRef]

Vedam, K.

P. Chindaudom, K. Vedam, “Characterization of inhomogeneous transparent films,” in Physics of Thin Films, ed. (Academic, 1994), Vol. 19, pp. 191–247.
[CrossRef]

von Bibra, M.

M. von Bibra, A. Roberts, “Refractive index reconstruction of graded-index buried channel waveguides from their mode intensities,” J. Lightwave Technol. 15, 1695–1699 (1997).
[CrossRef]

von Bibra, M. L.

M. L. von Bibra, A. Roberts, S. D. Dods, “Ion beam energy attenuation for fabrication of buried, variable-depth, optical waveguides,” Nucl. Instrum. Methods Phys. Res. B 168, 47–52 (2000).
[CrossRef]

A. Roberts, M. L. von Bibra, “Fabrication of buried channel waveguides in fused silica using focused MeV proton beam irradiation,” J. Lightwave Technol. 14, 2554–2557 (1996).
[CrossRef]

Wan, D.

T. D. Bennett, D. J. Krajnovich, L. Li, D. Wan, “Mechanism of topography formation during CO2laser texturing of silicate glasses,” J. Appl. Phys. 84, 2897–2905 (1998).
[CrossRef]

Watanabe, T.

T. Kada, A. Obara, T. Watanabe, S. Miyata, C. X. Liang, H. Machida, K. Kiso, “Fabrication of refractive index distributions in polymer using a photochemical reaction,” J. Appl. Phys. 87, 638–642 (2000).
[CrossRef]

Watts, S. P.

J. Koo, R. B. Williams, C. B. E. Gawith, S. P. Watts, G. D. Emmerson, V. Albanis, P. G. R. Smith, M. C. Grossel, “UV written waveguide devices using crosslinkable PMMA-based copolymers,” Electron. Lett 39, 394–395 (2003).
[CrossRef]

Williams, R. B.

J. Koo, R. B. Williams, C. B. E. Gawith, S. P. Watts, G. D. Emmerson, V. Albanis, P. G. R. Smith, M. C. Grossel, “UV written waveguide devices using crosslinkable PMMA-based copolymers,” Electron. Lett 39, 394–395 (2003).
[CrossRef]

Woo, H.

W. Hong, H. Woo, H. Choi, Y. Kim, G. Kim, “Optical property modification of PMMA by ion-beam implantation,” Appl. Surf. Sci. 169–170, 428–432 (2001).
[CrossRef]

Young, M.

Yu, A. W.

S. Zhu, A. W. Yu, D. Hawley, R. Roy, “Frustrated total internal reflection: a demonstration and review,” Am. J. Phys. 54, 601–606 (1986).
[CrossRef]

Zhao, J.

J. Zhao, J. Sullivan, T. D. Bennett, “Wet etching study of silica glass after cw CO2 laser treatment,” Appl. Surf. Sci. 225, 250–255 (2004).
[CrossRef]

Zhu, S.

S. Zhu, A. W. Yu, D. Hawley, R. Roy, “Frustrated total internal reflection: a demonstration and review,” Am. J. Phys. 54, 601–606 (1986).
[CrossRef]

Am. J. Phys. (1)

S. Zhu, A. W. Yu, D. Hawley, R. Roy, “Frustrated total internal reflection: a demonstration and review,” Am. J. Phys. 54, 601–606 (1986).
[CrossRef]

Appl. Opt. (4)

Appl. Phys. Lett. (1)

H. M. Presby, W. L. Brown, “Refractive index variations in proton-bombarded fused silica,” Appl. Phys. Lett. 24, 511–513 (1974).
[CrossRef]

Appl. Surf. Sci. (2)

W. Hong, H. Woo, H. Choi, Y. Kim, G. Kim, “Optical property modification of PMMA by ion-beam implantation,” Appl. Surf. Sci. 169–170, 428–432 (2001).
[CrossRef]

J. Zhao, J. Sullivan, T. D. Bennett, “Wet etching study of silica glass after cw CO2 laser treatment,” Appl. Surf. Sci. 225, 250–255 (2004).
[CrossRef]

Electron. Lett (1)

J. Koo, R. B. Williams, C. B. E. Gawith, S. P. Watts, G. D. Emmerson, V. Albanis, P. G. R. Smith, M. C. Grossel, “UV written waveguide devices using crosslinkable PMMA-based copolymers,” Electron. Lett 39, 394–395 (2003).
[CrossRef]

J. Am. Ceram. Soc. (1)

A. Q. Tool, “Relation between inelastic deformability and thermal expansion of glass in its annealing range,” J. Am. Ceram. Soc. 29, 240–253 (1946).
[CrossRef]

J. Appl. Phys. (7)

T. D. Bennett, M. B. Farrelly, I. Pasta, D. Poulikakos, “Rapid thermal bonding of optical fiber interconnect,” J. Appl. Phys. 97, 34903 (2005).
[CrossRef]

K. Saito, H. Kakiuchida, A. J. Ikushima, “Light-scattering study of the glass transition in silica, with practical implications,” J. Appl. Phys. 84, 3107–3112 (1998).
[CrossRef]

T. Kada, A. Obara, T. Watanabe, S. Miyata, C. X. Liang, H. Machida, K. Kiso, “Fabrication of refractive index distributions in polymer using a photochemical reaction,” J. Appl. Phys. 87, 638–642 (2000).
[CrossRef]

T. D. Bennett, D. J. Krajnovich, L. Li, D. Wan, “Mechanism of topography formation during CO2laser texturing of silicate glasses,” J. Appl. Phys. 84, 2897–2905 (1998).
[CrossRef]

T. D. Bennett, D. J. Krajnovich, L. Li, “Thermophysical modeling of bump formation during CO2 laser texturing of silicate glasses,” J. Appl. Phys. 85, 153–159 (1999).
[CrossRef]

T. D. Bennett, L. Li, “Modeling laser texturing of silicate glass,” J. Appl. Phys. 89, 942–950 (2001).
[CrossRef]

R. E. Schenker, W. G. Oldham, “Ultraviolet-induced densification in fused silica,” J. Appl. Phys. 82, 1065–1071 (1997).
[CrossRef]

J. Electrochem. Soc. (1)

I. Matthew, M. Tomozawa, “Effect of fictive temperature on the polishing rate of thermally grown silica dioxide,” J. Electrochem. Soc. 148, F98–F101 (2001).
[CrossRef]

J. Lightwave Technol. (2)

A. Roberts, M. L. von Bibra, “Fabrication of buried channel waveguides in fused silica using focused MeV proton beam irradiation,” J. Lightwave Technol. 14, 2554–2557 (1996).
[CrossRef]

M. von Bibra, A. Roberts, “Refractive index reconstruction of graded-index buried channel waveguides from their mode intensities,” J. Lightwave Technol. 15, 1695–1699 (1997).
[CrossRef]

J. Non-Cryst. Solids (3)

A. Agarwal, M. Tomozawa, “Correlation of silica glass properties with the infrared spectra,” J. Non-Cryst. Solids 209, 166–174 (1997).
[CrossRef]

U. Haken, O. Humbach, S. Ortner, H. Fabian, “Refractive index of silica glass: influence of fictive temperature,” J. Non-Cryst. Solids 265, 9–18 (2000).
[CrossRef]

B. Varughese, Y. Lee, M. Tomozawa, “Effect of fictive temperature on mechanical strength of soda-lime glasses,” J. Non-Cryst. Solids 241, 134–139 (1998).
[CrossRef]

J. Opt. Commun. (1)

R. Göring, M. Rothhardt, “Application of the refracted near-field technique to multimode planar and channel waveguides in glass,” J. Opt. Commun. 7, 82–85 (1986).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Phys. E. (1)

J. J. Lunazzi, M. Garavaglia, “Fabry–Perot laser interferometry to measure refractive index or thickness of transparent materials,” J. Phys. E. 6, 237–240 (1973).
[CrossRef]

Nucl. Instrum. Methods Phys. Res. B (1)

M. L. von Bibra, A. Roberts, S. D. Dods, “Ion beam energy attenuation for fabrication of buried, variable-depth, optical waveguides,” Nucl. Instrum. Methods Phys. Res. B 168, 47–52 (2000).
[CrossRef]

Opt. Lett. (1)

Opt. Quantum Electron. (1)

K. Okamoto, “Recent progress of integrated optics planar lightwave circuits,” Opt. Quantum Electron. 31, 107–129 (1999).
[CrossRef]

Proc. Phys. Soc. B. (1)

R. C. Faust, “Refractive index determinations by the central illumination (Becke line) method,” Proc. Phys. Soc. B. 68, 1081–1094 (1955).
[CrossRef]

Other (5)

V. P. Pham, “Planar lightguide circuits: an emerging market for refractive index profile analysis,” Exfo Corporation application note, http://www.exfo.com .

P. Chindaudom, K. Vedam, “Characterization of inhomogeneous transparent films,” in Physics of Thin Films, ed. (Academic, 1994), Vol. 19, pp. 191–247.
[CrossRef]

M. Q. Brewster, Thermal Radiative Transfer and Properties (Wiley, New York, 1992).

P. J. Scully, R. Bartlett, S. Caulder, P. Eldridge, R. Chandy, J. McTavish, V. Alexiou, I. P. Clarke, M. Towrie, A. W. Parker, “UV laser photo-induced refractive index changes in poly methyl methacrylate and plastic optical fibres for application as sensors and devices,” presented at the 14th International Conference on Optical Fibre Sensors, Venice, Italy, 11–13 October 2000.

J. Sullivan, Department of Mechanical and Environmental Engineering, University of California, Santa Barbara, Santa Barbara, Calif. 93106, is preparing a master of science thesis to be called “Thermally induced refractive index change in fused silica due to CO2 laser processing.”

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Typical shape of the treated region in a fused-silica sample. Inset, fictive temperature map for the treated region during CO2 laser processing.

Fig. 2
Fig. 2

Schematic diagrams for prism coupler measurement: (a) full system, including air gap, (b) interaction at the prism–sample interface for the thin film sample (no air gap).

Fig. 3
Fig. 3

(a) Intensity profile measured by the prism coupler for the thin film sample of fused silica, (b) blowup of the region near the initial knee.

Fig. 4
Fig. 4

Thin-film reflectivity plotted alongside reflectivity profiles for bulk samples at the film and substrate index. The thin-film profile is for a film thickness of 10 µm.

Fig. 5
Fig. 5

Experimental intensity plot of a bulk fused-silica sample, along with a best-fit profile from the theoretical model.

Fig. 6
Fig. 6

Experimental intensity plot and theoretically predicted profile for a spindle-generated thin-film sample.

Tables (1)

Tables Icon

Table 1 Treatment Conditions and Fitting Results for Thin-Film Fused-Silica Samples

Equations (15)

Equations on this page are rendered with MathJax. Learn more.

n s = n p sin θ p , cr ,
ϕ = 4 π n f h cos θ 2 λ 0 ,
R film = r 12 2 + r 23 2 + 2 r 12 r 23 cos ϕ 1 + r 12 2 r 23 2 + 2 r 12 r 23 cos ϕ ,
r 12 = n p cos θ 1 n f cos θ 2 n p cos θ 1 + n f cos θ 2 ,
r 23 = n f cos θ 2 n s cos θ 3 n f cos θ 2 + n s cos θ 3 .
R = | r 12 | 2 .
1 T gap = α sinh 2 y + β ,
y = 2 π d λ 0 ( n p 2 sin 2 θ p n air 2 ) 1 / 2 ,
α = ( N 2 1 ) ( n 2 N 2 1 ) 4 N 2 cos θ p ( N 2 sin 2 θ p 1 ) ( n 2 sin 2 θ p ) 1 / 2 ,
β = [ ( n 2 sin 2 θ p ) 1 / 2 + cos θ p ] 2 4 cos θ p ( n 2 sin 2 θ p ) 1 / 2 ,
n = n s n p ,
N = n p n air .
R gap = 1 T gap .
I det = l ( 1 R ap ) ( 1 R pa ) R gap .
I exp = ( I det offset ) × gain .

Metrics