Abstract

Using a theory of quasi-three-level laser ions, we obtained the optimum thickness of the gain medium of Yb:YAG. For the parameters of the oscillator and the amplifier of the diode-pumped Lucia laser (Lasers Ultra-Courts et Intense et Applications), which will deliver a 100 J, 10 Hz, 10 ns pulse train the optimum thicknesses are, respectively, 1.4 and 1.6 mm, with a concentration of 10 at. %. Simulations indicate that the bending of such a thin medium is great but can be eliminated by substitution of a composite gain medium. The optimum thickness of undoped YAG is related to that of Yb:YAG and is also dependent on cooling conditions. Results show that, for a small-aperture oscillator, we can obtain both minimum bending and optical distortion at several doping concentrations. However, greater doping (∼20 at. %) is preferred for a large-aperture amplifier. The results reported will be helpful for the design of gain media for high-average-power thin disk Yb:YAG lasers.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J.-C. Chanteloup, H. Yu, G. Bourdet, S. Ferré, A. Fülöp, S. Le Moal, C. Dambrine, A. Pichot, G. Le Touzé, Z. Zhao, “Overview of the Lucia laser program: towards 100-joules, nanosecond pulse, kW averaged power, based on ytterbium diodepumped solid state laser,” in Solid State Lasers XIV: Technology and Devices, H. J. Hoffman, R. K. Short, eds., Proc. SPIE5707, 105–116 (2005).
  2. A. Bayramian, R. Beach, C. Bibeau, J.-C. Chanteloup, C. Ebbers, M. Emanuel, B. Freitas, S. Fulkerson, K. Kanz, A. Hinz, C. Marshall, S. Mills, H. Nakano, C. Orth, J. Rothenberg, K. Schaffers, L. Seppala, J. Skidmore, L. Smith, S. Sutton, S. Telford, L. Zapata, “Mercury: next generation laser for high energy density physics SI-014,” (Lawrence Livermore National Laboratory, 2000).
  3. J. Hein, S. Podleska, M. Siebold, M. Hellwing, R. Bodefeld, R. Sauerbey, D. Ehrt, W. Winizer, “Diode-pumped chirped pulse amplifiers to the joule level,” Appl. Phys. B 79, 419–422 (2004).
    [CrossRef]
  4. G. L. Bourdet, “Comparison of pulse amplification performances in longitudinally pumped ytterbium doped materials,” Opt. Commun. 200, 331–342 (2001).
    [CrossRef]
  5. J. Dong, M. Bass, Y. Mao, P. Deng, F. Gan, “Dependence of the Yb3 + emission cross section and lifetime on temperature and concentration in yttrium aluminum garnet,” J. Opt. Soc. Am. B 20, 1975–1979 (2003).
    [CrossRef]
  6. Z. Zhao, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, 390 Qinghe Road Jiading, P.O. Box 800-211, 201800 Shanghai, China (personal communication, 2005).
  7. G. L. Bourdet, “Numerical simulation of a high-average-power diode-pumped ytterbium-doped YAG laser with an unstable cavity and a super-Gaussian mirror,” Appl. Opt. 44, 1018–1027 (2005).
    [CrossRef] [PubMed]
  8. T. Y. Fan, “Heat generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29, 1457–1459 (1993).
    [CrossRef]
  9. R. Gaumé, B. Viana, D. Vivien, J.-P. Roger, D. Fournier, “A simple model for prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83, 1355–1357 (2003).
    [CrossRef]
  10. F. D. Patel, E. C. Honea, J. S. Speth, A. Payne, R. Hutcheson, R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron. 37, 135–144 (2001).
    [CrossRef]
  11. S. B. Ubizskii, A. O. Matkovskii, S. S. Melnyk, I. M. Syvorotka, V. Müller, V. Peters, K. Petermann, A. Beyertt, A. Giesen, “Optical properties of epitaxial YAG:Yb films,” Phys. Status Solidi A 201, 791–797 (2004).
    [CrossRef]

2005 (1)

2004 (2)

S. B. Ubizskii, A. O. Matkovskii, S. S. Melnyk, I. M. Syvorotka, V. Müller, V. Peters, K. Petermann, A. Beyertt, A. Giesen, “Optical properties of epitaxial YAG:Yb films,” Phys. Status Solidi A 201, 791–797 (2004).
[CrossRef]

J. Hein, S. Podleska, M. Siebold, M. Hellwing, R. Bodefeld, R. Sauerbey, D. Ehrt, W. Winizer, “Diode-pumped chirped pulse amplifiers to the joule level,” Appl. Phys. B 79, 419–422 (2004).
[CrossRef]

2003 (2)

R. Gaumé, B. Viana, D. Vivien, J.-P. Roger, D. Fournier, “A simple model for prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83, 1355–1357 (2003).
[CrossRef]

J. Dong, M. Bass, Y. Mao, P. Deng, F. Gan, “Dependence of the Yb3 + emission cross section and lifetime on temperature and concentration in yttrium aluminum garnet,” J. Opt. Soc. Am. B 20, 1975–1979 (2003).
[CrossRef]

2001 (2)

F. D. Patel, E. C. Honea, J. S. Speth, A. Payne, R. Hutcheson, R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron. 37, 135–144 (2001).
[CrossRef]

G. L. Bourdet, “Comparison of pulse amplification performances in longitudinally pumped ytterbium doped materials,” Opt. Commun. 200, 331–342 (2001).
[CrossRef]

1993 (1)

T. Y. Fan, “Heat generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29, 1457–1459 (1993).
[CrossRef]

Bass, M.

Bayramian, A.

A. Bayramian, R. Beach, C. Bibeau, J.-C. Chanteloup, C. Ebbers, M. Emanuel, B. Freitas, S. Fulkerson, K. Kanz, A. Hinz, C. Marshall, S. Mills, H. Nakano, C. Orth, J. Rothenberg, K. Schaffers, L. Seppala, J. Skidmore, L. Smith, S. Sutton, S. Telford, L. Zapata, “Mercury: next generation laser for high energy density physics SI-014,” (Lawrence Livermore National Laboratory, 2000).

Beach, R.

A. Bayramian, R. Beach, C. Bibeau, J.-C. Chanteloup, C. Ebbers, M. Emanuel, B. Freitas, S. Fulkerson, K. Kanz, A. Hinz, C. Marshall, S. Mills, H. Nakano, C. Orth, J. Rothenberg, K. Schaffers, L. Seppala, J. Skidmore, L. Smith, S. Sutton, S. Telford, L. Zapata, “Mercury: next generation laser for high energy density physics SI-014,” (Lawrence Livermore National Laboratory, 2000).

Beyertt, A.

S. B. Ubizskii, A. O. Matkovskii, S. S. Melnyk, I. M. Syvorotka, V. Müller, V. Peters, K. Petermann, A. Beyertt, A. Giesen, “Optical properties of epitaxial YAG:Yb films,” Phys. Status Solidi A 201, 791–797 (2004).
[CrossRef]

Bibeau, C.

A. Bayramian, R. Beach, C. Bibeau, J.-C. Chanteloup, C. Ebbers, M. Emanuel, B. Freitas, S. Fulkerson, K. Kanz, A. Hinz, C. Marshall, S. Mills, H. Nakano, C. Orth, J. Rothenberg, K. Schaffers, L. Seppala, J. Skidmore, L. Smith, S. Sutton, S. Telford, L. Zapata, “Mercury: next generation laser for high energy density physics SI-014,” (Lawrence Livermore National Laboratory, 2000).

Bodefeld, R.

J. Hein, S. Podleska, M. Siebold, M. Hellwing, R. Bodefeld, R. Sauerbey, D. Ehrt, W. Winizer, “Diode-pumped chirped pulse amplifiers to the joule level,” Appl. Phys. B 79, 419–422 (2004).
[CrossRef]

Bourdet, G.

J.-C. Chanteloup, H. Yu, G. Bourdet, S. Ferré, A. Fülöp, S. Le Moal, C. Dambrine, A. Pichot, G. Le Touzé, Z. Zhao, “Overview of the Lucia laser program: towards 100-joules, nanosecond pulse, kW averaged power, based on ytterbium diodepumped solid state laser,” in Solid State Lasers XIV: Technology and Devices, H. J. Hoffman, R. K. Short, eds., Proc. SPIE5707, 105–116 (2005).

Bourdet, G. L.

G. L. Bourdet, “Numerical simulation of a high-average-power diode-pumped ytterbium-doped YAG laser with an unstable cavity and a super-Gaussian mirror,” Appl. Opt. 44, 1018–1027 (2005).
[CrossRef] [PubMed]

G. L. Bourdet, “Comparison of pulse amplification performances in longitudinally pumped ytterbium doped materials,” Opt. Commun. 200, 331–342 (2001).
[CrossRef]

Chanteloup, J.-C.

J.-C. Chanteloup, H. Yu, G. Bourdet, S. Ferré, A. Fülöp, S. Le Moal, C. Dambrine, A. Pichot, G. Le Touzé, Z. Zhao, “Overview of the Lucia laser program: towards 100-joules, nanosecond pulse, kW averaged power, based on ytterbium diodepumped solid state laser,” in Solid State Lasers XIV: Technology and Devices, H. J. Hoffman, R. K. Short, eds., Proc. SPIE5707, 105–116 (2005).

A. Bayramian, R. Beach, C. Bibeau, J.-C. Chanteloup, C. Ebbers, M. Emanuel, B. Freitas, S. Fulkerson, K. Kanz, A. Hinz, C. Marshall, S. Mills, H. Nakano, C. Orth, J. Rothenberg, K. Schaffers, L. Seppala, J. Skidmore, L. Smith, S. Sutton, S. Telford, L. Zapata, “Mercury: next generation laser for high energy density physics SI-014,” (Lawrence Livermore National Laboratory, 2000).

Dambrine, C.

J.-C. Chanteloup, H. Yu, G. Bourdet, S. Ferré, A. Fülöp, S. Le Moal, C. Dambrine, A. Pichot, G. Le Touzé, Z. Zhao, “Overview of the Lucia laser program: towards 100-joules, nanosecond pulse, kW averaged power, based on ytterbium diodepumped solid state laser,” in Solid State Lasers XIV: Technology and Devices, H. J. Hoffman, R. K. Short, eds., Proc. SPIE5707, 105–116 (2005).

Deng, P.

Dong, J.

Ebbers, C.

A. Bayramian, R. Beach, C. Bibeau, J.-C. Chanteloup, C. Ebbers, M. Emanuel, B. Freitas, S. Fulkerson, K. Kanz, A. Hinz, C. Marshall, S. Mills, H. Nakano, C. Orth, J. Rothenberg, K. Schaffers, L. Seppala, J. Skidmore, L. Smith, S. Sutton, S. Telford, L. Zapata, “Mercury: next generation laser for high energy density physics SI-014,” (Lawrence Livermore National Laboratory, 2000).

Ehrt, D.

J. Hein, S. Podleska, M. Siebold, M. Hellwing, R. Bodefeld, R. Sauerbey, D. Ehrt, W. Winizer, “Diode-pumped chirped pulse amplifiers to the joule level,” Appl. Phys. B 79, 419–422 (2004).
[CrossRef]

Emanuel, M.

A. Bayramian, R. Beach, C. Bibeau, J.-C. Chanteloup, C. Ebbers, M. Emanuel, B. Freitas, S. Fulkerson, K. Kanz, A. Hinz, C. Marshall, S. Mills, H. Nakano, C. Orth, J. Rothenberg, K. Schaffers, L. Seppala, J. Skidmore, L. Smith, S. Sutton, S. Telford, L. Zapata, “Mercury: next generation laser for high energy density physics SI-014,” (Lawrence Livermore National Laboratory, 2000).

Equall, R.

F. D. Patel, E. C. Honea, J. S. Speth, A. Payne, R. Hutcheson, R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron. 37, 135–144 (2001).
[CrossRef]

Fan, T. Y.

T. Y. Fan, “Heat generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29, 1457–1459 (1993).
[CrossRef]

Ferré, S.

J.-C. Chanteloup, H. Yu, G. Bourdet, S. Ferré, A. Fülöp, S. Le Moal, C. Dambrine, A. Pichot, G. Le Touzé, Z. Zhao, “Overview of the Lucia laser program: towards 100-joules, nanosecond pulse, kW averaged power, based on ytterbium diodepumped solid state laser,” in Solid State Lasers XIV: Technology and Devices, H. J. Hoffman, R. K. Short, eds., Proc. SPIE5707, 105–116 (2005).

Fournier, D.

R. Gaumé, B. Viana, D. Vivien, J.-P. Roger, D. Fournier, “A simple model for prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83, 1355–1357 (2003).
[CrossRef]

Freitas, B.

A. Bayramian, R. Beach, C. Bibeau, J.-C. Chanteloup, C. Ebbers, M. Emanuel, B. Freitas, S. Fulkerson, K. Kanz, A. Hinz, C. Marshall, S. Mills, H. Nakano, C. Orth, J. Rothenberg, K. Schaffers, L. Seppala, J. Skidmore, L. Smith, S. Sutton, S. Telford, L. Zapata, “Mercury: next generation laser for high energy density physics SI-014,” (Lawrence Livermore National Laboratory, 2000).

Fulkerson, S.

A. Bayramian, R. Beach, C. Bibeau, J.-C. Chanteloup, C. Ebbers, M. Emanuel, B. Freitas, S. Fulkerson, K. Kanz, A. Hinz, C. Marshall, S. Mills, H. Nakano, C. Orth, J. Rothenberg, K. Schaffers, L. Seppala, J. Skidmore, L. Smith, S. Sutton, S. Telford, L. Zapata, “Mercury: next generation laser for high energy density physics SI-014,” (Lawrence Livermore National Laboratory, 2000).

Fülöp, A.

J.-C. Chanteloup, H. Yu, G. Bourdet, S. Ferré, A. Fülöp, S. Le Moal, C. Dambrine, A. Pichot, G. Le Touzé, Z. Zhao, “Overview of the Lucia laser program: towards 100-joules, nanosecond pulse, kW averaged power, based on ytterbium diodepumped solid state laser,” in Solid State Lasers XIV: Technology and Devices, H. J. Hoffman, R. K. Short, eds., Proc. SPIE5707, 105–116 (2005).

Gan, F.

Gaumé, R.

R. Gaumé, B. Viana, D. Vivien, J.-P. Roger, D. Fournier, “A simple model for prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83, 1355–1357 (2003).
[CrossRef]

Giesen, A.

S. B. Ubizskii, A. O. Matkovskii, S. S. Melnyk, I. M. Syvorotka, V. Müller, V. Peters, K. Petermann, A. Beyertt, A. Giesen, “Optical properties of epitaxial YAG:Yb films,” Phys. Status Solidi A 201, 791–797 (2004).
[CrossRef]

Hein, J.

J. Hein, S. Podleska, M. Siebold, M. Hellwing, R. Bodefeld, R. Sauerbey, D. Ehrt, W. Winizer, “Diode-pumped chirped pulse amplifiers to the joule level,” Appl. Phys. B 79, 419–422 (2004).
[CrossRef]

Hellwing, M.

J. Hein, S. Podleska, M. Siebold, M. Hellwing, R. Bodefeld, R. Sauerbey, D. Ehrt, W. Winizer, “Diode-pumped chirped pulse amplifiers to the joule level,” Appl. Phys. B 79, 419–422 (2004).
[CrossRef]

Hinz, A.

A. Bayramian, R. Beach, C. Bibeau, J.-C. Chanteloup, C. Ebbers, M. Emanuel, B. Freitas, S. Fulkerson, K. Kanz, A. Hinz, C. Marshall, S. Mills, H. Nakano, C. Orth, J. Rothenberg, K. Schaffers, L. Seppala, J. Skidmore, L. Smith, S. Sutton, S. Telford, L. Zapata, “Mercury: next generation laser for high energy density physics SI-014,” (Lawrence Livermore National Laboratory, 2000).

Honea, E. C.

F. D. Patel, E. C. Honea, J. S. Speth, A. Payne, R. Hutcheson, R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron. 37, 135–144 (2001).
[CrossRef]

Hutcheson, R.

F. D. Patel, E. C. Honea, J. S. Speth, A. Payne, R. Hutcheson, R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron. 37, 135–144 (2001).
[CrossRef]

Kanz, K.

A. Bayramian, R. Beach, C. Bibeau, J.-C. Chanteloup, C. Ebbers, M. Emanuel, B. Freitas, S. Fulkerson, K. Kanz, A. Hinz, C. Marshall, S. Mills, H. Nakano, C. Orth, J. Rothenberg, K. Schaffers, L. Seppala, J. Skidmore, L. Smith, S. Sutton, S. Telford, L. Zapata, “Mercury: next generation laser for high energy density physics SI-014,” (Lawrence Livermore National Laboratory, 2000).

Le Moal, S.

J.-C. Chanteloup, H. Yu, G. Bourdet, S. Ferré, A. Fülöp, S. Le Moal, C. Dambrine, A. Pichot, G. Le Touzé, Z. Zhao, “Overview of the Lucia laser program: towards 100-joules, nanosecond pulse, kW averaged power, based on ytterbium diodepumped solid state laser,” in Solid State Lasers XIV: Technology and Devices, H. J. Hoffman, R. K. Short, eds., Proc. SPIE5707, 105–116 (2005).

Le Touzé, G.

J.-C. Chanteloup, H. Yu, G. Bourdet, S. Ferré, A. Fülöp, S. Le Moal, C. Dambrine, A. Pichot, G. Le Touzé, Z. Zhao, “Overview of the Lucia laser program: towards 100-joules, nanosecond pulse, kW averaged power, based on ytterbium diodepumped solid state laser,” in Solid State Lasers XIV: Technology and Devices, H. J. Hoffman, R. K. Short, eds., Proc. SPIE5707, 105–116 (2005).

Mao, Y.

Marshall, C.

A. Bayramian, R. Beach, C. Bibeau, J.-C. Chanteloup, C. Ebbers, M. Emanuel, B. Freitas, S. Fulkerson, K. Kanz, A. Hinz, C. Marshall, S. Mills, H. Nakano, C. Orth, J. Rothenberg, K. Schaffers, L. Seppala, J. Skidmore, L. Smith, S. Sutton, S. Telford, L. Zapata, “Mercury: next generation laser for high energy density physics SI-014,” (Lawrence Livermore National Laboratory, 2000).

Matkovskii, A. O.

S. B. Ubizskii, A. O. Matkovskii, S. S. Melnyk, I. M. Syvorotka, V. Müller, V. Peters, K. Petermann, A. Beyertt, A. Giesen, “Optical properties of epitaxial YAG:Yb films,” Phys. Status Solidi A 201, 791–797 (2004).
[CrossRef]

Melnyk, S. S.

S. B. Ubizskii, A. O. Matkovskii, S. S. Melnyk, I. M. Syvorotka, V. Müller, V. Peters, K. Petermann, A. Beyertt, A. Giesen, “Optical properties of epitaxial YAG:Yb films,” Phys. Status Solidi A 201, 791–797 (2004).
[CrossRef]

Mills, S.

A. Bayramian, R. Beach, C. Bibeau, J.-C. Chanteloup, C. Ebbers, M. Emanuel, B. Freitas, S. Fulkerson, K. Kanz, A. Hinz, C. Marshall, S. Mills, H. Nakano, C. Orth, J. Rothenberg, K. Schaffers, L. Seppala, J. Skidmore, L. Smith, S. Sutton, S. Telford, L. Zapata, “Mercury: next generation laser for high energy density physics SI-014,” (Lawrence Livermore National Laboratory, 2000).

Müller, V.

S. B. Ubizskii, A. O. Matkovskii, S. S. Melnyk, I. M. Syvorotka, V. Müller, V. Peters, K. Petermann, A. Beyertt, A. Giesen, “Optical properties of epitaxial YAG:Yb films,” Phys. Status Solidi A 201, 791–797 (2004).
[CrossRef]

Nakano, H.

A. Bayramian, R. Beach, C. Bibeau, J.-C. Chanteloup, C. Ebbers, M. Emanuel, B. Freitas, S. Fulkerson, K. Kanz, A. Hinz, C. Marshall, S. Mills, H. Nakano, C. Orth, J. Rothenberg, K. Schaffers, L. Seppala, J. Skidmore, L. Smith, S. Sutton, S. Telford, L. Zapata, “Mercury: next generation laser for high energy density physics SI-014,” (Lawrence Livermore National Laboratory, 2000).

Orth, C.

A. Bayramian, R. Beach, C. Bibeau, J.-C. Chanteloup, C. Ebbers, M. Emanuel, B. Freitas, S. Fulkerson, K. Kanz, A. Hinz, C. Marshall, S. Mills, H. Nakano, C. Orth, J. Rothenberg, K. Schaffers, L. Seppala, J. Skidmore, L. Smith, S. Sutton, S. Telford, L. Zapata, “Mercury: next generation laser for high energy density physics SI-014,” (Lawrence Livermore National Laboratory, 2000).

Patel, F. D.

F. D. Patel, E. C. Honea, J. S. Speth, A. Payne, R. Hutcheson, R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron. 37, 135–144 (2001).
[CrossRef]

Payne, A.

F. D. Patel, E. C. Honea, J. S. Speth, A. Payne, R. Hutcheson, R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron. 37, 135–144 (2001).
[CrossRef]

Petermann, K.

S. B. Ubizskii, A. O. Matkovskii, S. S. Melnyk, I. M. Syvorotka, V. Müller, V. Peters, K. Petermann, A. Beyertt, A. Giesen, “Optical properties of epitaxial YAG:Yb films,” Phys. Status Solidi A 201, 791–797 (2004).
[CrossRef]

Peters, V.

S. B. Ubizskii, A. O. Matkovskii, S. S. Melnyk, I. M. Syvorotka, V. Müller, V. Peters, K. Petermann, A. Beyertt, A. Giesen, “Optical properties of epitaxial YAG:Yb films,” Phys. Status Solidi A 201, 791–797 (2004).
[CrossRef]

Pichot, A.

J.-C. Chanteloup, H. Yu, G. Bourdet, S. Ferré, A. Fülöp, S. Le Moal, C. Dambrine, A. Pichot, G. Le Touzé, Z. Zhao, “Overview of the Lucia laser program: towards 100-joules, nanosecond pulse, kW averaged power, based on ytterbium diodepumped solid state laser,” in Solid State Lasers XIV: Technology and Devices, H. J. Hoffman, R. K. Short, eds., Proc. SPIE5707, 105–116 (2005).

Podleska, S.

J. Hein, S. Podleska, M. Siebold, M. Hellwing, R. Bodefeld, R. Sauerbey, D. Ehrt, W. Winizer, “Diode-pumped chirped pulse amplifiers to the joule level,” Appl. Phys. B 79, 419–422 (2004).
[CrossRef]

Roger, J.-P.

R. Gaumé, B. Viana, D. Vivien, J.-P. Roger, D. Fournier, “A simple model for prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83, 1355–1357 (2003).
[CrossRef]

Rothenberg, J.

A. Bayramian, R. Beach, C. Bibeau, J.-C. Chanteloup, C. Ebbers, M. Emanuel, B. Freitas, S. Fulkerson, K. Kanz, A. Hinz, C. Marshall, S. Mills, H. Nakano, C. Orth, J. Rothenberg, K. Schaffers, L. Seppala, J. Skidmore, L. Smith, S. Sutton, S. Telford, L. Zapata, “Mercury: next generation laser for high energy density physics SI-014,” (Lawrence Livermore National Laboratory, 2000).

Sauerbey, R.

J. Hein, S. Podleska, M. Siebold, M. Hellwing, R. Bodefeld, R. Sauerbey, D. Ehrt, W. Winizer, “Diode-pumped chirped pulse amplifiers to the joule level,” Appl. Phys. B 79, 419–422 (2004).
[CrossRef]

Schaffers, K.

A. Bayramian, R. Beach, C. Bibeau, J.-C. Chanteloup, C. Ebbers, M. Emanuel, B. Freitas, S. Fulkerson, K. Kanz, A. Hinz, C. Marshall, S. Mills, H. Nakano, C. Orth, J. Rothenberg, K. Schaffers, L. Seppala, J. Skidmore, L. Smith, S. Sutton, S. Telford, L. Zapata, “Mercury: next generation laser for high energy density physics SI-014,” (Lawrence Livermore National Laboratory, 2000).

Seppala, L.

A. Bayramian, R. Beach, C. Bibeau, J.-C. Chanteloup, C. Ebbers, M. Emanuel, B. Freitas, S. Fulkerson, K. Kanz, A. Hinz, C. Marshall, S. Mills, H. Nakano, C. Orth, J. Rothenberg, K. Schaffers, L. Seppala, J. Skidmore, L. Smith, S. Sutton, S. Telford, L. Zapata, “Mercury: next generation laser for high energy density physics SI-014,” (Lawrence Livermore National Laboratory, 2000).

Siebold, M.

J. Hein, S. Podleska, M. Siebold, M. Hellwing, R. Bodefeld, R. Sauerbey, D. Ehrt, W. Winizer, “Diode-pumped chirped pulse amplifiers to the joule level,” Appl. Phys. B 79, 419–422 (2004).
[CrossRef]

Skidmore, J.

A. Bayramian, R. Beach, C. Bibeau, J.-C. Chanteloup, C. Ebbers, M. Emanuel, B. Freitas, S. Fulkerson, K. Kanz, A. Hinz, C. Marshall, S. Mills, H. Nakano, C. Orth, J. Rothenberg, K. Schaffers, L. Seppala, J. Skidmore, L. Smith, S. Sutton, S. Telford, L. Zapata, “Mercury: next generation laser for high energy density physics SI-014,” (Lawrence Livermore National Laboratory, 2000).

Smith, L.

A. Bayramian, R. Beach, C. Bibeau, J.-C. Chanteloup, C. Ebbers, M. Emanuel, B. Freitas, S. Fulkerson, K. Kanz, A. Hinz, C. Marshall, S. Mills, H. Nakano, C. Orth, J. Rothenberg, K. Schaffers, L. Seppala, J. Skidmore, L. Smith, S. Sutton, S. Telford, L. Zapata, “Mercury: next generation laser for high energy density physics SI-014,” (Lawrence Livermore National Laboratory, 2000).

Speth, J. S.

F. D. Patel, E. C. Honea, J. S. Speth, A. Payne, R. Hutcheson, R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron. 37, 135–144 (2001).
[CrossRef]

Sutton, S.

A. Bayramian, R. Beach, C. Bibeau, J.-C. Chanteloup, C. Ebbers, M. Emanuel, B. Freitas, S. Fulkerson, K. Kanz, A. Hinz, C. Marshall, S. Mills, H. Nakano, C. Orth, J. Rothenberg, K. Schaffers, L. Seppala, J. Skidmore, L. Smith, S. Sutton, S. Telford, L. Zapata, “Mercury: next generation laser for high energy density physics SI-014,” (Lawrence Livermore National Laboratory, 2000).

Syvorotka, I. M.

S. B. Ubizskii, A. O. Matkovskii, S. S. Melnyk, I. M. Syvorotka, V. Müller, V. Peters, K. Petermann, A. Beyertt, A. Giesen, “Optical properties of epitaxial YAG:Yb films,” Phys. Status Solidi A 201, 791–797 (2004).
[CrossRef]

Telford, S.

A. Bayramian, R. Beach, C. Bibeau, J.-C. Chanteloup, C. Ebbers, M. Emanuel, B. Freitas, S. Fulkerson, K. Kanz, A. Hinz, C. Marshall, S. Mills, H. Nakano, C. Orth, J. Rothenberg, K. Schaffers, L. Seppala, J. Skidmore, L. Smith, S. Sutton, S. Telford, L. Zapata, “Mercury: next generation laser for high energy density physics SI-014,” (Lawrence Livermore National Laboratory, 2000).

Ubizskii, S. B.

S. B. Ubizskii, A. O. Matkovskii, S. S. Melnyk, I. M. Syvorotka, V. Müller, V. Peters, K. Petermann, A. Beyertt, A. Giesen, “Optical properties of epitaxial YAG:Yb films,” Phys. Status Solidi A 201, 791–797 (2004).
[CrossRef]

Viana, B.

R. Gaumé, B. Viana, D. Vivien, J.-P. Roger, D. Fournier, “A simple model for prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83, 1355–1357 (2003).
[CrossRef]

Vivien, D.

R. Gaumé, B. Viana, D. Vivien, J.-P. Roger, D. Fournier, “A simple model for prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83, 1355–1357 (2003).
[CrossRef]

Winizer, W.

J. Hein, S. Podleska, M. Siebold, M. Hellwing, R. Bodefeld, R. Sauerbey, D. Ehrt, W. Winizer, “Diode-pumped chirped pulse amplifiers to the joule level,” Appl. Phys. B 79, 419–422 (2004).
[CrossRef]

Yu, H.

J.-C. Chanteloup, H. Yu, G. Bourdet, S. Ferré, A. Fülöp, S. Le Moal, C. Dambrine, A. Pichot, G. Le Touzé, Z. Zhao, “Overview of the Lucia laser program: towards 100-joules, nanosecond pulse, kW averaged power, based on ytterbium diodepumped solid state laser,” in Solid State Lasers XIV: Technology and Devices, H. J. Hoffman, R. K. Short, eds., Proc. SPIE5707, 105–116 (2005).

Zapata, L.

A. Bayramian, R. Beach, C. Bibeau, J.-C. Chanteloup, C. Ebbers, M. Emanuel, B. Freitas, S. Fulkerson, K. Kanz, A. Hinz, C. Marshall, S. Mills, H. Nakano, C. Orth, J. Rothenberg, K. Schaffers, L. Seppala, J. Skidmore, L. Smith, S. Sutton, S. Telford, L. Zapata, “Mercury: next generation laser for high energy density physics SI-014,” (Lawrence Livermore National Laboratory, 2000).

Zhao, Z.

Z. Zhao, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, 390 Qinghe Road Jiading, P.O. Box 800-211, 201800 Shanghai, China (personal communication, 2005).

J.-C. Chanteloup, H. Yu, G. Bourdet, S. Ferré, A. Fülöp, S. Le Moal, C. Dambrine, A. Pichot, G. Le Touzé, Z. Zhao, “Overview of the Lucia laser program: towards 100-joules, nanosecond pulse, kW averaged power, based on ytterbium diodepumped solid state laser,” in Solid State Lasers XIV: Technology and Devices, H. J. Hoffman, R. K. Short, eds., Proc. SPIE5707, 105–116 (2005).

Appl. Opt. (1)

Appl. Phys. B (1)

J. Hein, S. Podleska, M. Siebold, M. Hellwing, R. Bodefeld, R. Sauerbey, D. Ehrt, W. Winizer, “Diode-pumped chirped pulse amplifiers to the joule level,” Appl. Phys. B 79, 419–422 (2004).
[CrossRef]

Appl. Phys. Lett. (1)

R. Gaumé, B. Viana, D. Vivien, J.-P. Roger, D. Fournier, “A simple model for prediction of thermal conductivity in pure and doped insulating crystals,” Appl. Phys. Lett. 83, 1355–1357 (2003).
[CrossRef]

IEEE J. Quantum Electron. (2)

F. D. Patel, E. C. Honea, J. S. Speth, A. Payne, R. Hutcheson, R. Equall, “Laser demonstration of Yb3Al5O12 (YbAG) and materials properties of highly doped Yb:YAG,” IEEE J. Quantum Electron. 37, 135–144 (2001).
[CrossRef]

T. Y. Fan, “Heat generation in Nd:YAG and Yb:YAG,” IEEE J. Quantum Electron. 29, 1457–1459 (1993).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

G. L. Bourdet, “Comparison of pulse amplification performances in longitudinally pumped ytterbium doped materials,” Opt. Commun. 200, 331–342 (2001).
[CrossRef]

Phys. Status Solidi A (1)

S. B. Ubizskii, A. O. Matkovskii, S. S. Melnyk, I. M. Syvorotka, V. Müller, V. Peters, K. Petermann, A. Beyertt, A. Giesen, “Optical properties of epitaxial YAG:Yb films,” Phys. Status Solidi A 201, 791–797 (2004).
[CrossRef]

Other (3)

Z. Zhao, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, 390 Qinghe Road Jiading, P.O. Box 800-211, 201800 Shanghai, China (personal communication, 2005).

J.-C. Chanteloup, H. Yu, G. Bourdet, S. Ferré, A. Fülöp, S. Le Moal, C. Dambrine, A. Pichot, G. Le Touzé, Z. Zhao, “Overview of the Lucia laser program: towards 100-joules, nanosecond pulse, kW averaged power, based on ytterbium diodepumped solid state laser,” in Solid State Lasers XIV: Technology and Devices, H. J. Hoffman, R. K. Short, eds., Proc. SPIE5707, 105–116 (2005).

A. Bayramian, R. Beach, C. Bibeau, J.-C. Chanteloup, C. Ebbers, M. Emanuel, B. Freitas, S. Fulkerson, K. Kanz, A. Hinz, C. Marshall, S. Mills, H. Nakano, C. Orth, J. Rothenberg, K. Schaffers, L. Seppala, J. Skidmore, L. Smith, S. Sutton, S. Telford, L. Zapata, “Mercury: next generation laser for high energy density physics SI-014,” (Lawrence Livermore National Laboratory, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Schematic diagrams of (a) the oscillator and (b) the amplifier stage of the Lucia laser: SGM, output coupler with super-Gaussian reflectivity; LD, laser diode; DM, deformable mirror.

Fig. 2
Fig. 2

(a) Time- and spatially related SSG coefficient within the gain medium at an incident pumping intensity of 20 kW/cm2 when R = 0. (b) Two possible longitudinal pumping schemes with and without high-reflectivity coating on the medium’s rear face.

Fig. 3
Fig. 3

(a) Net SSG for several thicknesses of the gain medium and (b) corresponding transmission loss of the pump light from the medium’s front face. T = 300 K, CYb = 10 at. %, R = 99% on the rear face of the gain medium, as shown in Fig. 2(b).

Fig. 4
Fig. 4

(a) Schematic diagrams of the gain medium with the same pumping area but for different sizes and cooling areas, (b) Comparison of temperature distribution (Tx). The pumping area is 9 mm × 7 mm for both cases, and the media’s sizes are, respectively, 12 mm × 10 mm and 20 mm × 20 mm. h is W/m2 K−1, and the temperature of the water is 300 K.

Fig. 5
Fig. 5

Schematic diagram of the composite gain medium and corresponding cooling bound-ary conditions. For the oscillator, the pumping and water cooling (h1) areas are both 9 mm × 7 mm, the glue contacted (h2) dimension is 1.5 mm, and the side and front faces are air cooled (h3, free convection). For the amplifier, the pumping and water cooling areas are 36 mm × 32 mm and the glue contacted dimension is 2.0 mm.

Fig. 6
Fig. 6

(a) Average temperature versus heat-exchange coefficient of water. The pump intensities are, respectively, 15 and 20 kW/ cm2 at 10 Hz for the oscillator and the amplifier, and the values of h2 and h3 are fixed at 100 and 10 W/m2 K−1. (b) Output laser fluence versus number of passes in the amplification at several gain medium temperatures. The total single-pass loss of the laser beam is 10%.

Fig. 7
Fig. 7

(a) Comparison of the temperature distribution along the z direction at several thicknesses of undoped YAG (lYAG) for the oscillator. (b) Comparison of T(x) within Yb:YAG for of lYAG = 0, 6.4 mm. (c) Vector deformation and maximum OPD versus lYAG.

Fig. 8
Fig. 8

Vector deformation (δz) and maximum OPD for some thicknesses of undoped YAG of the amplifier. The parameters are as follows: h1 = 4100 W/m2 K−1; CYb = 10 at. %; slab size, 40 mm × 36 mm; pumping area, 36 mm × 32 mm; and P = 20 kW/cm2 at 1 ms and 10 Hz.

Fig. 9
Fig. 9

Schematic diagrams of bending deformation of the amplifier medium for (a) 1.6 mm Yb:YAG + 0.0 mm YAG and (b) 0.32 mm Yb:YAG + 4.53 mm YAG when h is 3000 W/m2 K−1.

Fig. 10
Fig. 10

(a) Dependence of lYAG on h and CYb for the oscillator when δz is zero. (b) OPD for several combinations of lYbYAG(CYb) lYAG and h.

Fig. 11
Fig. 11

(a) Dependence of lYAG on h and CYb for the amplifier when δz is zero. (b) OPD for several combinations of lYbYAG(CYb) lYAG, and h.

Tables (2)

Tables Icon

Table 1 Optimum Values of lYbYAG (lD) and lYAG (lUD) for the Oscillator at Several Doping Concentrations for Several Typical Values of ha

Tables Icon

Table 2 Optimum Values of ID and IUD for the Amplifier at Several Doping Concentrations for Several Typical Values of h

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

ρ C p T ( x , y , z ; t ) t = κ ( T , C Yb ) ( 2 T x 2 + 2 T y 2 + 2 T z 2 ) + P th ( x , y , z ) ,
P th ( x , y , z ) = I abs × τ P × F × η th / l , x min x x max , y min y y max , z min z z max ,
δ z = α × ( T k + 1 T k ) ( z k + 1 z k ) ,
OPD = [ n 0 + ( d n / d t ) × Δ T ] d l , d l = ( d x 2 + d y 2 + d z 2 ) 1 / 2 .

Metrics