Abstract

A dual-rate (2 Gbit/s and 100 Mbit/s) optical transceiver designed for power-efficient connections within and between modern high-speed digital systems is described. The transceiver can dynamically adjust its data rate according to performance requirements, allowing for power-on-demand operation. Dynamic power management permits energy saving and lowers device operating temperatures, improving the reliability and lifetime of optoelectronic-devices such as vertical-cavity surface-emitting lasers (VCSELs). To implement dual-rate functionality, we include in the transmitter and receiver circuits separate high-speed and low-power data path modules. The high-speed module is designed for gigabit operation to achieve high bandwidth. A simpler low-power module is designed for megabit data transmission with low power consumption. The transceiver is fabricated in a 0.5 µm silicon-on-sapphire complementary metal-oxide semiconductor. The VCSEL and photodetector devices are attached to the transceiver’s integrated circuit by flip-chip bonding. A free-space optical link system is constructed to demonstrate correct dual-rate functionality. Experimental results show reliable link operation at 2 Gbit/s and 100 Mbit/s data transfer rates with ∼104 and ∼9 mW power consumption, respectively. The transceiver’s switching time between these two data rates is demonstrated as 10 µs, which is limited by on-chip register reconfiguration time. Improvement of this switching time can be obtained by use of dedicated input–output pads for dual-rate control signals.

© 2005 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88, 728–749 (2000).
    [CrossRef]
  2. A. Z. Shang, F. A. P. Tooley, “Digital optical interconnects for networks and computing systems,” J. Lightwave Technol. 18, 2086–2094 (2000).
    [CrossRef]
  3. M. W. Haney, M. P. Christensen, P. Milojkovic, J. Ekman, P. Chandramani, R. Rozier, F. E. Kiamilev, Y. Liu, M. Hibbs-Brenner, “Multichip free-space global optical interconnection demonstration with integrated arrays of vertical-cavity surface-emitting lasers and photodetectors,” Appl. Opt. 38, 6190–6200 (1999).
    [CrossRef]
  4. B. Hawkins, B. Hawthorne, “2.5 Gpbs oxide isolated VCSEL reliability report” (Honeywell International, 2003).
  5. L. Chen, M. Li, C. Chang-Hasnain, K. Lau, “A low-power 1-Gb/s CMOS laser driver for a zero-bias modulated optical transmitter,” IEEE Photon. Technol. Lett. 9, 997–999 (1997).
    [CrossRef]
  6. R. Tao, M. Berroth, Z. Wang, “Low power 10 Gbit/s VCSEL driver for optical interconnect,” Electron. Lett. 39, 1743–1744 (2003).
    [CrossRef]
  7. A. Emami-Neyestanak, D. Liu, G. Keeler, N. Helman, M. Horowitz, “A 1.6 Gbps, 3mW CMOS receiver for optical communication,” in IEEE Symposium on VLSI Circuits (Institute of Electrical and Electronics Engineers, 2002), pp. 84–87.
  8. M. Ingels, M. S. J. Steyaert, “A 1-Gb/s, 0.7-m CMOS optical receiver with full rail-to-rail output swing,” IEEE J. Solid-State Circuits 34, 971–977 (1999).
    [CrossRef]
  9. D. Plant, M. B. Venditti, E. Laprise, J. Faucher, K. Razavi, M. Chateauneuf, A. G. Kirk, J. S. Ahearn, “256-Channel bidirectional optical interconnect using VCSELs and Photodiodes on CMOS,” J. Lightwave Technol 19, 1093–1103 (2001).
    [CrossRef]
  10. T. Nagahori, N. Suzuki, “An analog front-end chip set employing an electro-optical mixed design on SPICE for 5-Gb/s/ch parallel optical interconnection,” IEEE J. Solid-State Circuits 36, 1984–1991 (2001).
    [CrossRef]
  11. O. Qasaimeh, W. Zhou, P. Bhattacharya, D. Huffaker, D. G. Deppe, “Monolithically integrated low-power phototransceivers for optoelectronic parallel sensing and processing applications,” J. Lightwave Technol. 19, 546–552 (2001).
    [CrossRef]
  12. A. V. Krishnamoorthy, A. L. Lentine, K. W. Goossen, J. A. Walker, T. K. Woodward, J. E. Ford, G. F. Aplin, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. Dahringer, L. M. F. Chirovsky, D. A. B. Miller, “3-D integration of MQW modulators over active submicron CMOS circuits: 375 Mb/s transimpedance receiver-transmitter circuit,” IEEE Photon. Technol. Lett. 7, 1288–1290 (1995).
    [CrossRef]
  13. O. Kibar, D. A. Van Blerkom, C. Fan, S. C. Esener, “Power minimization and technology comparisons for digital free-space optoelectronic interconnections,” J. Lightwave Technol. 17, 546–555 (1999).
    [CrossRef]
  14. P. Gui, F. E. Kiamilev, X. Q. Wang, X. L. Wang, M. J. McFadden, M. W. Haney, C. Kuznia, “A 2-Gb/s 0.5µm CMOS parallel optical transceiver with fast power-on capability,” J. Lightwave Technol. 9, 2135–2148 (2004).
    [CrossRef]
  15. X. Wang, F. Kiamilev, P. Gui, J. Ekman, G. C. Papen, M. McFadden, M. W. Haney, C. Kuznia, “A 2-Gb/s optical transceiver with accelerated bit error ratio test capability,” J. Lightwave Technol. 32, 2158–2167 (2004).
    [CrossRef]
  16. N. Gata, S. Subramaniana, S. Rossa, C. LaBawb, J. Bond, “Thermal infrared imaging spectrometer (TIRIS) status report,” in Infrared Technology & Applications XXIII, B. F. Andresen, M. Strojnik, eds., Proc. SPIE3061, 284–291 (1997).
    [CrossRef]
  17. Canadian Center For Remote Sensing online tutorial: http://www.ccrs.nrcan.gc.ca/ccrs/learn/tutorials/fundam/chapter2/chapter2_2_e.html .
  18. P. Fricker, “Airborne imaging technology: today’s reality,” Directions Mag. (19April2004).
  19. J. W. Roberts, “Traffic theory and the Internet,” IEEE Commun. Mag. 39, 94–99 (2001).
    [CrossRef]
  20. M. Roughan, A. Greenberg, C. Kalmanek, M. Rumsewicz, J. Yates, Y. Zhang, “Experience in measuring Internet backbone traffic variability models, metrics, measurements and meaning,” presented at the 18th International Teletraffic Congress, Berlin, Germany, 2003.
  21. M. Roughan, C. Kalmanek, “Pragmatic modeling of broadband access traffic,” Computer Commun. 26, 804–816 (2003).
    [CrossRef]
  22. M. Anis, M. Allam, M. Elmasry, “Impact of technology scaling on CMOS logic styles,” IEEE Trans. Circuits Syst. II 49, 577–588 (2002).
    [CrossRef]
  23. J. W. Tschanz, S. G. Narendra, Y. Ye, B. A. Bloechel, S. Borkar, V. De “Dynamic sleep transistor and body bias for active leakage power control of microprocessor,” IEEE J. Solid-State Circuits 38, 1838–1845 (2003).
    [CrossRef]
  24. J. M. Rabaey, A. Chandrakasan, B. Nikolic, Digital Integrated Circuits, 2nd ed. (Pearson Education, 2003), p. 168.
  25. J. Tatum, J. Guenter, “Modulating VCSELs” (Honeywell International, 1998).
  26. L. Zei, K. Petermann, R. Jäger, K. J. Ebeling, “Operation range of VCSEL-interconnect links with ‘below-threshold’ biasing,” J. Lightwave Technol. 18, 477–481 (2000).
    [CrossRef]
  27. L. P. Chen, K. Y. Lau, “Regime where zero-bias is the low-power solution for digitally modulated laser diodes,” IEEE Photon. Technol. Lett. 8, 185–187 (1996).
    [CrossRef]
  28. A. Hastings, The Art of Analog Layout (Prentice-Hall, 2001).
  29. P. McAdam, B. Goldberg, “UTSi CMOS SOS for mixed signal ICs” (Peregrine Semiconductor Corporation, 2001).
  30. Emcore Corporation, “Spec, Oxide Array Die, 1 × 4 3.125 Gb (U-lot), 8685-1402,” data sheet (Emcore Corporation, 2001).
  31. Emcore Corporation, “Spec, PIN Array Die 1 × 4 3.125 Gb, S8485-1405,” data sheet (Emcore Corporation, Albuquerque, 2001).
  32. M Pedram, J. Rabaey, Power Aware Design Methodologies (Kluwer Academic, 2002), Chap. 8.
    [CrossRef]
  33. H. Iwai, “CMOS technology-year 2010 and beyond,” IEEE J. Solid-State Circuits 34, 357–366 (1999).
    [CrossRef]
  34. J. P. UyeMuru, CMOS Logic Circuit Design (Kluwer Academic, 1999), Chap. 3.

2004 (3)

P. Gui, F. E. Kiamilev, X. Q. Wang, X. L. Wang, M. J. McFadden, M. W. Haney, C. Kuznia, “A 2-Gb/s 0.5µm CMOS parallel optical transceiver with fast power-on capability,” J. Lightwave Technol. 9, 2135–2148 (2004).
[CrossRef]

X. Wang, F. Kiamilev, P. Gui, J. Ekman, G. C. Papen, M. McFadden, M. W. Haney, C. Kuznia, “A 2-Gb/s optical transceiver with accelerated bit error ratio test capability,” J. Lightwave Technol. 32, 2158–2167 (2004).
[CrossRef]

P. Fricker, “Airborne imaging technology: today’s reality,” Directions Mag. (19April2004).

2003 (3)

R. Tao, M. Berroth, Z. Wang, “Low power 10 Gbit/s VCSEL driver for optical interconnect,” Electron. Lett. 39, 1743–1744 (2003).
[CrossRef]

M. Roughan, C. Kalmanek, “Pragmatic modeling of broadband access traffic,” Computer Commun. 26, 804–816 (2003).
[CrossRef]

J. W. Tschanz, S. G. Narendra, Y. Ye, B. A. Bloechel, S. Borkar, V. De “Dynamic sleep transistor and body bias for active leakage power control of microprocessor,” IEEE J. Solid-State Circuits 38, 1838–1845 (2003).
[CrossRef]

2002 (1)

M. Anis, M. Allam, M. Elmasry, “Impact of technology scaling on CMOS logic styles,” IEEE Trans. Circuits Syst. II 49, 577–588 (2002).
[CrossRef]

2001 (4)

J. W. Roberts, “Traffic theory and the Internet,” IEEE Commun. Mag. 39, 94–99 (2001).
[CrossRef]

D. Plant, M. B. Venditti, E. Laprise, J. Faucher, K. Razavi, M. Chateauneuf, A. G. Kirk, J. S. Ahearn, “256-Channel bidirectional optical interconnect using VCSELs and Photodiodes on CMOS,” J. Lightwave Technol 19, 1093–1103 (2001).
[CrossRef]

T. Nagahori, N. Suzuki, “An analog front-end chip set employing an electro-optical mixed design on SPICE for 5-Gb/s/ch parallel optical interconnection,” IEEE J. Solid-State Circuits 36, 1984–1991 (2001).
[CrossRef]

O. Qasaimeh, W. Zhou, P. Bhattacharya, D. Huffaker, D. G. Deppe, “Monolithically integrated low-power phototransceivers for optoelectronic parallel sensing and processing applications,” J. Lightwave Technol. 19, 546–552 (2001).
[CrossRef]

2000 (3)

1999 (4)

1997 (1)

L. Chen, M. Li, C. Chang-Hasnain, K. Lau, “A low-power 1-Gb/s CMOS laser driver for a zero-bias modulated optical transmitter,” IEEE Photon. Technol. Lett. 9, 997–999 (1997).
[CrossRef]

1996 (1)

L. P. Chen, K. Y. Lau, “Regime where zero-bias is the low-power solution for digitally modulated laser diodes,” IEEE Photon. Technol. Lett. 8, 185–187 (1996).
[CrossRef]

1995 (1)

A. V. Krishnamoorthy, A. L. Lentine, K. W. Goossen, J. A. Walker, T. K. Woodward, J. E. Ford, G. F. Aplin, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. Dahringer, L. M. F. Chirovsky, D. A. B. Miller, “3-D integration of MQW modulators over active submicron CMOS circuits: 375 Mb/s transimpedance receiver-transmitter circuit,” IEEE Photon. Technol. Lett. 7, 1288–1290 (1995).
[CrossRef]

Ahearn, J. S.

D. Plant, M. B. Venditti, E. Laprise, J. Faucher, K. Razavi, M. Chateauneuf, A. G. Kirk, J. S. Ahearn, “256-Channel bidirectional optical interconnect using VCSELs and Photodiodes on CMOS,” J. Lightwave Technol 19, 1093–1103 (2001).
[CrossRef]

Allam, M.

M. Anis, M. Allam, M. Elmasry, “Impact of technology scaling on CMOS logic styles,” IEEE Trans. Circuits Syst. II 49, 577–588 (2002).
[CrossRef]

Anis, M.

M. Anis, M. Allam, M. Elmasry, “Impact of technology scaling on CMOS logic styles,” IEEE Trans. Circuits Syst. II 49, 577–588 (2002).
[CrossRef]

Aplin, G. F.

A. V. Krishnamoorthy, A. L. Lentine, K. W. Goossen, J. A. Walker, T. K. Woodward, J. E. Ford, G. F. Aplin, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. Dahringer, L. M. F. Chirovsky, D. A. B. Miller, “3-D integration of MQW modulators over active submicron CMOS circuits: 375 Mb/s transimpedance receiver-transmitter circuit,” IEEE Photon. Technol. Lett. 7, 1288–1290 (1995).
[CrossRef]

Berroth, M.

R. Tao, M. Berroth, Z. Wang, “Low power 10 Gbit/s VCSEL driver for optical interconnect,” Electron. Lett. 39, 1743–1744 (2003).
[CrossRef]

Bhattacharya, P.

Bloechel, B. A.

J. W. Tschanz, S. G. Narendra, Y. Ye, B. A. Bloechel, S. Borkar, V. De “Dynamic sleep transistor and body bias for active leakage power control of microprocessor,” IEEE J. Solid-State Circuits 38, 1838–1845 (2003).
[CrossRef]

Bond, J.

N. Gata, S. Subramaniana, S. Rossa, C. LaBawb, J. Bond, “Thermal infrared imaging spectrometer (TIRIS) status report,” in Infrared Technology & Applications XXIII, B. F. Andresen, M. Strojnik, eds., Proc. SPIE3061, 284–291 (1997).
[CrossRef]

Borkar, S.

J. W. Tschanz, S. G. Narendra, Y. Ye, B. A. Bloechel, S. Borkar, V. De “Dynamic sleep transistor and body bias for active leakage power control of microprocessor,” IEEE J. Solid-State Circuits 38, 1838–1845 (2003).
[CrossRef]

Chandrakasan, A.

J. M. Rabaey, A. Chandrakasan, B. Nikolic, Digital Integrated Circuits, 2nd ed. (Pearson Education, 2003), p. 168.

Chandramani, P.

Chang-Hasnain, C.

L. Chen, M. Li, C. Chang-Hasnain, K. Lau, “A low-power 1-Gb/s CMOS laser driver for a zero-bias modulated optical transmitter,” IEEE Photon. Technol. Lett. 9, 997–999 (1997).
[CrossRef]

Chateauneuf, M.

D. Plant, M. B. Venditti, E. Laprise, J. Faucher, K. Razavi, M. Chateauneuf, A. G. Kirk, J. S. Ahearn, “256-Channel bidirectional optical interconnect using VCSELs and Photodiodes on CMOS,” J. Lightwave Technol 19, 1093–1103 (2001).
[CrossRef]

Chen, L.

L. Chen, M. Li, C. Chang-Hasnain, K. Lau, “A low-power 1-Gb/s CMOS laser driver for a zero-bias modulated optical transmitter,” IEEE Photon. Technol. Lett. 9, 997–999 (1997).
[CrossRef]

Chen, L. P.

L. P. Chen, K. Y. Lau, “Regime where zero-bias is the low-power solution for digitally modulated laser diodes,” IEEE Photon. Technol. Lett. 8, 185–187 (1996).
[CrossRef]

Chirovsky, L. M. F.

A. V. Krishnamoorthy, A. L. Lentine, K. W. Goossen, J. A. Walker, T. K. Woodward, J. E. Ford, G. F. Aplin, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. Dahringer, L. M. F. Chirovsky, D. A. B. Miller, “3-D integration of MQW modulators over active submicron CMOS circuits: 375 Mb/s transimpedance receiver-transmitter circuit,” IEEE Photon. Technol. Lett. 7, 1288–1290 (1995).
[CrossRef]

Christensen, M. P.

D’Asaro, L. A.

A. V. Krishnamoorthy, A. L. Lentine, K. W. Goossen, J. A. Walker, T. K. Woodward, J. E. Ford, G. F. Aplin, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. Dahringer, L. M. F. Chirovsky, D. A. B. Miller, “3-D integration of MQW modulators over active submicron CMOS circuits: 375 Mb/s transimpedance receiver-transmitter circuit,” IEEE Photon. Technol. Lett. 7, 1288–1290 (1995).
[CrossRef]

Dahringer, D.

A. V. Krishnamoorthy, A. L. Lentine, K. W. Goossen, J. A. Walker, T. K. Woodward, J. E. Ford, G. F. Aplin, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. Dahringer, L. M. F. Chirovsky, D. A. B. Miller, “3-D integration of MQW modulators over active submicron CMOS circuits: 375 Mb/s transimpedance receiver-transmitter circuit,” IEEE Photon. Technol. Lett. 7, 1288–1290 (1995).
[CrossRef]

De, V.

J. W. Tschanz, S. G. Narendra, Y. Ye, B. A. Bloechel, S. Borkar, V. De “Dynamic sleep transistor and body bias for active leakage power control of microprocessor,” IEEE J. Solid-State Circuits 38, 1838–1845 (2003).
[CrossRef]

Deppe, D. G.

Ebeling, K. J.

Ekman, J.

Elmasry, M.

M. Anis, M. Allam, M. Elmasry, “Impact of technology scaling on CMOS logic styles,” IEEE Trans. Circuits Syst. II 49, 577–588 (2002).
[CrossRef]

Emami-Neyestanak, A.

A. Emami-Neyestanak, D. Liu, G. Keeler, N. Helman, M. Horowitz, “A 1.6 Gbps, 3mW CMOS receiver for optical communication,” in IEEE Symposium on VLSI Circuits (Institute of Electrical and Electronics Engineers, 2002), pp. 84–87.

Esener, S. C.

Fan, C.

Faucher, J.

D. Plant, M. B. Venditti, E. Laprise, J. Faucher, K. Razavi, M. Chateauneuf, A. G. Kirk, J. S. Ahearn, “256-Channel bidirectional optical interconnect using VCSELs and Photodiodes on CMOS,” J. Lightwave Technol 19, 1093–1103 (2001).
[CrossRef]

Ford, J. E.

A. V. Krishnamoorthy, A. L. Lentine, K. W. Goossen, J. A. Walker, T. K. Woodward, J. E. Ford, G. F. Aplin, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. Dahringer, L. M. F. Chirovsky, D. A. B. Miller, “3-D integration of MQW modulators over active submicron CMOS circuits: 375 Mb/s transimpedance receiver-transmitter circuit,” IEEE Photon. Technol. Lett. 7, 1288–1290 (1995).
[CrossRef]

Fricker, P.

P. Fricker, “Airborne imaging technology: today’s reality,” Directions Mag. (19April2004).

Gata, N.

N. Gata, S. Subramaniana, S. Rossa, C. LaBawb, J. Bond, “Thermal infrared imaging spectrometer (TIRIS) status report,” in Infrared Technology & Applications XXIII, B. F. Andresen, M. Strojnik, eds., Proc. SPIE3061, 284–291 (1997).
[CrossRef]

Goldberg, B.

P. McAdam, B. Goldberg, “UTSi CMOS SOS for mixed signal ICs” (Peregrine Semiconductor Corporation, 2001).

Goossen, K. W.

A. V. Krishnamoorthy, A. L. Lentine, K. W. Goossen, J. A. Walker, T. K. Woodward, J. E. Ford, G. F. Aplin, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. Dahringer, L. M. F. Chirovsky, D. A. B. Miller, “3-D integration of MQW modulators over active submicron CMOS circuits: 375 Mb/s transimpedance receiver-transmitter circuit,” IEEE Photon. Technol. Lett. 7, 1288–1290 (1995).
[CrossRef]

Greenberg, A.

M. Roughan, A. Greenberg, C. Kalmanek, M. Rumsewicz, J. Yates, Y. Zhang, “Experience in measuring Internet backbone traffic variability models, metrics, measurements and meaning,” presented at the 18th International Teletraffic Congress, Berlin, Germany, 2003.

Guenter, J.

J. Tatum, J. Guenter, “Modulating VCSELs” (Honeywell International, 1998).

Gui, P.

P. Gui, F. E. Kiamilev, X. Q. Wang, X. L. Wang, M. J. McFadden, M. W. Haney, C. Kuznia, “A 2-Gb/s 0.5µm CMOS parallel optical transceiver with fast power-on capability,” J. Lightwave Technol. 9, 2135–2148 (2004).
[CrossRef]

X. Wang, F. Kiamilev, P. Gui, J. Ekman, G. C. Papen, M. McFadden, M. W. Haney, C. Kuznia, “A 2-Gb/s optical transceiver with accelerated bit error ratio test capability,” J. Lightwave Technol. 32, 2158–2167 (2004).
[CrossRef]

Haney, M. W.

X. Wang, F. Kiamilev, P. Gui, J. Ekman, G. C. Papen, M. McFadden, M. W. Haney, C. Kuznia, “A 2-Gb/s optical transceiver with accelerated bit error ratio test capability,” J. Lightwave Technol. 32, 2158–2167 (2004).
[CrossRef]

P. Gui, F. E. Kiamilev, X. Q. Wang, X. L. Wang, M. J. McFadden, M. W. Haney, C. Kuznia, “A 2-Gb/s 0.5µm CMOS parallel optical transceiver with fast power-on capability,” J. Lightwave Technol. 9, 2135–2148 (2004).
[CrossRef]

M. W. Haney, M. P. Christensen, P. Milojkovic, J. Ekman, P. Chandramani, R. Rozier, F. E. Kiamilev, Y. Liu, M. Hibbs-Brenner, “Multichip free-space global optical interconnection demonstration with integrated arrays of vertical-cavity surface-emitting lasers and photodetectors,” Appl. Opt. 38, 6190–6200 (1999).
[CrossRef]

Hastings, A.

A. Hastings, The Art of Analog Layout (Prentice-Hall, 2001).

Hawkins, B.

B. Hawkins, B. Hawthorne, “2.5 Gpbs oxide isolated VCSEL reliability report” (Honeywell International, 2003).

Hawthorne, B.

B. Hawkins, B. Hawthorne, “2.5 Gpbs oxide isolated VCSEL reliability report” (Honeywell International, 2003).

Helman, N.

A. Emami-Neyestanak, D. Liu, G. Keeler, N. Helman, M. Horowitz, “A 1.6 Gbps, 3mW CMOS receiver for optical communication,” in IEEE Symposium on VLSI Circuits (Institute of Electrical and Electronics Engineers, 2002), pp. 84–87.

Hibbs-Brenner, M.

Horowitz, M.

A. Emami-Neyestanak, D. Liu, G. Keeler, N. Helman, M. Horowitz, “A 1.6 Gbps, 3mW CMOS receiver for optical communication,” in IEEE Symposium on VLSI Circuits (Institute of Electrical and Electronics Engineers, 2002), pp. 84–87.

Huffaker, D.

Hui, S. P.

A. V. Krishnamoorthy, A. L. Lentine, K. W. Goossen, J. A. Walker, T. K. Woodward, J. E. Ford, G. F. Aplin, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. Dahringer, L. M. F. Chirovsky, D. A. B. Miller, “3-D integration of MQW modulators over active submicron CMOS circuits: 375 Mb/s transimpedance receiver-transmitter circuit,” IEEE Photon. Technol. Lett. 7, 1288–1290 (1995).
[CrossRef]

Ingels, M.

M. Ingels, M. S. J. Steyaert, “A 1-Gb/s, 0.7-m CMOS optical receiver with full rail-to-rail output swing,” IEEE J. Solid-State Circuits 34, 971–977 (1999).
[CrossRef]

Iwai, H.

H. Iwai, “CMOS technology-year 2010 and beyond,” IEEE J. Solid-State Circuits 34, 357–366 (1999).
[CrossRef]

Jäger, R.

Kalmanek, C.

M. Roughan, C. Kalmanek, “Pragmatic modeling of broadband access traffic,” Computer Commun. 26, 804–816 (2003).
[CrossRef]

M. Roughan, A. Greenberg, C. Kalmanek, M. Rumsewicz, J. Yates, Y. Zhang, “Experience in measuring Internet backbone traffic variability models, metrics, measurements and meaning,” presented at the 18th International Teletraffic Congress, Berlin, Germany, 2003.

Keeler, G.

A. Emami-Neyestanak, D. Liu, G. Keeler, N. Helman, M. Horowitz, “A 1.6 Gbps, 3mW CMOS receiver for optical communication,” in IEEE Symposium on VLSI Circuits (Institute of Electrical and Electronics Engineers, 2002), pp. 84–87.

Kiamilev, F.

X. Wang, F. Kiamilev, P. Gui, J. Ekman, G. C. Papen, M. McFadden, M. W. Haney, C. Kuznia, “A 2-Gb/s optical transceiver with accelerated bit error ratio test capability,” J. Lightwave Technol. 32, 2158–2167 (2004).
[CrossRef]

Kiamilev, F. E.

Kibar, O.

Kirk, A. G.

D. Plant, M. B. Venditti, E. Laprise, J. Faucher, K. Razavi, M. Chateauneuf, A. G. Kirk, J. S. Ahearn, “256-Channel bidirectional optical interconnect using VCSELs and Photodiodes on CMOS,” J. Lightwave Technol 19, 1093–1103 (2001).
[CrossRef]

Kossives, D.

A. V. Krishnamoorthy, A. L. Lentine, K. W. Goossen, J. A. Walker, T. K. Woodward, J. E. Ford, G. F. Aplin, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. Dahringer, L. M. F. Chirovsky, D. A. B. Miller, “3-D integration of MQW modulators over active submicron CMOS circuits: 375 Mb/s transimpedance receiver-transmitter circuit,” IEEE Photon. Technol. Lett. 7, 1288–1290 (1995).
[CrossRef]

Krishnamoorthy, A. V.

A. V. Krishnamoorthy, A. L. Lentine, K. W. Goossen, J. A. Walker, T. K. Woodward, J. E. Ford, G. F. Aplin, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. Dahringer, L. M. F. Chirovsky, D. A. B. Miller, “3-D integration of MQW modulators over active submicron CMOS circuits: 375 Mb/s transimpedance receiver-transmitter circuit,” IEEE Photon. Technol. Lett. 7, 1288–1290 (1995).
[CrossRef]

Kuznia, C.

P. Gui, F. E. Kiamilev, X. Q. Wang, X. L. Wang, M. J. McFadden, M. W. Haney, C. Kuznia, “A 2-Gb/s 0.5µm CMOS parallel optical transceiver with fast power-on capability,” J. Lightwave Technol. 9, 2135–2148 (2004).
[CrossRef]

X. Wang, F. Kiamilev, P. Gui, J. Ekman, G. C. Papen, M. McFadden, M. W. Haney, C. Kuznia, “A 2-Gb/s optical transceiver with accelerated bit error ratio test capability,” J. Lightwave Technol. 32, 2158–2167 (2004).
[CrossRef]

LaBawb, C.

N. Gata, S. Subramaniana, S. Rossa, C. LaBawb, J. Bond, “Thermal infrared imaging spectrometer (TIRIS) status report,” in Infrared Technology & Applications XXIII, B. F. Andresen, M. Strojnik, eds., Proc. SPIE3061, 284–291 (1997).
[CrossRef]

Laprise, E.

D. Plant, M. B. Venditti, E. Laprise, J. Faucher, K. Razavi, M. Chateauneuf, A. G. Kirk, J. S. Ahearn, “256-Channel bidirectional optical interconnect using VCSELs and Photodiodes on CMOS,” J. Lightwave Technol 19, 1093–1103 (2001).
[CrossRef]

Lau, K.

L. Chen, M. Li, C. Chang-Hasnain, K. Lau, “A low-power 1-Gb/s CMOS laser driver for a zero-bias modulated optical transmitter,” IEEE Photon. Technol. Lett. 9, 997–999 (1997).
[CrossRef]

Lau, K. Y.

L. P. Chen, K. Y. Lau, “Regime where zero-bias is the low-power solution for digitally modulated laser diodes,” IEEE Photon. Technol. Lett. 8, 185–187 (1996).
[CrossRef]

Leibenguth, R.

A. V. Krishnamoorthy, A. L. Lentine, K. W. Goossen, J. A. Walker, T. K. Woodward, J. E. Ford, G. F. Aplin, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. Dahringer, L. M. F. Chirovsky, D. A. B. Miller, “3-D integration of MQW modulators over active submicron CMOS circuits: 375 Mb/s transimpedance receiver-transmitter circuit,” IEEE Photon. Technol. Lett. 7, 1288–1290 (1995).
[CrossRef]

Lentine, A. L.

A. V. Krishnamoorthy, A. L. Lentine, K. W. Goossen, J. A. Walker, T. K. Woodward, J. E. Ford, G. F. Aplin, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. Dahringer, L. M. F. Chirovsky, D. A. B. Miller, “3-D integration of MQW modulators over active submicron CMOS circuits: 375 Mb/s transimpedance receiver-transmitter circuit,” IEEE Photon. Technol. Lett. 7, 1288–1290 (1995).
[CrossRef]

Li, M.

L. Chen, M. Li, C. Chang-Hasnain, K. Lau, “A low-power 1-Gb/s CMOS laser driver for a zero-bias modulated optical transmitter,” IEEE Photon. Technol. Lett. 9, 997–999 (1997).
[CrossRef]

Liu, D.

A. Emami-Neyestanak, D. Liu, G. Keeler, N. Helman, M. Horowitz, “A 1.6 Gbps, 3mW CMOS receiver for optical communication,” in IEEE Symposium on VLSI Circuits (Institute of Electrical and Electronics Engineers, 2002), pp. 84–87.

Liu, Y.

McAdam, P.

P. McAdam, B. Goldberg, “UTSi CMOS SOS for mixed signal ICs” (Peregrine Semiconductor Corporation, 2001).

McFadden, M.

X. Wang, F. Kiamilev, P. Gui, J. Ekman, G. C. Papen, M. McFadden, M. W. Haney, C. Kuznia, “A 2-Gb/s optical transceiver with accelerated bit error ratio test capability,” J. Lightwave Technol. 32, 2158–2167 (2004).
[CrossRef]

McFadden, M. J.

P. Gui, F. E. Kiamilev, X. Q. Wang, X. L. Wang, M. J. McFadden, M. W. Haney, C. Kuznia, “A 2-Gb/s 0.5µm CMOS parallel optical transceiver with fast power-on capability,” J. Lightwave Technol. 9, 2135–2148 (2004).
[CrossRef]

Miller, D. A. B.

D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88, 728–749 (2000).
[CrossRef]

A. V. Krishnamoorthy, A. L. Lentine, K. W. Goossen, J. A. Walker, T. K. Woodward, J. E. Ford, G. F. Aplin, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. Dahringer, L. M. F. Chirovsky, D. A. B. Miller, “3-D integration of MQW modulators over active submicron CMOS circuits: 375 Mb/s transimpedance receiver-transmitter circuit,” IEEE Photon. Technol. Lett. 7, 1288–1290 (1995).
[CrossRef]

Milojkovic, P.

Nagahori, T.

T. Nagahori, N. Suzuki, “An analog front-end chip set employing an electro-optical mixed design on SPICE for 5-Gb/s/ch parallel optical interconnection,” IEEE J. Solid-State Circuits 36, 1984–1991 (2001).
[CrossRef]

Narendra, S. G.

J. W. Tschanz, S. G. Narendra, Y. Ye, B. A. Bloechel, S. Borkar, V. De “Dynamic sleep transistor and body bias for active leakage power control of microprocessor,” IEEE J. Solid-State Circuits 38, 1838–1845 (2003).
[CrossRef]

Nikolic, B.

J. M. Rabaey, A. Chandrakasan, B. Nikolic, Digital Integrated Circuits, 2nd ed. (Pearson Education, 2003), p. 168.

Papen, G. C.

X. Wang, F. Kiamilev, P. Gui, J. Ekman, G. C. Papen, M. McFadden, M. W. Haney, C. Kuznia, “A 2-Gb/s optical transceiver with accelerated bit error ratio test capability,” J. Lightwave Technol. 32, 2158–2167 (2004).
[CrossRef]

Pedram, M

M Pedram, J. Rabaey, Power Aware Design Methodologies (Kluwer Academic, 2002), Chap. 8.
[CrossRef]

Petermann, K.

Plant, D.

D. Plant, M. B. Venditti, E. Laprise, J. Faucher, K. Razavi, M. Chateauneuf, A. G. Kirk, J. S. Ahearn, “256-Channel bidirectional optical interconnect using VCSELs and Photodiodes on CMOS,” J. Lightwave Technol 19, 1093–1103 (2001).
[CrossRef]

Qasaimeh, O.

Rabaey, J.

M Pedram, J. Rabaey, Power Aware Design Methodologies (Kluwer Academic, 2002), Chap. 8.
[CrossRef]

Rabaey, J. M.

J. M. Rabaey, A. Chandrakasan, B. Nikolic, Digital Integrated Circuits, 2nd ed. (Pearson Education, 2003), p. 168.

Razavi, K.

D. Plant, M. B. Venditti, E. Laprise, J. Faucher, K. Razavi, M. Chateauneuf, A. G. Kirk, J. S. Ahearn, “256-Channel bidirectional optical interconnect using VCSELs and Photodiodes on CMOS,” J. Lightwave Technol 19, 1093–1103 (2001).
[CrossRef]

Roberts, J. W.

J. W. Roberts, “Traffic theory and the Internet,” IEEE Commun. Mag. 39, 94–99 (2001).
[CrossRef]

Rossa, S.

N. Gata, S. Subramaniana, S. Rossa, C. LaBawb, J. Bond, “Thermal infrared imaging spectrometer (TIRIS) status report,” in Infrared Technology & Applications XXIII, B. F. Andresen, M. Strojnik, eds., Proc. SPIE3061, 284–291 (1997).
[CrossRef]

Roughan, M.

M. Roughan, C. Kalmanek, “Pragmatic modeling of broadband access traffic,” Computer Commun. 26, 804–816 (2003).
[CrossRef]

M. Roughan, A. Greenberg, C. Kalmanek, M. Rumsewicz, J. Yates, Y. Zhang, “Experience in measuring Internet backbone traffic variability models, metrics, measurements and meaning,” presented at the 18th International Teletraffic Congress, Berlin, Germany, 2003.

Rozier, R.

Rumsewicz, M.

M. Roughan, A. Greenberg, C. Kalmanek, M. Rumsewicz, J. Yates, Y. Zhang, “Experience in measuring Internet backbone traffic variability models, metrics, measurements and meaning,” presented at the 18th International Teletraffic Congress, Berlin, Germany, 2003.

Shang, A. Z.

Steyaert, M. S. J.

M. Ingels, M. S. J. Steyaert, “A 1-Gb/s, 0.7-m CMOS optical receiver with full rail-to-rail output swing,” IEEE J. Solid-State Circuits 34, 971–977 (1999).
[CrossRef]

Subramaniana, S.

N. Gata, S. Subramaniana, S. Rossa, C. LaBawb, J. Bond, “Thermal infrared imaging spectrometer (TIRIS) status report,” in Infrared Technology & Applications XXIII, B. F. Andresen, M. Strojnik, eds., Proc. SPIE3061, 284–291 (1997).
[CrossRef]

Suzuki, N.

T. Nagahori, N. Suzuki, “An analog front-end chip set employing an electro-optical mixed design on SPICE for 5-Gb/s/ch parallel optical interconnection,” IEEE J. Solid-State Circuits 36, 1984–1991 (2001).
[CrossRef]

Tao, R.

R. Tao, M. Berroth, Z. Wang, “Low power 10 Gbit/s VCSEL driver for optical interconnect,” Electron. Lett. 39, 1743–1744 (2003).
[CrossRef]

Tatum, J.

J. Tatum, J. Guenter, “Modulating VCSELs” (Honeywell International, 1998).

Tooley, F. A. P.

Tschanz, J. W.

J. W. Tschanz, S. G. Narendra, Y. Ye, B. A. Bloechel, S. Borkar, V. De “Dynamic sleep transistor and body bias for active leakage power control of microprocessor,” IEEE J. Solid-State Circuits 38, 1838–1845 (2003).
[CrossRef]

Tseng, B.

A. V. Krishnamoorthy, A. L. Lentine, K. W. Goossen, J. A. Walker, T. K. Woodward, J. E. Ford, G. F. Aplin, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. Dahringer, L. M. F. Chirovsky, D. A. B. Miller, “3-D integration of MQW modulators over active submicron CMOS circuits: 375 Mb/s transimpedance receiver-transmitter circuit,” IEEE Photon. Technol. Lett. 7, 1288–1290 (1995).
[CrossRef]

UyeMuru, J. P.

J. P. UyeMuru, CMOS Logic Circuit Design (Kluwer Academic, 1999), Chap. 3.

Van Blerkom, D. A.

Venditti, M. B.

D. Plant, M. B. Venditti, E. Laprise, J. Faucher, K. Razavi, M. Chateauneuf, A. G. Kirk, J. S. Ahearn, “256-Channel bidirectional optical interconnect using VCSELs and Photodiodes on CMOS,” J. Lightwave Technol 19, 1093–1103 (2001).
[CrossRef]

Walker, J. A.

A. V. Krishnamoorthy, A. L. Lentine, K. W. Goossen, J. A. Walker, T. K. Woodward, J. E. Ford, G. F. Aplin, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. Dahringer, L. M. F. Chirovsky, D. A. B. Miller, “3-D integration of MQW modulators over active submicron CMOS circuits: 375 Mb/s transimpedance receiver-transmitter circuit,” IEEE Photon. Technol. Lett. 7, 1288–1290 (1995).
[CrossRef]

Wang, X.

X. Wang, F. Kiamilev, P. Gui, J. Ekman, G. C. Papen, M. McFadden, M. W. Haney, C. Kuznia, “A 2-Gb/s optical transceiver with accelerated bit error ratio test capability,” J. Lightwave Technol. 32, 2158–2167 (2004).
[CrossRef]

Wang, X. L.

P. Gui, F. E. Kiamilev, X. Q. Wang, X. L. Wang, M. J. McFadden, M. W. Haney, C. Kuznia, “A 2-Gb/s 0.5µm CMOS parallel optical transceiver with fast power-on capability,” J. Lightwave Technol. 9, 2135–2148 (2004).
[CrossRef]

Wang, X. Q.

P. Gui, F. E. Kiamilev, X. Q. Wang, X. L. Wang, M. J. McFadden, M. W. Haney, C. Kuznia, “A 2-Gb/s 0.5µm CMOS parallel optical transceiver with fast power-on capability,” J. Lightwave Technol. 9, 2135–2148 (2004).
[CrossRef]

Wang, Z.

R. Tao, M. Berroth, Z. Wang, “Low power 10 Gbit/s VCSEL driver for optical interconnect,” Electron. Lett. 39, 1743–1744 (2003).
[CrossRef]

Woodward, T. K.

A. V. Krishnamoorthy, A. L. Lentine, K. W. Goossen, J. A. Walker, T. K. Woodward, J. E. Ford, G. F. Aplin, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. Dahringer, L. M. F. Chirovsky, D. A. B. Miller, “3-D integration of MQW modulators over active submicron CMOS circuits: 375 Mb/s transimpedance receiver-transmitter circuit,” IEEE Photon. Technol. Lett. 7, 1288–1290 (1995).
[CrossRef]

Yates, J.

M. Roughan, A. Greenberg, C. Kalmanek, M. Rumsewicz, J. Yates, Y. Zhang, “Experience in measuring Internet backbone traffic variability models, metrics, measurements and meaning,” presented at the 18th International Teletraffic Congress, Berlin, Germany, 2003.

Ye, Y.

J. W. Tschanz, S. G. Narendra, Y. Ye, B. A. Bloechel, S. Borkar, V. De “Dynamic sleep transistor and body bias for active leakage power control of microprocessor,” IEEE J. Solid-State Circuits 38, 1838–1845 (2003).
[CrossRef]

Zei, L.

Zhang, Y.

M. Roughan, A. Greenberg, C. Kalmanek, M. Rumsewicz, J. Yates, Y. Zhang, “Experience in measuring Internet backbone traffic variability models, metrics, measurements and meaning,” presented at the 18th International Teletraffic Congress, Berlin, Germany, 2003.

Zhou, W.

Appl. Opt. (1)

Computer Commun. (1)

M. Roughan, C. Kalmanek, “Pragmatic modeling of broadband access traffic,” Computer Commun. 26, 804–816 (2003).
[CrossRef]

Directions Mag. (1)

P. Fricker, “Airborne imaging technology: today’s reality,” Directions Mag. (19April2004).

Electron. Lett. (1)

R. Tao, M. Berroth, Z. Wang, “Low power 10 Gbit/s VCSEL driver for optical interconnect,” Electron. Lett. 39, 1743–1744 (2003).
[CrossRef]

IEEE Commun. Mag. (1)

J. W. Roberts, “Traffic theory and the Internet,” IEEE Commun. Mag. 39, 94–99 (2001).
[CrossRef]

IEEE J. Solid-State Circuits (4)

M. Ingels, M. S. J. Steyaert, “A 1-Gb/s, 0.7-m CMOS optical receiver with full rail-to-rail output swing,” IEEE J. Solid-State Circuits 34, 971–977 (1999).
[CrossRef]

J. W. Tschanz, S. G. Narendra, Y. Ye, B. A. Bloechel, S. Borkar, V. De “Dynamic sleep transistor and body bias for active leakage power control of microprocessor,” IEEE J. Solid-State Circuits 38, 1838–1845 (2003).
[CrossRef]

T. Nagahori, N. Suzuki, “An analog front-end chip set employing an electro-optical mixed design on SPICE for 5-Gb/s/ch parallel optical interconnection,” IEEE J. Solid-State Circuits 36, 1984–1991 (2001).
[CrossRef]

H. Iwai, “CMOS technology-year 2010 and beyond,” IEEE J. Solid-State Circuits 34, 357–366 (1999).
[CrossRef]

IEEE Photon. Technol. Lett. (3)

A. V. Krishnamoorthy, A. L. Lentine, K. W. Goossen, J. A. Walker, T. K. Woodward, J. E. Ford, G. F. Aplin, L. A. D’Asaro, S. P. Hui, B. Tseng, R. Leibenguth, D. Kossives, D. Dahringer, L. M. F. Chirovsky, D. A. B. Miller, “3-D integration of MQW modulators over active submicron CMOS circuits: 375 Mb/s transimpedance receiver-transmitter circuit,” IEEE Photon. Technol. Lett. 7, 1288–1290 (1995).
[CrossRef]

L. P. Chen, K. Y. Lau, “Regime where zero-bias is the low-power solution for digitally modulated laser diodes,” IEEE Photon. Technol. Lett. 8, 185–187 (1996).
[CrossRef]

L. Chen, M. Li, C. Chang-Hasnain, K. Lau, “A low-power 1-Gb/s CMOS laser driver for a zero-bias modulated optical transmitter,” IEEE Photon. Technol. Lett. 9, 997–999 (1997).
[CrossRef]

IEEE Trans. Circuits Syst. II (1)

M. Anis, M. Allam, M. Elmasry, “Impact of technology scaling on CMOS logic styles,” IEEE Trans. Circuits Syst. II 49, 577–588 (2002).
[CrossRef]

J. Lightwave Technol (1)

D. Plant, M. B. Venditti, E. Laprise, J. Faucher, K. Razavi, M. Chateauneuf, A. G. Kirk, J. S. Ahearn, “256-Channel bidirectional optical interconnect using VCSELs and Photodiodes on CMOS,” J. Lightwave Technol 19, 1093–1103 (2001).
[CrossRef]

J. Lightwave Technol. (6)

Proc. IEEE (1)

D. A. B. Miller, “Rationale and challenges for optical interconnects to electronic chips,” Proc. IEEE 88, 728–749 (2000).
[CrossRef]

Other (13)

J. P. UyeMuru, CMOS Logic Circuit Design (Kluwer Academic, 1999), Chap. 3.

A. Hastings, The Art of Analog Layout (Prentice-Hall, 2001).

P. McAdam, B. Goldberg, “UTSi CMOS SOS for mixed signal ICs” (Peregrine Semiconductor Corporation, 2001).

Emcore Corporation, “Spec, Oxide Array Die, 1 × 4 3.125 Gb (U-lot), 8685-1402,” data sheet (Emcore Corporation, 2001).

Emcore Corporation, “Spec, PIN Array Die 1 × 4 3.125 Gb, S8485-1405,” data sheet (Emcore Corporation, Albuquerque, 2001).

M Pedram, J. Rabaey, Power Aware Design Methodologies (Kluwer Academic, 2002), Chap. 8.
[CrossRef]

N. Gata, S. Subramaniana, S. Rossa, C. LaBawb, J. Bond, “Thermal infrared imaging spectrometer (TIRIS) status report,” in Infrared Technology & Applications XXIII, B. F. Andresen, M. Strojnik, eds., Proc. SPIE3061, 284–291 (1997).
[CrossRef]

Canadian Center For Remote Sensing online tutorial: http://www.ccrs.nrcan.gc.ca/ccrs/learn/tutorials/fundam/chapter2/chapter2_2_e.html .

B. Hawkins, B. Hawthorne, “2.5 Gpbs oxide isolated VCSEL reliability report” (Honeywell International, 2003).

A. Emami-Neyestanak, D. Liu, G. Keeler, N. Helman, M. Horowitz, “A 1.6 Gbps, 3mW CMOS receiver for optical communication,” in IEEE Symposium on VLSI Circuits (Institute of Electrical and Electronics Engineers, 2002), pp. 84–87.

M. Roughan, A. Greenberg, C. Kalmanek, M. Rumsewicz, J. Yates, Y. Zhang, “Experience in measuring Internet backbone traffic variability models, metrics, measurements and meaning,” presented at the 18th International Teletraffic Congress, Berlin, Germany, 2003.

J. M. Rabaey, A. Chandrakasan, B. Nikolic, Digital Integrated Circuits, 2nd ed. (Pearson Education, 2003), p. 168.

J. Tatum, J. Guenter, “Modulating VCSELs” (Honeywell International, 1998).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (25)

Fig. 1
Fig. 1

Diagram of an optical interconnect between digital systems with dual-rate transceivers.

Fig. 2
Fig. 2

VCSEL biasing currents for data 1’s and 0’s (a) at high-speed mode and (b) at low-power mode.

Fig. 3
Fig. 3

Diagram of a dual-rate optical transceiver.

Fig. 4
Fig. 4

Diagram of a high-speed transmitter module.

Fig. 5
Fig. 5

Diagram of a low-power transmitter module.

Fig. 6
Fig. 6

Electrical receiver, which is used as a gigabit electrical receiver when the power-on signal is enabled or as a megabit electrical receiver when the power-on-bar is enabled. Only one signal can be enabled at a time. VDD, termination voltage.

Fig. 7
Fig. 7

Diagram of a high-speed receiver module.

Fig. 8
Fig. 8

Diagram of a low-power receiver module.

Fig. 9
Fig. 9

Transimpedance amplifier with adjustable gain and bandwidth.

Fig. 10
Fig. 10

Preamplifier in a low-power module.

Fig. 11
Fig. 11

(a) Gigabit electrical driver with 50 Ω, output impedance. (b) Megabit electrical driver with 400 Ω, output impedance. The transistors in the gigabit electrical driver are eight times bigger than those in the megabit counterpart. W is the width and L is the channel length of a transistor.

Fig. 12
Fig. 12

Micrograph of the CMOS transceiver chip.

Fig. 13
Fig. 13

Hybridized transceiver chip (with VCSELs as shown), wire bonded to the carrier board for optical testing.

Fig. 14
Fig. 14

Demonstration motherboard with two carrier boards on it. TX is transmitter, and RX is receiver.

Fig. 15
Fig. 15

High-speed testing setup.

Fig. 16
Fig. 16

(a) High-speed link eye diagram measured at 2 Gbits/s. (b) High-speed link eye diagram after the link was run at 2 Gbits/s continuously for 10 h. For both measurements a 215 − 1 pseudorandom bit sequence was used as source.

Fig. 17
Fig. 17

Low-power testing setup when a CML interface was selected. A second receiver was used to provide a source with 400 Ω output impedance.

Fig. 18
Fig. 18

Eye diagrams for a transceiver working in low-power mode with CML input and output. A 215 − 1 pseudorandom bit sequence was used. Eye diagrams measured at (a) 100 and (b) 50 Mbits/s.

Fig. 19
Fig. 19

Low-power testing setup when a CMOS interface was selected.

Fig. 20
Fig. 20

Eye diagrams when the transceiver worked in the low-power mode with the CMOS input and output. A 215 − 1 pseudorandom bit sequence was used. Eye diagrams measured at (a) 100 and (b) 50 Mbits/s.

Fig. 21
Fig. 21

Mode-switching demonstration diagram. We sent 2 Gbits/s data to a transmitter through a CML interface, and 50 Mbits/s data were sent through a CMOS input.

Fig. 22
Fig. 22

Mode-switching waveforms when both the CML input and the CMOS input of the transmitter are used. Data transmission switching from (a) 2 Gbits/s to 50 Mbits/s and (b) from 50 Mbits/s to 2 Gbits/s.

Fig. 23
Fig. 23

Another mode-switching demonstration diagram. The CML input of the transmitter was used for both high-speed data and low-power data. MUX, multiplexer.

Fig. 24
Fig. 24

Mode switching waveforms when only a CML input transmitter was used. Data transmission switching from (a) 200 Mbits/s to 50 Mbits/s and (b) from 50 Mbits/s to 200 Mbits/s.

Fig. 25
Fig. 25

Four Keithley source meters were used to provide a voltage supply for each part of the transceiver, and we measured their currents to calculate the power dissipation.

Tables (1)

Tables Icon

Table 1 Power Dissipation of Transmission and Receiver

Metrics